1
|
Kustova T, Vodneva A, Tcepelevich M, Tkachenko I, Oreshina G, Zhukova MA, Golovanova I, Grigorenko EL. Psychophysiological correlates of learner-instructor interaction: A scoping review. Int J Psychophysiol 2025; 211:112556. [PMID: 40112952 DOI: 10.1016/j.ijpsycho.2025.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
This article reviews recent studies of real-time learner-instructor interactions and psychophysiological indicators associated with this process. The initial systematic search of the literature yielded 2,663 articles; 26 peer-reviewed articles in English were included in the final sample. The learner-instructor interpersonal relationships were studied using neuroimaging, eye movements, and peripheral physiological devices. Retrieved articles covered several phenomena accompanying learning interaction, including attention and meditation processes, mental effort, engagement, inter-brain synchronization, relationship quality, and interpersonal behavior. Some articles emphasized the link between the aforementioned processes and learning outcomes. The following psychophysiological correlates of processes underlying learning interaction were indicated. Inter-brain synchronization in the prefrontal cortex and temporal-parietal area is associated with the social component of learning interactions and positively correlates with learning outcomes. Students' engagement is accompanied by a decrease in electroencephalography occipital alpha rhythm, indicating heightened attention. Experienced teachers tend to focus their gaze on students while balancing gaze between learners and content facilitates students' attention. Students' gaze allocation toward learning-related areas indicates attention and engagement, which varies with instructional strategies. Heart rate and electrodermal activity positively correlate with learners' engagement, increasing during active educational strategies and decreasing throughout the lesson. Finally, heart rate, reflecting physiological arousal and interpersonal behavior, relates to the emotions experienced by the teacher. However, most of the registered associations require replication and further research, as at this point, their direction and magnitude are inconclusive due to, most likely, the differences in the methods and analytical strategies. Limitations and implications for future research are discussed.
Collapse
Affiliation(s)
- Tatiana Kustova
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia.
| | - Alena Vodneva
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia.
| | - Margarita Tcepelevich
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia
| | - Irina Tkachenko
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia
| | - Galina Oreshina
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia; Laboratory for Social and Cognitive Informatics, Sociology Department, HSE University, Saint Petersburg 192171, Russia
| | - Marina A Zhukova
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Irina Golovanova
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia; Department of Psychology, St Petersburg University, Saint Petersburg 199034, Russia
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, HEALTH-1, 4349 Martin Luther King Boulevard, Room 373, Houston, TX 77204-6022, USA.
| |
Collapse
|
2
|
Gemmerich R, Müller O, Schaller A. The application of fNIRS in studies on occupational workload: a systematic review. Front Public Health 2025; 13:1560605. [PMID: 40331113 PMCID: PMC12053328 DOI: 10.3389/fpubh.2025.1560605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Background Occupational workload can contribute to significant health problems such as chronic stress, fatigue and burnout. To investigate the underlying mechanisms, it is necessary to monitor brain activity in real work environments. Functional near-infrared spectroscopy (fNIRS) is a portable, non-invasive neuroimaging method that captures neural correlates of occupational workload under natural conditions. However, despite its increasing application, a comprehensive overview of fNIRS-based research in this field is lacking. Therefore, this systematic review examines how fNIRS can be utilized to investigate occupational workload. Methods Following PRISMA 2020 guidelines, we conducted our systematic review by searching Web of Science, PubMed, and Scopus between November 15, 2023 and March 20, 2025. We included all studies published in English or German at any date, as long as they examined healthy adult professionals performing occupational tasks with functional near-infrared spectroscopy (fNIRS). Extracted data included study characteristics, workload details, signal processing methods, main fNIRS findings, and study quality, assessed using the JBI Critical Appraisal Tool. Results We included 41 studies. Of these, 23 reported a significant increase in oxygenated hemoglobin (HbO) concentration and functional connectivity in the prefrontal cortex (PFC) under higher occupational workload conditions. Only five studies examined typical office tasks. Nine studies analyzed differences in cortical activation between experts and novices, with experts showing increased HbO concentration in the PFC than novices. Regarding methodology, 26 studies used standardized optode placements, while only 17 applied systemic and extracerebral artifact correction. Small sample sizes and the absence of randomized controlled trials limited the reliability and reproducibility of the findings. Conclusion Functional near-infrared spectroscopy effectively detects neural correlates of occupational workload and provides objective insights into cognitive demands in real-world work settings. Standardizing optode placement, harmonizing signal-processing methods, and increasing sample sizes would enhance the validity and comparability of future research. Expanding investigations to typical office environments is also crucial for understanding daily workload and for developing interventions that promote employee well-being and productivity. Overall, fNIRS represents a promising tool for establishing evidence-based workplace health promotion strategies across diverse occupational settings.
Collapse
Affiliation(s)
- Robin Gemmerich
- Department of Workplace Health Promotion and Prevention, University of the Bundeswehr Munich, Neubiberg, Germany
| | | | - Andrea Schaller
- Department of Workplace Health Promotion and Prevention, University of the Bundeswehr Munich, Neubiberg, Germany
| |
Collapse
|
3
|
De Felice S, Chand T, Croy I, Engert V, Goldstein P, Holroyd CB, Kirsch P, Krach S, Ma Y, Scheele D, Schurz M, Schweinberger SR, Hoehl S, Vrticka P. Relational neuroscience: Insights from hyperscanning research. Neurosci Biobehav Rev 2025; 169:105979. [PMID: 39674533 DOI: 10.1016/j.neubiorev.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models. We propose the term 'Relational Neuroscience' to collate the interdisciplinary research field devoted to modelling the inter-brain dynamics subserving human connections, spanning from real-time joint experiences to long-term social bonds. Hyperscanning, i.e., simultaneously measuring brain activity from multiple individuals, has proven to be a highly promising technique to investigate inter-brain dynamics. Here, we discuss how hyperscanning can help investigate questions within the field of Relational Neuroscience, considering a variety of subfields, including cooperative interactions in dyads and groups, empathy, attachment and bonding, and developmental neuroscience. While presenting Relational Neuroscience in the light of hyperscanning, our discussion also takes into account behaviour, physiology and endocrinology to properly interpret inter-brain dynamics within social contexts. We consider the strengths but also the limitations and caveats of hyperscanning to answer questions about interacting people. The aim is to provide an integrative framework for future work to build better theories across a variety of contexts and research subfields to model human sociality.
Collapse
Affiliation(s)
| | - Tara Chand
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Sonipat, Haryana, India; Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Veronika Engert
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Pavel Goldstein
- Integrative Pain Laboratory, School of Public Health, University of Haifa, Haifa, Israel
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychology, University of Heidelberg, Germany; German Center for Mental Health (DZPG), Site Mannheim-Heidelberg-Ulm, Germany
| | - Sören Krach
- Klinik für Psychiatrie und Psychotherapie, University of Lübeck, Lübeck, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Ruhr University Bochum, Germany
| | - Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Department of General Psychology, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - Pascal Vrticka
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
4
|
Li Q, Wang D, Xiao W, Tang Y, Sun Q, Sun B, Hu Z. Structured interaction between teacher and student in the flipped classroom enhances learning and interbrain synchrony. NPJ SCIENCE OF LEARNING 2024; 9:73. [PMID: 39622866 PMCID: PMC11612419 DOI: 10.1038/s41539-024-00286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Studies have found that flipped classroom teaching (FT) improves learning compared to lecture-based teaching (LT). However, whether the structured teacher-student interaction-the key feature of FT-plays an essential role in enhancing learning remains unclear, as do its neural underpinnings. Here, we compared three teaching conditions: FT with a video lecture and structured interaction, LT with a face-to-face lecture and spontaneous interaction, and control teaching (CT) with a video lecture and spontaneous interaction. The fNIRS-based hyperscanning technique was used to assess the interbrain synchrony (IBS) from teacher-student dyads. Results showed that the learning was significantly improved in FT than in LT and CT, and FT significantly increased teacher-student IBS in left DLPFC. Moreover, the IBS and learning improvements were positively correlated. Therefore, these findings indicate that the structured teacher-student interaction is crucial for enhancing learning in FT, and IBS serves as its neural foundation.
