1
|
Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. DNA Damage by Radiopharmaceuticals and Mechanisms of Cellular Repair. Pharmaceutics 2023; 15:2761. [PMID: 38140100 PMCID: PMC10748326 DOI: 10.3390/pharmaceutics15122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Aparna R. Parikh
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Matthew R. Strickland
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Shadi A. Esfahani
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| |
Collapse
|
2
|
Ingram SP, Warmenhoven JW, Henthorn NT, Chadiwck AL, Santina EE, McMahon SJ, Schuemann J, Kirkby NF, Mackay RI, Kirkby KJ, Merchant MJ. A computational approach to quantifying miscounting of radiation-induced double-strand break immunofluorescent foci. Commun Biol 2022; 5:700. [PMID: 35835982 PMCID: PMC9283546 DOI: 10.1038/s42003-022-03585-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Immunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images. Simulations of the DSB distributions were generated using Monte Carlo track-structure simulation. For each DSB distribution, a corresponding DNA repair process was modelled and the un-repaired DSBs were recorded at several time points. Corresponding microscopy images for both a DSB and (γ-H2AX) fluorescent marker were generated and compared for different microscopes, radiation types and doses. Statistically significant differences in miscounting were found across most of the tested scenarios. These inconsistencies were propagated through to repair kinetics where there was a perceived change between radiation-types. These changes did not reflect the underlying repair rate and were caused by inconsistencies in foci counting. We conclude that these underlying uncertainties must be considered when analysing images of DNA damage markers to ensure differences observed are real and are not caused by non-systematic miscounting. PyFoci is a tool that simulates distributions of fluorescently labeled DNA double-strand break marker protein foci and allows the estimation of miscounting under different radiation types, doses and microscopy settings.
Collapse
Affiliation(s)
- Samuel P Ingram
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK. .,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK.
| | - John-William Warmenhoven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Nicholas T Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Amy L Chadiwck
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Elham E Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queens University Belfast, 97 Lisburn Rd, Belfast, BT9 7AE, UK
| | - Jan Schuemann
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 30 Fruit Street, Boston, MA, 02114, USA
| | - Norman F Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Ranald I Mackay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Karen J Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| |
Collapse
|
3
|
Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: A marker of DNA damage and repair. DNA Repair (Amst) 2021; 108:103243. [PMID: 34710661 DOI: 10.1016/j.dnarep.2021.103243] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
The phosphorylation of histone variant H2AX and formation of γH2AX is a primary response to the DNA double-strand breaks (DSBs). Detection of γH2AX is a robust and sensitive tool for diagnosis of DNA damage and repair in pre-clinical drug discovery investigations. In addition, the replication stress also leads to the formation of γH2AX and cell death and so γH2AX can serve as a surrogate marker of drug-induced cytotoxicity. Recent advances in genomic research offer an opportunity to detect γH2AX as a specific biomarker for quantitative analysis of DNA damages and repair using high content screening technology and quantitative imaging analysis. The proposed approaches identify a wide range of genetic disorders and are applied in combination with other assays in drug discovery and also for the evaluation of the efficacy of various developmental drugs. In the current review, we provide recent insights into the potential of γH2AX biomarker as a powerful tool in genotoxicity analyses for the monitoring and managing of cancer diseases.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Pharmaceutical Sciences Research Center, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Sakata D, Belov O, Bordage MC, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, Petrovic I, Ristic-Fira A, Shin WG, Incerti S. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. Sci Rep 2020; 10:20788. [PMID: 33247225 PMCID: PMC7695857 DOI: 10.1038/s41598-020-75982-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation’s track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic “fully integrated” MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma$$\end{document}γ-H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations.
