1
|
Kawauchi S, Chida K, Moritake T, Hamada Y, Tsuruta W. Radiation dose analysis in interventional neuroradiology of unruptured aneurysm cases. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:031515. [PMID: 39226910 DOI: 10.1088/1361-6498/ad76b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
This study aimed to evaluate the radiation doses (peak skin dose (PSD) and bilateral lens dose) for each interventional neuroradiology procedure. A direct measurement system consisting of small radiophotoluminescence glass dosimeter chips and a dosimetry cap made of thin stretchable polyester was used for radiation dosimetry. The mean PSDs for each procedure were 1565 ± 590 mGy (simple technique coil embolization (STCE) cases), 1851 ± 825 mGy (balloon-assisted coil embolization (BACE) cases), 2583 ± 967 mGy (stent-assisted coil embolization (SACE) cases), 1690 ± 597 mGy (simple flow-diverter stenting (FDS) cases), and 2214 ± 726 mGy (FDS + coiling cases). The mean PSD was higher in SACE cases than in STCE, BACE, and simple FDS cases. Moreover, the PSD exceeded 2000 mGy and 3000 mGy in 46 (67.6%) and 19 (27.9%) SACE cases, respectively. The left lens doses for each procedure were 126 ± 111 mGy (STCE cases), 163 ± 152 mGy (BACE cases), 184 ± 148 mGy (SACE cases), 144 ± 60 mGy (simple FDS cases), and 242 ± 178 mGy (FDS + coiling cases). The left lens dose in SACE cases was higher than that in STCE cases and exceeded 500 mGy in 3 (4.4%) patients. In FDS + coiling cases, the mean PSD and left lens dose were 2214 ± 726 mGy and 242 ± 178 mGy, respectively. The left lens dose was higher than that in the STCE and BACE cases, with two (15.4%) patients receiving doses >500 mGy in FDS + coiling cases. The detailed data obtained in this study are expected to contribute to the promotion of radiation dose optimization.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku Sendai, Miyagi 980-8575, Japan
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku Sendai, Miyagi 980-8575, Japan
| | - Takashi Moritake
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| |
Collapse
|
2
|
Matsunaga Y, Haba T, Kobayashi M, Suzuki S, Asada Y, Chida K. Assessment of fetal radiation exposure in pregnant women undergoing computed tomography and rotational angiography examinations for pelvic trauma. RADIATION PROTECTION DOSIMETRY 2024; 200:580-587. [PMID: 38486458 DOI: 10.1093/rpd/ncae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to assess fetal radiation exposure in pregnant women undergoing computed tomography (CT) and rotational angiography (RA) examinations for the diagnosis of pelvic trauma. In addition, this study aimed to compare the dose distributions between the two examinations. Surface and average fetal doses were estimated during CT and RA examinations using a pregnant phantom model and real-time dosemeters. The pregnant model phantom was constructed using an anthropomorphic phantom, and a custom-made abdominal phantom was used to simulate pregnancy. The total average fetal dose received by pregnant women from both CT scans (plain, arterial and equilibrium phases) and a single RA examination was ~60 mGy. Because unnecessary repetition of radiographic examinations, such as CT or conventional 2D angiography can increase the radiation risk, the irradiation range should be limited, if necessary, to reduce overall radiation exposure.