Collapse
Affiliation(s)
- Qi Li
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
| | - Die Wang
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
| | - Weilong Xiao
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China
- Research Center of Tin Ka Ping Moral Education, Zhejiang Normal University, Jinhua, P. R. China
| | - Yingying Tang
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qi Sun
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China.
| | - Binghai Sun
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China.
- Research Center of Tin Ka Ping Moral Education, Zhejiang Normal University, Jinhua, P. R. China.
| | - Zhishan Hu
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.
| |
Collapse
|
5
|
Ren W, Yu S, Guo K, Lu C, Zhang YQ. Disrupted Human-Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402493. [PMID: 39257367 PMCID: PMC11538694 DOI: 10.1002/advs.202402493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Indexed: 09/12/2024]
Abstract
Dogs interact with humans effectively and intimately. However, the neural underpinnings for such interspecies social communication are not understood. It is known that interbrain activity coupling, i.e., the synchronization of neural activity between individuals, represents the neural basis of social interactions. Here, previously unknown cross-species interbrain activity coupling in interacting human-dog dyads is reported. By analyzing electroencephalography signals from both dogs and humans, it is found that mutual gaze and petting induce interbrain synchronization in the frontal and parietal regions of the human-dog dyads, respectively. The strength of the synchronization increases with growing familiarity of the human-dog dyad over five days, and the information flow analysis suggests that the human is the leader while the dog is the follower during human-dog interactions. Furthermore, dogs with Shank3 mutations, which represent a promising complementary animal model of autism spectrum disorders (ASD), show a loss of interbrain coupling and reduced attention during human-dog interactions. Such abnormalities are rescued by the psychedelic lysergic acid diethylamide (LSD). The results reveal previously unknown interbrain synchronizations within an interacting human-dog dyad which may underlie the interspecies communication, and suggest a potential of LSD for the amelioration of social impairment in patients with ASD.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain‐inspired IntelligenceInstitute of Automation, Chinese Academy of SciencesBeijing100190China
| | - Kun Guo
- School of PsychologyUniversity of LincolnBrayford PoolLincolnLN6 7TSUK
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Yong Q. Zhang
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- School of Life SciencesHubei UniversityWuhan430062China
| |
Collapse
|
6
|
Jin Z, Yin J, Pan Y, Zhang Y, Li Y, Xu X, Luo J. Teach a man to fish: Hyper-brain evidence on scaffolding strategy enhancing creativity acquisition and transfer. Neuroimage 2024; 297:120757. [PMID: 39067552 DOI: 10.1016/j.neuroimage.2024.120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
Creativity is an indispensable competency in today's innovation-driven society. Yet, the influences of instructional strategy, a key determinant of educational outcomes, on the creativity-fostering process remains an unresolved mystery. We proposed that instructional strategy affects creativity cultivation and further investigated the intricate neural mechanisms underlying this relationship. In a naturalistic laboratory setting, 66 instructor-learner dyads were randomized into three groups (scaffolding, explanation, and control), with divergent thinking instructions separately. Functional near-infrared spectroscopy (fNIRS) hyperscanning simultaneously collected brain signals in the prefrontal cortex and temporal-parietal junction regions. Results indicated that learners instructed with a scaffolding strategy demonstrated superior creative performance both in acquisition (direct learning) and transfer (use in a novel context) of creativity skills, compared to pretest levels. In contrast, the control and explanation groups did not exhibit such effects. Notably, we also observed remarkable interbrain neural synchronization (INS) between instructors and learners in the left superior frontal cortex in the scaffolding group, but not in the explanation or control groups. Furthermore, INS positively predicted enhancements in creativity performance (acquisition and transfer), indicating that it is a crucial neural mechanism in the creativity-fostering process. These findings reveal that scaffolding facilitates the acquisition and transfer of creativity and deepen our understanding of the neural mechanisms underlying the process of creativity-fostering. The current study provides valuable insights for implementing teaching strategies to fostering creativity.
Collapse
Affiliation(s)
- Zheyu Jin
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China; School of Education Faculty Development Center, Shanghai Normal University, Shanghai, 200234, China
| | - Junting Yin
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxuan Zhang
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China
| | - Yangzhuo Li
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China.
| | - Xiongwei Xu
- School of Education Faculty Development Center, Shanghai Normal University, Shanghai, 200234, China.
| | - Junlong Luo
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China; Lab for Educational Big Data and Policymaking, Ministry of Education, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
7
|
Chatterjee I, Gorsic M, Kaya RAH, Erion CJ, Clapp JD, Novak VD. Regression of Multiple Conversation Aspects using Dyadic Physiological Measurements. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039255 PMCID: PMC11881515 DOI: 10.1109/embc53108.2024.10782976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Dyadic physiological responses are correlated with the quality of interpersonal processes - for example, the degree of "connectedness" in education and mental health counseling. Pattern recognition algorithms could be applied to such dyadic responses to identify the states of specific dyads, but such pattern recognition has primarily focused on classification. This paper instead uses regression algorithms to estimate three conversation aspects (valence, arousal, balance) from heart rate, skin conductance, respiration, and skin temperature. Data were collected from 35 dyads who engaged in 20 minutes of conversation, divided into 10 two-minute intervals. Each interval was rated with regard to conversation valence, arousal, and balance by an observer. When regression algorithms (support vector machines and Gaussian process regression) were trained on other data from the same dyad, they were able to estimate valence, arousal and balance with lower errors than a simple baseline estimator. However, when algorithms were trained on data from other dyads, errors were not lower than those of the baseline estimator. Overall, results indicate that, as long as training data from the same dyad are available, autonomic nervous system responses can be combined with regression algorithms to estimate multiple dyadic conversation aspects with some accuracy. This has applications in education and mental health counseling, though fundamental issues remain to be addressed before the technology is used in practice.
Collapse
|
8
|
Konrad K, Gerloff C, Kohl SH, Mehler DMA, Mehlem L, Volbert EL, Komorek M, Henn AT, Boecker M, Weiss E, Reindl V. Interpersonal neural synchrony and mental disorders: unlocking potential pathways for clinical interventions. Front Neurosci 2024; 18:1286130. [PMID: 38529267 PMCID: PMC10962391 DOI: 10.3389/fnins.2024.1286130] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Interpersonal synchronization involves the alignment of behavioral, affective, physiological, and brain states during social interactions. It facilitates empathy, emotion regulation, and prosocial commitment. Mental disorders characterized by social interaction dysfunction, such as Autism Spectrum Disorder (ASD), Reactive Attachment Disorder (RAD), and Social Anxiety Disorder (SAD), often exhibit atypical synchronization with others across multiple levels. With the introduction of the "second-person" neuroscience perspective, our understanding of interpersonal neural synchronization (INS) has improved, however, so far, it has hardly impacted the development of novel therapeutic interventions. Methods To evaluate the potential of INS-based treatments for mental disorders, we performed two systematic literature searches identifying studies that directly target INS through neurofeedback (12 publications; 9 independent studies) or brain stimulation techniques (7 studies), following PRISMA guidelines. In addition, we narratively review indirect INS manipulations through behavioral, biofeedback, or hormonal interventions. We discuss the potential of such treatments for ASD, RAD, and SAD and using a systematic database search assess the acceptability of neurofeedback (4 studies) and neurostimulation (4 studies) in patients with social dysfunction. Results Although behavioral approaches, such as engaging in eye contact or cooperative actions, have been shown to be associated with increased INS, little is known about potential long-term consequences of such interventions. Few proof-of-concept studies have utilized brain stimulation techniques, like transcranial direct current stimulation or INS-based neurofeedback, showing feasibility and preliminary evidence that such interventions can boost behavioral synchrony and social connectedness. Yet, optimal brain stimulation protocols and neurofeedback parameters are still undefined. For ASD, RAD, or SAD, so far no randomized controlled trial has proven the efficacy of direct INS-based intervention techniques, although in general brain stimulation and neurofeedback methods seem to be well accepted in these patient groups. Discussion Significant work remains to translate INS-based manipulations into effective treatments for social interaction disorders. Future research should focus on mechanistic insights into INS, technological advancements, and rigorous design standards. Furthermore, it will be key to compare interventions directly targeting INS to those targeting other modalities of synchrony as well as to define optimal target dyads and target synchrony states in clinical interventions.