Collapse
Affiliation(s)
- Dousatsu Sakata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Chiba, Japan.
| | - Oleg Belov
- Joint Institute for Nuclear Research, Dubna, Russia.,Dubna State University, Dubna, Russia
| | - Marie-Claude Bordage
- INSERM, UMR 1037, CRCT, Université Paul Sabatier, Toulouse, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Susanna Guatelli
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Chiba, Japan
| | - Vladimir Ivanchenko
- Geant4 Associates International Ltd, Hebden Bridge, UK.,Tomsk State University, Tomsk, Russia
| | | | - Ioanna Kyriakou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | | | - Ivan Petrovic
- Vinca Institute of Nuclear Science, University of Belgrade, Belgrade, Serbia
| | | | - Wook-Geun Shin
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, Gradignan, 33170, France
| | | |
Collapse
|
5
|
Potential application of γ-H2AX as a biodosimetry tool for radiation triage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108350. [PMID: 34083048 DOI: 10.1016/j.mrrev.2020.108350] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023]
Abstract
Radiation triage and biological dosimetry are two initial steps in the medical management of exposed individuals following radiological accidents. Well established biodosimetry methods such as the dicentric (DC) assay, micronucleus (MN) assay, and fluorescence in-situ hybridization (FISH) translocation assay (for residual damage) have been used for this purpose for several decades. Recent advances in scoring methodology and networking among established laboratories have increased triage capacity; however, these methods still have limitations in analysing large sample numbers, particularly because of the ∼ 48 h minimum culture time required prior to analysis. Hence, there is a need for simple, and high throughput markers to identify exposed individuals in case of radiological/nuclear emergencies. In recent years, a few markers were identified, one being phosphorylated histone 2AX (γ-H2AX), which measured a nuclear foci or nuclear staining intensity that was found to be suitable for triage. Measurement of γ-H2AX foci formed at and around the sites of DNA double-strand breaks is a rapid and sensitive biodosimetry method which does not require culturing and is thus promising for the analysis of a large number of samples. In this review, we have summarized the recent developments of γ-H2AX assay in radiation triage and biodosimetry, focusing chiefly on: i) the importance of baseline frequency and reported values among different laboratories, ii) the influence of known and unknown variables on dose estimation, iii) quality assurance such as inter-laboratory comparison between scorers and scoring methods, and iv) current limitations and potential for future development.
Collapse
|
6
|
Assessment of Radio-Induced Damage in Endothelial Cells Irradiated with 40 kVp, 220 kVp, and 4 MV X-rays by Means of Micro and Nanodosimetric Calculations. Int J Mol Sci 2019; 20:ijms20246204. [PMID: 31835321 PMCID: PMC6940891 DOI: 10.3390/ijms20246204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The objective of this work was to study the differences in terms of early biological effects that might exist between different X-rays energies by using a mechanistic approach. To this end, radiobiological experiments exposing cell monolayers to three X-ray energies were performed in order to assess the yields of early DNA damage, in particular of double-strand breaks (DSBs). The simulation of these irradiations was set in order to understand the differences in the obtained experimental results. Hence, simulated results in terms of microdosimetric spectra and early DSB induction were analyzed and compared to the experimental data. Human umbilical vein endothelial cells (HUVECs) were irradiated with 40, 220 kVp, and 4 MV X-rays. The Geant4 Monte Carlo simulation toolkit and its extension Geant4-DNA were used for the simulations. Microdosimetric calculations aiming to determine possible differences in the variability of the energy absorbed by the irradiated cell population for those photon spectra were performed on 10,000 endothelial cell nuclei representing a cell monolayer. Nanodosimetric simulations were also carried out using a computation chain that allowed the simulation of physical, physico-chemical, and chemical stages on a single realistic endothelial cell nucleus model including both heterochromatin and euchromatin. DNA damage was scored in terms of yields of prompt DSBs per Gray (Gy) and per giga (109) base pair (Gbp) and DSB complexity was derived in order to be compared to experimental data expressed as numbers of histone variant H2AX (γ-H2AX) foci per cell. The calculated microdosimetric spread in the irradiated cell population was similar when comparing between 40 and 220 kVp X-rays and higher when comparing with 4 MV X-rays. Simulated yields of induced DSB/Gy/Gbp were found to be equivalent to those for 40 and 220 kVp but larger than those for 4 MV, resulting in a relative biological effectiveness (RBE) of 1.3. Additionally, DSB complexity was similar between the considered photon spectra. Simulated results were in good agreement with experimental data obtained by IRSN (Institut de radioprotection et de sûreté nucléaire) radiobiologists. Despite differences in photon energy, few differences were observed when comparing between 40 and 220 kVp X-rays in microdosimetric and nanodosimetric calculations. Nevertheless, variations were observed when comparing between 40/220 kVp and 4 MV X-rays. Thanks to the simulation results, these variations were able to be explained by the differences in the production of secondary electrons with energies below 10 keV.