Collapse
Affiliation(s)
- Yuta Matsunaga
- Department of Imaging, Nagoya Kyoritsu Hospital, 1-172, Hokke, Nakagawa-ku, Nagoya, Aichi, Japan
- Department of Radiological Technology, Faculty of Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Tomonobu Haba
- Faculty of Radiological Technology, School of Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho,Toyoake, Aichi, Japan
| | - Masanao Kobayashi
- Faculty of Radiological Technology, School of Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho,Toyoake, Aichi, Japan
| | - Shoichi Suzuki
- Faculty of Radiological Technology, School of Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho,Toyoake, Aichi, Japan
| | - Yasuki Asada
- Faculty of Radiological Technology, School of Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho,Toyoake, Aichi, Japan
| | - Koichi Chida
- Department of Radiological Technology, Faculty of Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Kawauchi S, Chida K, Hamada Y, Tsuruta W. Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study. Tomography 2023; 9:1683-1693. [PMID: 37736987 PMCID: PMC10514806 DOI: 10.3390/tomography9050134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
There has been an increase in the use of interventional neuroradiology procedures because of their non-invasiveness compared to surgeries and the improved image quality of fluoroscopy, digital subtraction angiography, and rotational angiography. Although cone-beam computed tomography (CBCT) images are inferior to multi-detector CT images in terms of low-contrast detectability and lower radiation doses, CBCT scans are frequently performed because of their accessibility. This study aimed to evaluate the image quality and radiation dose of two different high-resolution CBCTs (HR CBCT): conventional (C-HR CBCT) and wide-field HR CBCT (W-HR CBCT). The modulation transfer function (MTF), noise power spectrum (NPS), and contrast-to-noise ratio (CNR) were used to evaluate the image quality. On comparing the MTF of C-HR CBCT with a 256 × 256 matrix and that of W-HR CBCT with a 384 × 384 matrix, the MTF of W-HR CBCT with the 384 × 384 matrix was larger. A comparison of the NPS and CNR of C-HR CBCT with a 256 × 256 matrix and W-HR CBCT with a 384 × 384 matrix showed that both values were comparable. The reference air kerma values were equal for C-HR CBCT and W-HR CBCT; however, the value of the kerma area product was 1.44 times higher for W-HR CBCT compared to C-HR CBCT. The W-HR CBCT allowed for improved spatial resolution while maintaining the image noise and low-contrast detectability by changing the number of image matrices from 256 × 256 to 384 × 384. Our study revealed the image characteristics and radiation dose of W-HR CBCT. Given its advantages of low-contrast detectability and wide-area imaging with high spatial resolution, W-HR CBCT may be useful in interventional neuroradiology for acute ischemic stroke.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (S.K.); (Y.H.)
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (S.K.); (Y.H.)
| | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
| |
Collapse
|
4
|
Kawauchi S, Chida K, Moritake T, Hamada Y, Yoda S, Sakuma H, Tsuruta W, Matsumaru Y. Evaluation of Peak Skin Doses and Lens Doses during Interventional Neuroradiology Using a Direct Measurement System. JOURNAL OF NEUROENDOVASCULAR THERAPY 2022; 16:491-497. [PMID: 37502201 PMCID: PMC10370819 DOI: 10.5797/jnet.oa.2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 07/29/2023]
Abstract
Objective In interventional neuroradiology (INR), the evaluation of the peak skin dose (PSD) and lens dose is important because the patient radiation dose increases in cases in which the procedure is more difficult and complex. This study evaluated the radiation doses during INR procedures using a direct measurement system. Methods Radiation dose measurements during INR were performed in 332 patients with unruptured aneurysm (URAN), dural arteriovenous fistula (DAVF), and arteriovenous malformation (AVM). The PSD and bilateral lens doses were analyzed for each disease. The Pearson correlation test was used to determine whether the PSD and lens doses were linearly related to the reference air kerma (Ka,r). Results In all cases, the PSD and right and left lens doses were 2.36 ± 1.28 Gy, 114.2 ± 54.6 mGy, and 189.8 ± 160.3 mGy, respectively. The PSD and lens doses of the DAVF and AVM cases were significantly higher than those of the URAN case. The Pearson correlation test revealed statistically significant positive correlations between Ka,r and PSD, Ka,r and right lens dose, and Ka,r and left lens dose. Conclusion The characteristics of radiation dose in INR were clarified. Owing to the concern of increased radiation doses exceeding the threshold values in DAVF and AVM cases, protection from radiation is required. Simple regression analysis revealed the possibility of precisely predicting PSD using Ka,r.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, Tokyo, Japan