Collapse
Affiliation(s)
- Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- Department of Applied Mathematics and Theoretical Physics, Cambridge Centre for Data-Driven Discovery, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- School of Psychology, Cardiff University Brain Research Imaging Center (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Lena Mehlem
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Emily L. Volbert
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maike Komorek
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Alina T. Henn
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maren Boecker
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Eileen Weiss
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Department of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Zhang J, Wang Y, Leong C, Mao Y, Yuan Z. Bridging Stories and Science: An fNIRS-based hyperscanning investigation into child learning in STEM. Neuroimage 2024; 285:120486. [PMID: 38070436 DOI: 10.1016/j.neuroimage.2023.120486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Early STEM education is crucial for later learning. This novel study utilised fNIRS to examine how STEM teaching methods (i.e., traditional, storytelling, storyboarding) affect neural activity synchronisation between teachers and students. Our results showed that left and right inferior frontal gyrus (IFG) for storytelling teaching versus traditional teaching, superior temporal gyrus for storyboard teaching versus traditional teaching, and left angular gyrus for storyboard and storytelling teaching were significant different in brain synchronisation. In the storytelling teaching condition, left supramarginal gyrus brain synchrony was found to improve STEM learning outcomes. In the storyboard teaching condition, IFG brain synchrony correlated positively with STEM learning improvement. The findings confirmed that story-based teaching and storyboarding can improve STEM learning efficacy at the neural level and unscored the significant role of neural synchronization as a predictor of learning outcomes.
Collapse
Affiliation(s)
- Juan Zhang
- Faculty of Education, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| | - Yihui Wang
- Faculty of Education, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| | - Chantat Leong
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Yidi Mao
- Faculty of Education, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
10
|
Zhang H, Wang H, Long Y, Jiang Y, Lu C. Interpersonal neural synchronization underlies mnemonic similarity during collaborative remembering. Neuropsychologia 2023; 191:108732. [PMID: 37951386 DOI: 10.1016/j.neuropsychologia.2023.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Although collaborative remembering is a ubiquitous feature of human beings, its underlying neurocognitive process is not well understood. Here we hypothesized that interpersonal neural synchronization (INS) might underlie collaborative remembering, while real collaboration as opposed to other modes of offline collaboration should enhance INS and facilitate mnemonic similarity. To test these hypotheses, brain activity was measured simultaneously from two individuals who performed a group-based selective retrieval practice task either in a real collaboration or in a pseudo-collaboration, i.e., an individual performed the task together with a pre-recorded audio. The results showed that the memory of two individuals converged to a greater level than the chance level in real collaboration but not in control condition. Moreover, collaborative remembering was associated with significant INS increase in the prefrontal cortex (PFC) relative to the baseline in the real collaboration only. Additionally, INS increase was significantly greater in the real collaboration than in control condition. Finally, the PFC's INS increase was positively correlated with and could accurately predict the level of mnemonic similarity in real collaboration. These findings support the hypothesis that the enhanced INS underlies the cognitive process of collaborative remembering.
Collapse
Affiliation(s)
- Huan Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China; Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China
| | - Haiman Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yunpeng Jiang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China; Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
11
|
Tan SHJ, Wong JN, Teo WP. Is neuroimaging ready for the classroom? A systematic review of hyperscanning studies in learning. Neuroimage 2023; 281:120367. [PMID: 37689175 DOI: 10.1016/j.neuroimage.2023.120367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Whether education research can be informed by findings from neuroscience studies has been hotly debated since Bruer's (1997) famous claim that neuroscience and education are "a bridge too far". However, this claim came before recent advancements in portable electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) technologies, and second-person neuroscience techniques that brought about significant headway in understanding instructor-learner interactions in the classroom. To explore whether neuroscience and education are still two very separate fields, we systematically review 15 hyperscanning studies that were conducted in real-world classrooms or that implemented a teaching-learning task to investigate instructor-learner dynamics. Findings from this investigation illustrate that inter-brain synchrony between instructor and learner is an additional and valuable dimension to understand the complex web of instructor- and learner-related variables that influence learning. Importantly, these findings demonstrate the possibility of conducting real-world classroom studies with portable neuroimaging techniques and highlight the potential of such studies in providing translatable real-world implications. Once thought of as incompatible, a successful coupling between neuroscience and education is now within sight.
Collapse
Affiliation(s)
- S H Jessica Tan
- Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore.
| | - Jin Nen Wong
- Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore
| | - Wei-Peng Teo
- Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore; Physical Education and Sport Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore
| |
Collapse
|
12
|
Chatterjee I, Goršič M, Hossain MS, Clapp JD, Novak VD. Automated Classification of Dyadic Conversation Scenarios using Autonomic Nervous System Responses. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2023; 14:3388-3395. [PMID: 38107015 PMCID: PMC10721131 DOI: 10.1109/taffc.2023.3236265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Two people's physiological responses become more similar as those people talk or cooperate, a phenomenon called physiological synchrony. The degree of synchrony correlates with conversation engagement and cooperation quality, and could thus be used to characterize interpersonal interaction. In this study, we used a combination of physiological synchrony metrics and pattern recognition algorithms to automatically classify four different dyadic conversation scenarios: two-sided positive conversation, two-sided negative conversation, and two one-sided scenarios. Heart rate, skin conductance, respiration and peripheral skin temperature were measured from 16 dyads in all four scenarios, and individual as well as synchrony features were extracted from them. A two-stage classifier based on stepwise feature selection and linear discriminant analysis achieved a four-class classification accuracy of 75.0% in leave-dyad-out crossvalidation. Removing synchrony features reduced accuracy to 65.6%, indicating that synchrony is informative. In the future, such classification algorithms may be used to, e.g., provide real-time feedback about conversation mood to participants, with applications in areas such as mental health counseling and education. The approach may also generalize to group scenarios and adjacent areas such as cooperation and competition.