Collapse
|
7
|
Barbieri S, Babini G, Morini J, Friedland W, Buonanno M, Grilj V, Brenner DJ, Ottolenghi A, Baiocco G. Predicting DNA damage foci and their experimental readout with 2D microscopy: a unified approach applied to photon and neutron exposures. Sci Rep 2019; 9:14019. [PMID: 31570741 PMCID: PMC6769049 DOI: 10.1038/s41598-019-50408-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
The consideration of how a given technique affects results of experimental measurements is a must to achieve correct data interpretation. This might be challenging when it comes to measurements on biological systems, where it is unrealistic to have full control (e.g. through a software replica) of all steps in the measurement chain. In this work we address how the effectiveness of different radiation qualities in inducing biological damage can be assessed measuring DNA damage foci yields, only provided that artefacts related to the scoring technique are adequately considered. To this aim, we developed a unified stochastic modelling approach that, starting from radiation tracks, predicts both the induction, spatial distribution and complexity of DNA damage, and the experimental readout of foci when immunocytochemistry coupled to 2D fluorescence microscopy is used. The approach is used to interpret γ-H2AX data for photon and neutron exposures. When foci are reconstructed in the whole cell nucleus, we obtain information on damage characteristics "behind" experimental observations, as the average damage content of a focus. We reproduce how the detection technique affects experimental findings, e.g. contributing to the saturation of foci yields scored at 30 minutes after exposure with increasing dose and to the lack of dose dependence for yields at 24 hours.
Collapse
Affiliation(s)
| | | | - Jacopo Morini
- Physics Department, University of Pavia, Pavia, Italy
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - Veljko Grilj
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | | | | |
Collapse
|
8
|
Baiocco G, Babini G, Barbieri S, Morini J, Friedland W, Villagrasa C, Rabus H, Ottolenghi A. WHAT ROLES FOR TRACK-STRUCTURE AND MICRODOSIMETRY IN THE ERA OF -omics AND SYSTEMS BIOLOGY? RADIATION PROTECTION DOSIMETRY 2019; 183:22-25. [PMID: 30535167 PMCID: PMC6525334 DOI: 10.1093/rpd/ncy221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ionizing radiation is a peculiar perturbation when it comes to damage to biological systems: it proceeds through discrete energy depositions, over a short temporal scale and a spatial scale critical for subcellular targets as DNA, whose damage complexity determines the outcome of the exposure. This lies at the basis of the success of track structure (and nanodosimetry) and microdosimetry in radiation biology. However, such reductionist approaches cannot account for the complex network of interactions regulating the overall response of the system to radiation, particularly when effects are manifest at the supracellular level and involve long times. Systems radiation biology is increasingly gaining ground, but the gap between reductionist and holistic approaches is becoming larger. This paper presents considerations on what roles track structure and microdosimetry can have in the attempt to fill this gap, and on how they can be further exploited to interpret radiobiological data and inform systemic approaches.
Collapse
Affiliation(s)
- G Baiocco
- Physics Department, University of Pavia, Pavia, Italy
- Corresponding author:
| | - G Babini
- Physics Department, University of Pavia, Pavia, Italy
| | - S Barbieri
- Physics Department, University of Pavia, Pavia, Italy
| | - J Morini
- Physics Department, University of Pavia, Pavia, Italy
| | - W Friedland
- Institute of Radiation Protection, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - C Villagrasa
- Institut de Radioprotection et Sûreté nucléaire (IRSN), Fontenay aux Roses Cedex, France
| | - H Rabus
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - A Ottolenghi
- Physics Department, University of Pavia, Pavia, Italy
| |
Collapse
|