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Moritake
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, National Institute for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, Tokyo, Japan
| | - Shogo Yoda
- Department of Radiology, Toranomon Hospital, Tokyo, Japan
| | | | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, Tokyo, Japan
| | - Yuji Matsumaru
- Division for Stroke Prevention and Treatment, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Kawauchi S, Chida K, Hamada Y, Tsuruta W. Lens dose reduction with a bismuth shield in neuro cone-beam computed tomography: an investigation on optimum shield device placement conditions. Radiol Phys Technol 2021; 15:25-36. [PMID: 34796447 DOI: 10.1007/s12194-021-00644-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to determine the placement distance, number, and position of the bismuth shield for developing a lens protective device for cone-beam computed tomography (CBCT). To determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. The image quality assessment was determined by analyzing the change in the pixel value, caused by the bismuth shield, and the artifact index was calculated from the pixel value and image noise within various regions of interest in the head phantom. When the distance between the bismuth shield and the subject was increased, the image quality deteriorated less, but there was also a decrease in the lens dose reduction rate. Upon changing the number of bismuth shields from 1-ply to 2-ply, the dose reduction rate increased; however, there was a decrease in the image quality. Additionally, placing the bismuth shield outside of the subject improved the dose reduction rate without deteriorating the image quality. The optimum placement conditions of the bismuth shield were concluded as follows: positioned outside, placed 10 mm from the surface of the subject, and used a 1-ply bismuth shield. When these placement conditions were used, the lens dose reduction rate was 26.9 ± 0.36% (right-left average) for the "bismuth shield: separate". The protective device developed in this study will contribute to radiation dose reduction in CBCT scans.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| |
Collapse
|
6
|
Ihn YK, Kim BS, Jeong HW, Suh SH, Won YD, Lee YJ, Kim DJ, Jeon P, Ryu CW, Suh SI, Choi DS, Choi SS, Kim SH, Byun JS, Rho J, Song Y, Jeong WS, Hong N, Baik SH, Park JJ, Lim SM, Kim JJ, Yoon W. Monitoring Radiation Doses during Diagnostic and Therapeutic Neurointerventional Procedures: Multicenter Study for Establishment of Reference Levels. Neurointervention 2021; 16:240-251. [PMID: 34695909 PMCID: PMC8561028 DOI: 10.5469/neuroint.2021.00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To assess patient radiation doses during diagnostic and therapeutic neurointerventional procedures from multiple centers and propose dose reference level (RL). MATERIALS AND METHODS Consecutive neurointerventional procedures, performed in 22 hospitals from December 2020 to June 2021, were retrospectively studied. We collected data from a sample of 429 diagnostic and 731 therapeutic procedures. Parameters including dose-area product (DAP), cumulative air kerma (CAK), fluoroscopic time (FT), and total number of image frames (NI) were obtained. RL were calculated as the 3rd quartiles of the distribution. RESULTS Analysis of 1160 procedures from 22 hospitals confirmed the large variability in patient dose for similar procedures. RLs in terms of DAP, CAK, FT, and NI were 101.6 Gy·cm2, 711.3 mGy, 13.3 minutes, and 637 frames for cerebral angiography, 199.9 Gy·cm2, 3,458.7 mGy, 57.3 minutes, and 1,000 frames for aneurysm coiling, 225.1 Gy·cm2, 1,590 mGy, 44.7 minutes, and 800 frames for stroke thrombolysis, 412.3 Gy·cm2, 4,447.8 mGy, 99.3 minutes, and 1,621.3 frames for arteriovenous malformation (AVM) embolization, respectively. For all procedures, the results were comparable to most of those already published. Statistical analysis showed male and presence of procedural complications were significant factors in aneurysmal coiling. Male, number of passages, and procedural combined technique were significant factors in stroke thrombolysis. In AVM embolization, a significantly higher radiation dose was found in the definitive endovascular cure group. CONCLUSION Various RLs introduced in this study promote the optimization of patient doses in diagnostic and therapeutic interventional neuroradiology procedures. Proposed 3rd quartile DAP (Gy·cm2) values were 101.6 for diagnostic cerebral angiography, 199.9 for aneurysm coiling, 225.1 for stroke thrombolysis, and 412.3 for AVM embolization. Continual evolution of practices and technologies requires regular updates of RLs.