Collapse
Affiliation(s)
| | - Maja Goršič
- University of Cincinnati, Cincinnati, OH 45221
| | | | | | | |
Collapse
|
13
|
Zhai Y, Xie H, Zhao H, Wang W, Lu C. Neural synchrony underlies the positive effect of shared reading on children's language ability. Cereb Cortex 2023; 33:10426-10440. [PMID: 37562850 DOI: 10.1093/cercor/bhad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Although it is well recognized that parent-child shared reading produces positive effects on children's language ability, the underlying neurocognitive mechanisms are not well understood. Here, we addressed this issue by measuring brain activities from mother-child dyads simultaneously during a shared book reading task using functional near infrared spectroscopy hyperscanning. The behavioral results showed that the long-term experience of shared reading significantly predicted children's language ability. Interestingly, the prediction was moderated by children's age: for older children over 30 months, the more the shared reading experience, the better the language performance; for younger children below 30 months, however, no significant relationship was observed. The brain results showed significant interpersonal neural synchronization between mothers and children at the superior temporal cortex, which was closely associated with older children's language ability through the mediation of long-term experience of shared reading. Finally, the results showed that the instantaneous quality of shared reading contributed to children's language ability through enhancing interpersonal neural synchronization and increasing long-term experience. Based on these findings, we tentatively proposed a theoretical model for the relationship among interpersonal neural synchronization, shared reading and children's language ability. These findings will facilitate our understanding on the role of shared reading in children's language development.
Collapse
Affiliation(s)
- Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Huixin Xie
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Preschool Education, Beijing Institute of Education, Beijing 100009, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Wenjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Qiao X, Lu K, Yun Q, Hao N. Similarities and Distinctions between Cortical Neural Substrates That Underlie Generation of Malevolent Creative Ideas. eNeuro 2023; 10:ENEURO.0127-23.2023. [PMID: 37696664 PMCID: PMC10512885 DOI: 10.1523/eneuro.0127-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Creativity can be driven by negative intentions, and this is called malevolent creativity (MC). It is a type of creativity that serves antisocial purposes and deliberately leads to harmful or immoral results. A possible classification indicates that there are three kinds of MC in daily life: hurting people, lying, and playing tricks. This study aimed to explore similar and distinct neural substrates underlying these different kinds of MC idea generation. The participants were asked to perform different MC tasks, and their neural responses were recorded using a functional near-infrared spectroscopy device. The findings revealed that most regions within the prefrontal and temporal lobes [e.g., the right dorsolateral prefrontal cortex (rDLPFC), and right angular gyrus] were involved in the three MC tasks. However, the right frontopolar cortex (rFPC) was more activated and less coupled with the rDLPFC and right precuneus during the lying task than during the other tasks. Thus, rFPC may play an important role in constructing novel lies. In the lying task, individuals were more selfish and less compassionate. In the playing tricks and hurting people tasks, there was less neural coupling between the rDLPFC and the left inferior frontal gyrus/right inferior parietal lobule than that in the lying task. This may imply that selfish motivation is released when individuals try to ignore victims' distress or generate aggressive tricks in hurting people or playing tricks tasks. These findings indicate that the three kinds of MC idea generation involve common cortical regions related to creative idea generation and moral judgment, whereas differences in cortical responses exist because of their unique features.
Collapse
Affiliation(s)
- Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou Zhejiang, 325035, People's Republic of China
| | - Qiang Yun
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
15
|
Zhou S, Xu X, He X, Zhou F, Zhai Y, Chen J, Long Y, Zheng L, Lu C. Biasing the neurocognitive processing of videos with the presence of a real cultural other. Cereb Cortex 2023; 33:1090-1103. [PMID: 35348645 DOI: 10.1093/cercor/bhac122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
In the digital age, while short videos present vital events with powerful information, the presence of cultural cues may bias our processing of videos of foreign cultures. However, the underlying neurocognitive processes remain unclear. In this study, we hypothesized that cultural cues might bias video processing by either enhancing cultural perspective-taking or shifting cultural self-schema. To test these hypotheses, we used a novel paradigm in which the cultural cue was a real cultural other (the priming participants) who watched American/Chinese videos together with the primed participants. The results showed that when the cue was present, the right temporoparietal junction (rTPJ) response to videos with other cultural content was shifted, showing a priming effect. Moreover, the activity pattern in the rTPJ was more congruent with the primed culture than with the original culture, reflecting a neural biasing effect. Finally, intersubject representational similarity analysis indicated that the neural biasing effect in the rTPJ was more closely associated with cultural perspective-taking than with cultural self-schema. In summary, these findings support the perspective-taking hypothesis, suggesting that cultural cues can significantly bias our cultural mindset by altering cultural perspective-taking when we are exposed to culture-relevant naturalistic stimuli.
Collapse
Affiliation(s)
- Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Xinran Xu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Xiangyu He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Faxin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Jinglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China.,Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, No19. Xinjiekouwai Street, Beijing 100875, PR China
| | - Lifen Zheng
- Center for Teacher Education Research, Faculty of Education, Beijing Normal University, No19. Xinjiekouwai Street, Beijing 100875, PR China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| |
Collapse
|
16
|
Long Y, Zhong M, Aili R, Zhang H, Fang X, Lu C. Transcranial direct current stimulation of the right anterior temporal lobe changes interpersonal neural synchronization and shared mental processes. Brain Stimul 2023; 16:28-39. [PMID: 36572209 DOI: 10.1016/j.brs.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have shown that interpersonal neural synchronization (INS) is a ubiquitous phenomenon between individuals, and recent studies have further demonstrated close associations between INS and shared external sensorimotor input and/or internal mental processes within a dyad. However, most previous studies have employed an observational approach to describe the behavior-INS correlation, leading to difficulties in causally disentangling the relationship among INS, external sensorimotor input and the internal mental process. OBJECTIVE/HYPOTHESIS The present study aimed to directly change the level of INS through anodal transcranial direct current stimulation (tDCS) to test whether the change in INS would directly impact the internal mental process (Hypothesis 1) or indirectly through external sensorimotor input; the interaction behaviors were also changed (Hypothesis 2) or not (Hypothesis 3). METHODS Thirty pairs of romantically involved heterosexual couples were recruited for a within-subjects design. Three conditions were assessed: a true stimulation condition with 20-min anodal high-definition tDCS to the right anterior temporal lobe (rATL) of women before they communicated with their partners, a sham stimulation condition and a control brain region stimulation condition. The comparison between the true and sham or control brain region conditions allows us to detect the true effect of brain stimulation on INS. Functional near-infrared spectroscopy (fNIRS) hyperscanning was used to simultaneously collect dyadic participants' hemodynamic signals during communication. INS, empathy, and interaction behaviors were examined and compared among different stimulation conditions. RESULTS True brain stimulation significantly decreased INS between the rATL of the women and sensorimotor cortex (SMC) of the men compared to the sham stimulation condition (t(27.8) = -2.821, P = 0.009, d = 0.714) and control brain region stimulation condition (t(27.2) = -2.606, P = 0.015, d = 0.664) during communication. It also significantly decreased the level of emotional empathy (F(2,145) = 6.893, P = 0.001) but did not change sensorimotor processes, such as verbal or nonverbal interaction behaviors. However, nonverbal behaviors mediated the relationship between the changes in INS and emotional empathy (lower limit confidence interval = 0.01, upper limit confidence interval = 2.66). CONCLUSION(S) These findings support the third hypothesis, suggesting that INS is associated with the shared internal mental process indirectly via the sensorimotor process, but the sensorimotor process itself does not covary with the INS and the associated internal mental process. These results provide new insight into the hierarchical architecture of dual-brain function from a bottom-up perspective.
Collapse
Affiliation(s)
- Yuhang Long
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Miao Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ruhuiya Aili
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Huan Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoyi Fang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
17
|
Sened H, Zilcha-Mano S, Shamay-Tsoory S. Inter-brain plasticity as a biological mechanism of change in psychotherapy: A review and integrative model. Front Hum Neurosci 2022; 16:955238. [PMID: 36092652 PMCID: PMC9458846 DOI: 10.3389/fnhum.2022.955238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Recent models of psychopathology and psychotherapy highlight the importance of interpersonal factors. The current review offers a biological perspective on these interpersonal processes by examining inter-brain synchrony-the coupling of brain activity between people interacting with one another. High inter-brain synchrony is associated with better relationships in therapy and in daily life, while deficits in the ability to achieve inter-brain synchrony are associated with a variety of psychological and developmental disorders. The review suggests that therapy improves patients' ability to achieve such synchrony through inter-brain plasticity-a process by which recurring exposure to high inter-brain synchrony leads to lasting change in a person's overall ability to synchronize. Therapeutic sessions provide repeated situations with high inter-brain synchrony. This can lead to a long-term increase in the ability to synchronize, first with the therapist, then generalized to other interpersonal relationships, ultimately leading to symptom reduction. The proposed inter-brain plasticity model offers a novel biological framework for understanding relational change in psychotherapy and its links to various forms of psychopathology and provides testable hypotheses for future research. Understanding this mechanism may help improve existing psychotherapy methods and develop new ones.
Collapse
Affiliation(s)
- Haran Sened
- Department of Psychology, University of Haifa, Haifa, Israel
| | | | | |
Collapse
|
18
|
Novak VD, Kostoulas T, Muszynski M, Cinel C, Nijholt A. Editorial: Harnessing physiological synchronization and hyperscanning to enhance collaboration and communication. FRONTIERS IN NEUROERGONOMICS 2022; 3:956087. [PMID: 38235457 PMCID: PMC10790855 DOI: 10.3389/fnrgo.2022.956087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2024]
Affiliation(s)
- Vesna Dominika Novak
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Theodoros Kostoulas
- Department of Information and Communication Systems Engineering, University of the Aegean, Samos, Greece
| | - Michal Muszynski
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Caterina Cinel
- BCI-NE Lab, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Anton Nijholt
- Human Media Interaction, University of Twente, Enschede, Netherlands
| |
Collapse
|
19
|
Liang Z, Li S, Zhou S, Chen S, Li Y, Chen Y, Zhao Q, Huang F, Lu C, Yu Q, Zhou Z. Increased or decreased? Interpersonal neural synchronization in group creation. Neuroimage 2022; 260:119448. [PMID: 35843516 DOI: 10.1016/j.neuroimage.2022.119448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022] Open
Abstract
Group creation is the process by which group members collaborate to produce novel and useful ideas or products, including ideas generation and evaluation. However, the interpersonal neural mechanism of group creation during natural communication remains unclear. In this study, two groups of same-sex dyads with similar individual creativity collaborated to complete the Product Improvement Task (creative condition) and the Item Purchase Plan Task (control condition), respectively. Functional near-infrared spectroscopy (fNIRS) was used to record both members' neural activity in the left prefrontal (lPFC) and right temporal-parietal junction (rTPJ) regions during the task. Considering that the role asymmetry of group members may have an impact on interpersonal neural patterns, we identified leaders and followers in the dyads based on participant performance. The results showed that leaders and followers in the creative condition had significantly lower interpersonal neural synchronization (INS) in the right superior temporal gyrus-left superior frontal gyrus, right supramarginal gyrus-left superior frontal gyrus, and right supramarginal gyrus-left middle frontal gyrus than in the control condition. Partial multivariate Granger causality analyses revealed the influence between dyads was bidirectional but was significantly stronger from the leaders to the followers than the other direction. In addition, in the creative task, the INS was significantly associated with novelty, appropriateness, and conflict of views. All these findings suggest that the ideas generation and ideas evaluation process in group creation have poor interpersonal neural activity coupling due to factors such as the difficulty of understanding novel ideas. However, performances may be improved when groups can better integrate views and reach collective understanding, intentions, and goals. Furthermore, we found that there are differences in the dynamics of INS in different brain regions. The INS related to the novelty of the group creation decreased in the early stages, while the INS related to the appropriateness decreased in the middle stages. Our findings reveal a unique interpersonal neural pattern of group creation processes in the context of natural communication.
Collapse
Affiliation(s)
- Zheng Liang
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Songqing Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; College of Electronic Engineering, Naval University of Engineering, Wuhan, China
| | - Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shi Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Ying Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; School of Preschool Education, Changsha Normal University, Changsha, China
| | - Yanran Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Qingbai Zhao
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, China.
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Quanlei Yu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Zhijin Zhou
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
20
|
Jeph S, Gundry K, Maffie J, Martin JG, Perez-Carrillo GJG, Spieler BM, Rajiah PS. CONTINUING TO THRIVE IN ACADEMIC RADIOLOGY DESPITE DECREASING REIMBURSEMENT. Curr Probl Diagn Radiol 2022; 52:14-19. [DOI: 10.1067/j.cpradiol.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Nazneen T, Islam IB, Sajal MSR, Jamal W, Amin MA, Vaidyanathan R, Chau T, Mamun KA. Recent Trends in Non-invasive Neural Recording Based Brain-to-Brain Synchrony Analysis on Multidisciplinary Human Interactions for Understanding Brain Dynamics: A Systematic Review. Front Comput Neurosci 2022; 16:875282. [PMID: 35782087 PMCID: PMC9245014 DOI: 10.3389/fncom.2022.875282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The study of brain-to-brain synchrony has a burgeoning application in the brain-computer interface (BCI) research, offering valuable insights into the neural underpinnings of interacting human brains using numerous neural recording technologies. The area allows exploring the commonality of brain dynamics by evaluating the neural synchronization among a group of people performing a specified task. The growing number of publications on brain-to-brain synchrony inspired the authors to conduct a systematic review using the PRISMA protocol so that future researchers can get a comprehensive understanding of the paradigms, methodologies, translational algorithms, and challenges in the area of brain-to-brain synchrony research. This review has gone through a systematic search with a specified search string and selected some articles based on pre-specified eligibility criteria. The findings from the review revealed that most of the articles have followed the social psychology paradigm, while 36% of the selected studies have an application in cognitive neuroscience. The most applied approach to determine neural connectivity is a coherence measure utilizing phase-locking value (PLV) in the EEG studies, followed by wavelet transform coherence (WTC) in all of the fNIRS studies. While most of the experiments have control experiments as a part of their setup, a small number implemented algorithmic control, and only one study had interventional or a stimulus-induced control experiment to limit spurious synchronization. Hence, to the best of the authors' knowledge, this systematic review solely contributes to critically evaluating the scopes and technological advances of brain-to-brain synchrony to allow this discipline to produce more effective research outcomes in the remote future.
Collapse
Affiliation(s)
- Tahnia Nazneen
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
| | - Iffath Binta Islam
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
| | - Md. Sakibur Rahman Sajal
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | | | - M. Ashraful Amin
- Department of Computer Science and Engineering, Independent University, Dhaka, Bangladesh
| | - Ravi Vaidyanathan
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Tom Chau
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| |
Collapse
|
22
|
VanDam M, Thompson L, Wilson-Fowler E, Campanella S, Wolfenstein K, De Palma P. Conversation Initiation of Mothers, Fathers, and Toddlers in their Natural Home Environment. COMPUT SPEECH LANG 2022; 73:101338. [PMID: 34970021 PMCID: PMC8713565 DOI: 10.1016/j.csl.2021.101338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a conversational exchange, interlocutors use social cues including conversational turn-taking to communicate. There has been attention in the literature concerning how mothers, fathers, boys, and girls converse with each other, and in particular who initiates a conversation. Better understanding of conversational dynamics may deepen our understanding of social roles, speech and language development, and individual language variability. Here we use large-scale automatic analysis of 186 naturalistic daylong acoustic recordings to examine the conversational dynamics of 26 families with children about 30 months of age to better understand communication roles. Families included 15 with boys and 11 with girls. There was no difference in conversation initiation rate by child sex, but children initiated more conversations than mothers, and mothers initiated more than fathers. Results support developmental theories of the different and variable roles that interlocutors play in a social context.