Collapse
Affiliation(s)
- Yon-Kwon Ihn
- Department of Radiology, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Bum-Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hae Woong Jeong
- Department of Radiology, Busan Paik Hospital, Inje University, Busan, Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
| | - Yoo Dong Won
- Department of Radiology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Young-Jun Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Joon Kim
- Department of Radiology, Severance Hospital, Yonsei Unviersity College of Medicine, Seoul, Korea
| | - Pyong Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Dae Seob Choi
- Department of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - See Sung Choi
- Department of Radiology, Wonkwang University Hospital, Iksan, Korea
| | - Sang Heum Kim
- Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jun Soo Byun
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Jieun Rho
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yunsun Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo Sang Jeong
- Department of Radiology, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| | - Noah Hong
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Sung Hyun Baik
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Jung-Jae Kim
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Woong Yoon
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
7
|
Radioprotection of eye lens using protective material in neuro cone-beam computed tomography: Estimation of dose reduction rate and image quality. Phys Med 2021; 82:192-199. [PMID: 33647602 DOI: 10.1016/j.ejmp.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/02/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE In cerebral angiography, for diagnosis and interventional neuroradiology, cone-beam computed tomography (CBCT) scan is frequently performed for evaluating brain parenchyma, cerebral hemorrhage, and cerebral infarction. However, the patient's eye lens is more frequently exposed to excessive doses in these scans than in the previous angiography and interventional neuroradiology (INR) procedures. Hence, radioprotection for the lenses is needed. This study selects the most suitable eye lens protection material for CBCT from among nine materials by evaluating the dose reduction rate and image quality. METHODS To determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. For image quality assessment, the artifact index was calculated based on the pixel value and image noise within various regions of interest in a water phantom. RESULTS The protective materials exhibited dose reduction; however, streak artifacts were observed near the materials. The dose reduction rate and the degree of the artifact varied significantly depending on the protective material. The dose reduction rates were 14.6%, 14.2%, and 26.0% when bismuth shield: normal (bismuth shield in the shape of an eye mask), bismuth shield: separate (two separate bismuth shields), and lead goggles were used, respectively. The "separate" bismuth shield was found to be effective in dose reduction without lowering the image quality. CONCLUSION We found that bismuth shields and lead goggles are suitable protective devices for the optimal reduction of lens doses.
Collapse
|
8
|
Morota K, Moritake T, Nagamoto K, Matsuzaki S, Nakagami K, Sun L, Kunugita N. Optimization of the Maximum Skin Dose Measurement Technique Using Digital Imaging and Communication in Medicine-Radiation Dose Structured Report Data for Patients Undergoing Cerebral Angiography. Diagnostics (Basel) 2020; 11:E14. [PMID: 33374876 PMCID: PMC7824295 DOI: 10.3390/diagnostics11010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
Understanding the maximum skin dose is important for avoiding tissue reactions in cerebral angiography. In this study, we devised a method for using digital imaging and communication in medicine-radiation dose structured report (DICOM-RDSR) data to accurately estimate the maximum skin dose from the total air kerma at the patient entrance reference point (Total Ka,r). Using a test data set (n = 50), we defined the mean ratio of the maximum skin dose obtained from measurements with radio-photoluminescence glass dosimeters (RPLGDs) to the Total Ka,r as the conversion factor, CFKa,constant, and compared the accuracy of the estimated maximum skin dose obtained from multiplying Total Ka,r by CFKa,constant (Estimation Model 1) with that of the estimated maximum skin dose obtained from multiplying Total Ka,r by the functional conversion factor CFKa,function (Estimation Model 2). Estimation Model 2, which uses the quadratic function for the ratio of the fluoroscopy Ka,r to the Total Ka,r (Ka,r ratio), provided an estimated maximum skin dose closer to that obtained from direct measurements with RPLGDs than compared with that determined using Estimation Model 1. The same results were obtained for the validation data set (n = 50). It was suggested the quadratic function for the Ka,r ratio provides a more accurate estimate of the maximum skin dose in real time.
Collapse
Affiliation(s)
- Koichi Morota
- Department of Radiology, Shinkomonji Hospital, 2-5 Dairishinmachi, Moji-ku, Kitakyushu, Fukuoka 800-0057, Japan; (K.M.); (S.M.)
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (K.N.); (K.N.)
| | - Takashi Moritake
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (K.N.); (K.N.)
| | - Keisuke Nagamoto
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (K.N.); (K.N.)
- Department of Radiology, Hospital of the University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8556, Japan
| | - Satoru Matsuzaki
- Department of Radiology, Shinkomonji Hospital, 2-5 Dairishinmachi, Moji-ku, Kitakyushu, Fukuoka 800-0057, Japan; (K.M.); (S.M.)
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (K.N.); (K.N.)
| | - Koichi Nakagami
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (K.N.); (K.N.)
- Department of Radiology, Hospital of the University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8556, Japan
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
| | - Naoki Kunugita
- Department of Occupational and Community Health Nursing, School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan;
| |
Collapse
|