Collapse
Affiliation(s)
- Mark VanDam
- Speech & Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
- Hearing Oral Program of Excellence of Spokane, HOPE School, 502 E. 5 Ave., Spokane, WA 99202, USA
| | - Lauren Thompson
- Speech & Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Elizabeth Wilson-Fowler
- Communication Sciences and Disorders, Eastern Washington University, 310 North Riverpoint Blvd, Box B, Spokane, WA, 99202, USA
| | - Sarah Campanella
- Speech & Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Kiley Wolfenstein
- Speech & Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Paul De Palma
- Computer Science, School of Engineering and Applied Science, Gonzaga University, 502 E. Boone Ave., Spokane, WA, 99258, USA
| |
Collapse
|
23
|
Zhang L, Xu X, Li Z, Chen L, Feng L. Interpersonal Neural Synchronization Predicting Learning Outcomes From Teaching-Learning Interaction: A Meta-Analysis. Front Psychol 2022; 13:835147. [PMID: 35295390 PMCID: PMC8918582 DOI: 10.3389/fpsyg.2022.835147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
In school education, teaching-learning interaction is deemed as a core process in the classroom. The fundamental neural basis underlying teaching-learning interaction is proposed to be essential for tuning learning outcomes. However, the neural basis of this process as well as the relationship between the neural dynamics and the learning outcomes are largely unclear. With non-invasive technologies such as fNIRS (functional near-infrared spectroscopy), hyperscanning techniques have been developed since the last decade and been applied to the field of educational neuroscience for simultaneous multi-brain scanning. Hyperscanning studies suggest that the interpersonal neural synchronization (INS) during teaching-learning interaction might be an ideal neural biomarker for predicting learning outcomes. To systematically evaluate such a relationship, this meta-analysis ran on a random-effects model on 16 studies with 23 independent samples (effect sizes). Further moderator analyses were also performed to examine the potential influences of the style, mode, content, and the assessment method of learning outcomes. The random-effects modeling results confirmed a robust positive correlation between INS and learning outcomes. Subsequent analyses revealed that such relationship was mainly affected by both interaction style and mode. Therefore, the present meta-analysis provided a confirmatory neurocognitive foundation for teaching-learning interaction, as well as its relation to the learning outcomes, consolidated future learning and teaching studies in various disciplines including second language education with a firm methodological reference.
Collapse
Affiliation(s)
- Liaoyuan Zhang
- College of Chinese Language and Culture, Beijing Normal University, Beijing, China
| | - Xiaoxiong Xu
- College of Chinese Language and Culture, Beijing Normal University, Beijing, China
| | - Zhongshan Li
- School of Foreign Languages and Literature, Beijing Normal University, Beijing, China
| | - Luyao Chen
- College of Chinese Language and Culture, Beijing Normal University, Beijing, China
- Max Planck Partner Group, College of Chinese Language and Culture, Beijing Normal University, Beijing, China
| | - Liping Feng
- College of Chinese Language and Culture, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
Reindl V, Wass S, Leong V, Scharke W, Wistuba S, Wirth CL, Konrad K, Gerloff C. Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads. Neuroimage 2022; 251:118982. [PMID: 35149229 DOI: 10.1016/j.neuroimage.2022.118982] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems - specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships.
Collapse
Affiliation(s)
- Vanessa Reindl
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore.
| | - Sam Wass
- Division of Psychology, University of East London, London E16 2RD, United Kingdom
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Wolfgang Scharke
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; Chair of Cognitive and Experimental Psychology, Institute of Psychology, RWTH Aachen University, Germany
| | - Sandra Wistuba
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Christina Lisa Wirth
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Konrad
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany
| | - Christian Gerloff
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Germany
| |
Collapse
|
25
|
Zhao H, Li Y, Wang X, Kan Y, Xu S, Duan H. Inter-Brain Neural Mechanism Underlying Turn-Based Interaction Under Acute Stress in Women: A Hyperscanning Study Using Functional Near-Infrared Spectroscopy. Soc Cogn Affect Neurosci 2022; 17:850-863. [PMID: 35079834 PMCID: PMC9433846 DOI: 10.1093/scan/nsac005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
With the ever-changing social environment, stress has exerted a substantial influence on social interaction. The present study examined the underlying cognitive and neural mechanism on how acute stress affected the real-time cooperative and competitive interaction with four hypothesized path models. We used the hyperscanning technique based on functional near-infrared spectroscopy (fNIRS) device to examine brain-to-brain coherence within the dyads engaging Pattern Game under acute stress manipulated through Trier Social Stress Test for Groups. Behavioral results showed stressed dyads exhibited better cooperative performance and higher self-other overlap level during the cooperative session than dyads in the control group. The fNIRS results identified higher interpersonal brain synchronization in the right temporal-parietal junction (r-TPJ) stronger Granger causality from partner-to-builder during the cooperative session in the stress group when compared with the control group. Our results corroborated better performance in the cooperative context and further identified that brain-to-brain coherence in r-TPJ and self-other overlap serially mediated the effect of acute stress on cooperative performance.
Collapse
Affiliation(s)
- Hanxuan Zhao
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710062, China
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai 200083, China
| | - Yadan Li
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710062, China
| | - Xuewei Wang
- Centre for Mental Health Education, Xidian University, Xi’an, Shaanxi 710071, China
| | - Yuecui Kan
- School of Psychology, Shaanxi Normal University, Xi’an 710062, China
| | - Sihua Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai 200083, China
| | - Haijun Duan
- Correspondence should be addressed to Haijun Duan, Key Laboratory of Modern Teaching Technology, Ministry of Education, Yanta Campus, Shaanxi Normal University, 199 South Chang’ an Road, Xi’an 710062, China. E-mail:
| |
Collapse
|
26
|
Kelsen BA, Sumich A, Kasabov N, Liang SHY, Wang GY. What has social neuroscience learned from hyperscanning studies of spoken communication? A systematic review. Neurosci Biobehav Rev 2022; 132:1249-1262. [PMID: 33022298 DOI: 10.1016/j.neubiorev.2020.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
A growing body of literature examining the neurocognitive processes of interpersonal linguistic interaction indicates the emergence of neural alignment as participants engage in oral communication. However, questions have arisen whether the study results can be interpreted beyond observations of cortical functionality and extended to the mutual understanding between communicators. This review presents evidence from electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) hyperscanning studies of interbrain synchrony (IBS) in which participants communicated via spoken language. The studies are classified into: knowledge sharing; turn-taking speech co-ordination; cooperation, problem-solving and creativity; and naturalistic discussion paradigms according to the type of interaction specified in each study. Alignment predominantly occurred in the frontal and temporo-parietal areas, which may reflect activation of the mirror and mentalizing systems. We argue that the literature presents a significant contribution to advancing our understanding of IBS and mutual understanding between communicators. We end with suggestions for future research, including analytical approaches and experimental conditions and hypothesize that brain-inspired neural networks are promising techniques for better understanding of IBS through hyperscanning.
Collapse
Affiliation(s)
- Brent A Kelsen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand; Language Center, National Taipei University, New Taipei City, Taiwan
| | - Alexander Sumich
- Division of Psychology, Nottingham Trent University, Nottingham, United Kingdom
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland University of Technology, Auckland, New Zealand
| | - Sophie H Y Liang
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Child & Adolescent Psychiatry, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan
| | - Grace Y Wang
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
27
|
Long Y, Chen C, Wu K, Zhou S, Zhou F, Zheng L, Zhao H, Zhai Y, Lu C. Interpersonal Conflict Increases Interpersonal Neural Synchronization in Romantic Couples. Cereb Cortex 2021; 32:3254-3268. [PMID: 34849643 DOI: 10.1093/cercor/bhab413] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Previous studies on dual-brain social interaction have shown different patterns of interpersonal neural synchronization (INS) between conflictual and supportive interactions, but the role of emotion in the dual-brain mechanisms of such interactions is not well understood. Furthermore, little is known about how the dual-brain mechanisms are affected by relationship type (e.g., romantic relationship vs. friendship) and interaction mode (e.g., verbal vs. nonverbal). To elaborate on these issues, this study used functional near-infrared spectroscopy to collect hemodynamic signals from romantic couples and cross-sex friends while they were discussing conflictual, neutral, or supportive topics. For the couples but not the friends, INS between the sensorimotor cortex of both participants was greater when discussing the conflictual topic than when discussing the supportive topic. INS was positively correlated with the arousal level but not the valence level of communication contents. INS was also positively correlated with interpersonal physiological synchronization based on galvanic skin response, a physiological measure of arousal. Furthermore, the differences in INS between the conflictual and supportive topics were closely associated with verbal rather than nonverbal behaviors. Together, these findings suggest that it is the arousal level induced by verbal interactions during interpersonal conflicts that increases romantic couples' INS.
Collapse
Affiliation(s)
- Yuhang Long
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, USA
| | - Karen Wu
- Department of Psychology, California State University, Los Angeles, CA 90032, USA
| | - Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Faxin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lifen Zheng
- Center for Teacher Education Research, Beijing Normal University, Beijing, 100875, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
28
|
Chatterjee I, Goršič M, Clapp JD, Novak D. Automatic Estimation of Interpersonal Engagement During Naturalistic Conversation Using Dyadic Physiological Measurements. Front Neurosci 2021; 15:757381. [PMID: 34764854 PMCID: PMC8576061 DOI: 10.3389/fnins.2021.757381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Physiological responses of two interacting individuals contain a wealth of information about the dyad: for example, the degree of engagement or trust. However, nearly all studies on dyadic physiological responses have targeted group-level analysis: e.g., correlating physiology and engagement in a large sample. Conversely, this paper presents a study where physiological measurements are combined with machine learning algorithms to dynamically estimate the engagement of individual dyads. Sixteen dyads completed 15-min naturalistic conversations and self-reported their engagement on a visual analog scale every 60 s. Four physiological signals (electrocardiography, skin conductance, respiration, skin temperature) were recorded, and both individual physiological features (e.g., each participant's heart rate) and synchrony features (indicating degree of physiological similarity between two participants) were extracted. Multiple regression algorithms were used to estimate self-reported engagement based on physiological features using either leave-interval-out crossvalidation (training on 14 60-s intervals from a dyad and testing on the 15th interval from the same dyad) or leave-dyad-out crossvalidation (training on 15 dyads and testing on the 16th). In leave-interval-out crossvalidation, the regression algorithms achieved accuracy similar to a 'baseline' estimator that simply took the median engagement of the other 14 intervals. In leave-dyad-out crossvalidation, machine learning achieved a slightly higher accuracy than the baseline estimator and higher accuracy than an independent human observer. Secondary analyses showed that removing synchrony features and personality characteristics from the input dataset negatively impacted estimation accuracy and that engagement estimation error was correlated with personality traits. Results demonstrate the feasibility of dynamically estimating interpersonal engagement during naturalistic conversation using physiological measurements, which has potential applications in both conversation monitoring and conversation enhancement. However, as many of our estimation errors are difficult to contextualize, further work is needed to determine acceptable estimation accuracies.
Collapse
Affiliation(s)
- Iman Chatterjee
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Maja Goršič
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joshua D. Clapp
- Department of Psychology, University of Wyoming, Laramie, WY, United States
| | - Domen Novak
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
29
|
Li Z, Li J, Hong B, Nolte G, Engel AK, Zhang D. Speaker-Listener Neural Coupling Reveals an Adaptive Mechanism for Speech Comprehension in a Noisy Environment. Cereb Cortex 2021; 31:4719-4729. [PMID: 33969389 DOI: 10.1093/cercor/bhab118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Comprehending speech in noise is an essential cognitive skill for verbal communication. However, it remains unclear how our brain adapts to the noisy environment to achieve comprehension. The present study investigated the neural mechanisms of speech comprehension in noise using an functional near-infrared spectroscopy-based inter-brain approach. A group of speakers was invited to tell real-life stories. The recorded speech audios were added with meaningless white noise at four signal-to-noise levels and then played to listeners. Results showed that speaker-listener neural couplings of listener's left inferior frontal gyri (IFG), that is, sensorimotor system, and right middle temporal gyri (MTG), angular gyri (AG), that is, auditory system, were significantly higher in listening conditions than in the baseline. More importantly, the correlation between neural coupling of listener's left IFG and the comprehension performance gradually became more positive with increasing noise level, indicating an adaptive role of sensorimotor system in noisy speech comprehension; however, the top behavioral correlations for the coupling of listener's right MTG and AG were only obtained in mild noise conditions, indicating a different and less robust mechanism. To sum up, speaker-listener coupling analysis provides added value and new sight to understand the neural mechanism of speech-in-noise comprehension.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Jiawei Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China.,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Zhao H, Cheng T, Zhai Y, Long Y, Wang Z, Lu C. How Mother-Child Interactions are Associated with a Child's Compliance. Cereb Cortex 2021; 31:4398-4410. [PMID: 33895811 DOI: 10.1093/cercor/bhab094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
While social interaction between a mother and her child has been found to play an important role in the child's committed compliance, the underlying neurocognitive process remains unclear. To investigate this process, we simultaneously recorded and assessed brain activity in 7-year-old children and in children's mothers or strangers during a free-play task using functional near-infrared spectroscopy-based hyperscanning. The results showed that a child's committed compliance was positively associated with the child's responsiveness but was negatively associated with mutual responsiveness and was not associated with the mother's responsiveness during mother-child interactions. Moreover, interpersonal neural synchronization (INS) at the temporoparietal junction mediated the relationship between the child's responsiveness and the child's committed compliance during mother-child interactions when the child's brain activity lagged behind that of the mother. However, these effects were not found during stranger-child interactions, nor were there significant effects in the mother-child pair when no real interactions occurred. Finally, we found a transfer effect of a child's committed compliance from mother-child interactions to stranger-child interactions via the mediation of mother-child INS, but the opposite did not occur. Together, these findings suggest that a child's responsiveness during mother-child interactions can significantly facilitate her or his committed compliance by increasing mother-child INS.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| | - Tong Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100875, P.R. China
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhengyan Wang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100875, P.R. China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
31
|
Jiang J, Zheng L, Lu C. A hierarchical model for interpersonal verbal communication. Soc Cogn Affect Neurosci 2021; 16:246-255. [PMID: 33150951 PMCID: PMC7812628 DOI: 10.1093/scan/nsaa151] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The ability to use language makes us human. For decades, researchers have been racking their minds to understand the relation between language and the human brain. Nevertheless, most previous neuroscientific research has investigated this issue from a ‘single-brain’ perspective, thus neglecting the nature of interpersonal communication through language. With the development of modern hyperscanning techniques, researchers have begun probing the neurocognitive processes underlying interpersonal verbal communication and have examined the involvement of interpersonal neural synchronization (INS) in communication. However, in most cases, the neurocognitive processes underlying INS are obscure. To tentatively address this issue, we propose herein a hierarchical model based on the findings from a growing amount of hyperscanning research. We suggest that three levels of neurocognitive processes are primarily involved in interpersonal verbal communication and are closely associated with distinctive patterns of INS. Different levels of these processes modulate each other bidirectionally. Furthermore, we argued that two processes (shared representation and interpersonal predictive coding) might coexist and work together at each level to facilitate successful interpersonal verbal communication. We hope this model will inspire further innovative research in several directions within the fields of social and cognitive neuroscience.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Lifen Zheng
- Center for Teacher Education Research, Faculty of Education, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
32
|
Barreto C, Bruneri GDA, Brockington G, Ayaz H, Sato JR. A New Statistical Approach for fNIRS Hyperscanning to Predict Brain Activity of Preschoolers' Using Teacher's. Front Hum Neurosci 2021; 15:622146. [PMID: 34025373 PMCID: PMC8137814 DOI: 10.3389/fnhum.2021.622146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Hyperscanning studies using functional Near-Infrared Spectroscopy (fNIRS) have been performed to understand the neural mechanisms underlying human-human interactions. In this study, we propose a novel methodological approach that is developed for fNIRS multi-brain analysis. Our method uses support vector regression (SVR) to predict one brain activity time series using another as the predictor. We applied the proposed methodology to explore the teacher-student interaction, which plays a critical role in the formal learning process. In an illustrative application, we collected fNIRS data of the teacher and preschoolers’ dyads performing an interaction task. The teacher explained to the child how to add two numbers in the context of a game. The Prefrontal cortex and temporal-parietal junction of both teacher and student were recorded. A multivariate regression model was built for each channel in each dyad, with the student’s signal as the response variable and the teacher’s ones as the predictors. We compared the predictions of SVR with the conventional ordinary least square (OLS) predictor. The results predicted by the SVR model were statistically significantly correlated with the actual test data at least one channel-pair for all dyads. Overall, 29/90 channel-pairs across the five dyads (18 channels 5 dyads = 90 channel-pairs) presented significant signal predictions withthe SVR approach. The conventional OLS resulted in only 4 out of 90 valid predictions. These results demonstrated that the SVR could be used to perform channel-wise predictions across individuals, and the teachers’ cortical activity can be used to predict the student brain hemodynamic response.
Collapse
Affiliation(s)
- Candida Barreto
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Sao Bernardo do Campo, Brazil
| | | | - Guilherme Brockington
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States.,Drexel Solutions Institute, Drexel University, Philadelphia, PA, United States.,Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States.,Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joao Ricardo Sato
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Sao Bernardo do Campo, Brazil.,Interdisciplinary Unit for Applied Neuroscience, Federal University of ABC, Sao Bernardo do Campo, Brazil
| |
Collapse
|
33
|
Mende MA, Schmidt H. Psychotherapy in the Framework of Embodied Cognition-Does Interpersonal Synchrony Influence Therapy Success? Front Psychiatry 2021; 12:562490. [PMID: 33828491 PMCID: PMC8019827 DOI: 10.3389/fpsyt.2021.562490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
Mental health problems remain among the main generators of costs within and beyond the health care system. Psychotherapy, the tool of choice in their treatment, is qualified by social interaction, and cooperation within the therapist-patient-dyad. Research into the factors influencing therapy success to date is neither exhaustive nor conclusive. Among many others, the quality of the relationship between therapist and patient stands out regardless of the followed psychotherapy school. Emerging research points to a connection between interpersonal synchronization within the sessions and therapy outcome. Consequently, it can be considered significant for the shaping of this relationship. The framework of Embodied Cognition assumes bodily and neuronal correlates of thinking. Therefore, the present paper reviews investigations on interpersonal, non-verbal synchrony in two domains: firstly, studies on interpersonal synchrony in psychotherapy are reviewed (synchronization of movement). Secondly, findings on neurological correlates of interpersonal synchrony (assessed with EEG, fMRI, fNIRS) are summarized in a narrative manner. In addition, the question is asked whether interpersonal synchrony can be achieved voluntarily on an individual level. It is concluded that there might be mechanisms which could give more insights into therapy success, but as of yet remain uninvestigated. Further, the framework of embodied cognition applies more to the current body of evidence than classical cognitivist views. Nevertheless, deeper research into interpersonal physical and neurological processes utilizing the framework of Embodied Cognition emerges as a possible route of investigation on the road to lower drop-out rates, improved and quality-controlled therapeutic interventions, thereby significantly reducing healthcare costs.
Collapse
Affiliation(s)
- Melinda A. Mende
- Potsdam Embodied Cognition Group, Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
34
|
Long Y, Zheng L, Zhao H, Zhou S, Zhai Y, Lu C. Interpersonal Neural Synchronization during Interpersonal Touch Underlies Affiliative Pair Bonding between Romantic Couples. Cereb Cortex 2021; 31:1647-1659. [PMID: 33145593 DOI: 10.1093/cercor/bhaa316] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Interpersonal touch plays a key role in creating and maintaining affiliative pair bonds in romantic love. However, the neurocognitive mechanism of interpersonal touch in affiliative pair bonding remains unclear. Here, we hypothesized that interpersonal neural synchronization (INS) during interpersonal touch underlies affiliative pair bonding between romantic couples. To test this hypothesis, INS between heterosexual romantic couples and between opposite-sex friends was measured using functional near-infrared spectroscopy-based hyperscanning, while the pairs of participants touched or vocally communicated with each other. The results showed significantly greater INS between the mentalizing and sensorimotor neural systems of two members of a pair during interpersonal touch than during vocal communication between romantic couples but not between friends. Moreover, touch-induced INS was significantly correlated with the self-reported strength of romantic love. Finally, the results also showed that men's empathy positively modulated the association between touch-induced INS increase and the strength of romantic love. These findings support the idea that INS during interpersonal touch underlies affiliative pair bonding between romantic couples and suggest that empathy plays a modulatory role in the neurocognitive mechanism of interpersonal touch in affiliative pair bonding.
Collapse
Affiliation(s)
- Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lifen Zheng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Balters S, Baker JM, Hawthorne G, Reiss AL. Capturing Human Interaction in the Virtual Age: A Perspective on the Future of fNIRS Hyperscanning. Front Hum Neurosci 2020; 14:588494. [PMID: 33240067 PMCID: PMC7669622 DOI: 10.3389/fnhum.2020.588494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Advances in video conferencing capabilities combined with dramatic socio-dynamic shifts brought about by COVID-19, have redefined the ways in which humans interact in modern society. From business meetings to medical exams, or from classroom instruction to yoga class, virtual interfacing has permeated nearly every aspect of our daily lives. A seemingly endless stream of technological advances combined with our newfound reliance on virtual interfacing makes it likely that humans will continue to use this modern form of social interaction into the future. However, emergent evidence suggests that virtual interfacing may not be equivalent to face-to-face interactions. Ultimately, too little is currently understood about the mechanisms that underlie human interactions over the virtual divide, including how these mechanisms differ from traditional face-to-face interaction. Here, we propose functional near-infrared spectroscopy (fNIRS) hyperscanning-simultaneous measurement of two or more brains-as an optimal approach to quantify potential neurocognitive differences between virtual and in-person interactions. We argue that increased focus on this understudied domain will help elucidate the reasons why virtual conferencing doesn't always stack up to in-person meetings and will also serve to spur new technologies designed to improve the virtual interaction experience. On the basis of existing fNIRS hyperscanning literature, we highlight the current gaps in research regarding virtual interactions. Furthermore, we provide insight into current hurdles regarding fNIRS hyperscanning hardware and methodology that should be addressed in order to shed light on this newly critical element of everyday life.
Collapse
Affiliation(s)
- Stephanie Balters
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Joseph M. Baker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Grace Hawthorne
- Hasso Plattner Institute of Design, Stanford University, Stanford, CA, United States
| | - Allan L. Reiss
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|