1
|
Wang C, Yi X, Li H, Ke N, Lei Z, Fu G, Lin XA. Memory detection with concurrent behavioral, autonomic, and neuroimaging measures in a mock crime. Psychophysiology 2024; 61:e14701. [PMID: 39392401 DOI: 10.1111/psyp.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Concealed information test (CIT) has been utilized for long to perform single measurements. The combination of multiple measures outperforms single measures because of the diverse cognitive processes they reflect and the reduction in random errors facilitated by multiple measures. To further explore the performance of the CIT with multiple measurements, 57 participants were recruited and randomly assigned into guilty and innocent groups. Subsequently, simultaneously recorded reaction time (RT), skin conductance responses (SCRs), heart rate (HR), and neuroimaging data were collected from functional near-infrared spectroscopy (fNIRS) to detect participants' concealed information in a standard CIT. The results demonstrated that all indicators including RT (area under the curve (AUC) = 0.87), SCRs (AUC = 0.79), HR (AUC = 0.78), and fNIRS (channel 8, AUC = 0.85) could differentiate guilty and innocent groups. Importantly, the use of multiple indicators achieved higher detection efficiency (AUC = 0.96) compared to the use of any single indicator. These results illustrate the effectiveness and feasibility of integrating multiple indicators for concealed information detection in CIT.
Collapse
Affiliation(s)
- Chongxiang Wang
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xingyu Yi
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Hongrui Li
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Ni Ke
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Zhili Lei
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Genyue Fu
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Allison Lin
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Lin XA, Li H, Sheng T, Fu G, Sai L. Combining recognition, conflict-monitoring and feedback-related ERPs to detect concealed autobiographical information. Psychophysiology 2024; 61:e14664. [PMID: 39185752 DOI: 10.1111/psyp.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
This study examined the neural signatures associated with conflict-monitoring, recognition and feedback processing in a feedback Concealed Information Test (fCIT), and also examined whether all the ERPs can be used to detect concealed autobiographical information. Participants were randomly assigned to one of two groups (guilty or innocent) and then tested in the fCIT while undergoing electroencephalograms (EEGs). The results showed that the probe (participants' name) elicited a more negative N200, and a more positive recognition P300 than irrelevants among guilty participants. Additionally, feedback following the probe elicited a larger feedback P300 than feedback following irrelevants. Further, we found that three indicators, including the conflict-monitoring N200, recognition P300, and feedback P300, could significantly discriminate between guilty and innocent participants, whereas the FRN could not. Combining them is highly effective in discriminating between guilty and innocent participants (AUC = 0.91). These findings not only shed light on the neural processing of the fCIT but also suggest the potential of using the fCIT to detect concealed autobiographical information.
Collapse
Affiliation(s)
- Xiaohong Allison Lin
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tingwen Sheng
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Genyue Fu
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Liyang Sai
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Mizrahi I, klein Selle N. Fast & furious: Rejecting the hypothesis that secondary psychopathy improves reaction time-based concealed information detection. PLoS One 2024; 19:e0311948. [PMID: 39405309 PMCID: PMC11478853 DOI: 10.1371/journal.pone.0311948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Deception, a complex aspect of human behavior, is inherently difficult to detect directly. A valid alternative involves memory detection, particularly through methods such as the Reaction-Time based Concealed Information Test (RT-CIT). The RT-CIT assesses whether an individual possesses specific knowledge by presenting various probe (familiar) items amidst irrelevant (unfamiliar) items. The task-required "unfamiliar" response to probes may induce a response conflict. Resolving this conflict, by inhibiting the automatic "familiar" response, takes time and slows probe RTs-a phenomenon known as the RT-CIT effect. Notably, secondary psychopathy is characterized by disinhibition and impulsivity, traits which may hinder the ability to effectively manage experienced conflict. Therefore, we hypothesized that secondary psychopathy would be associated with an elevated RT-CIT effect. To investigate this hypothesized relation, we conducted a pre-registered study (n = 86, student sample), employing a novel CIT paradigm that incorporates no-go trials to assess response inhibition capacity. Psychopathic traits were measured using the Levenson Self-Report Psychopathy (LSRP) scale, while the Barratt Impulsiveness Scale (BIS-11) assessed impulsivity. The novel CIT paradigm revealed impressive detection efficiency. However, contrary to our expectations, we observed no significant correlation between the RT-CIT effect and secondary psychopathic traits (BF01 = 6.98). This cautiously suggests that while secondary psychopathic tendencies do not improve RT-CIT validity, they also do not compromise it. Although future investigations should explore more diverse contexts and populations, this tentative finding is reassuring and underscores the robustness of the CIT paradigm.
Collapse
Affiliation(s)
- Imbar Mizrahi
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Nathalie klein Selle
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Guglielmini S, Bopp G, Marcar VL, Scholkmann F, Wolf M. Systemic physiology augmented functional near-infrared spectroscopy hyperscanning: a first evaluation investigating entrainment of spontaneous activity of brain and body physiology between subjects. NEUROPHOTONICS 2022; 9:026601. [PMID: 35449706 PMCID: PMC9016073 DOI: 10.1117/1.nph.9.2.026601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/18/2022] [Indexed: 05/27/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) enables measuring the brain activity of two subjects while they interact, i.e., the hyperscanning approach. Aim: In our exploratory study, we extended classical fNIRS hyperscanning by adding systemic physiological measures to obtain systemic physiology augmented fNIRS (SPA-fNIRS) hyperscanning while blocking and not blocking the visual communication between the subjects. This approach enables access brain-to-brain, brain-to-body, and body-to-body coupling between the subjects simultaneously. Approach: Twenty-four pairs of subjects participated in the experiment. The paradigm consisted of two subjects that sat in front of each other and had their eyes closed for 10 min, followed by a phase of 10 min where they made eye contact. Brain and body activity was measured continuously by SPA-fNIRS. Results: Our study shows that making eye contact for a prolonged time causes significant changes in brain-to-brain, brain-to-body, and body-to-body coupling, indicating that eye contact is followed by entrainment of the physiology between subjects. Subjects that knew each other generally showed a larger trend to change between the two conditions. Conclusions: The main point of this study is to introduce a new framework to investigate brain-to-brain, body-to-body, and brain-to-body coupling through a simple social experimental paradigm. The study revealed that eye contact leads to significant synchronization of spontaneous activity of the brain and body physiology. Our study is the first that employed the SPA-fNIRS approach and showed its usefulness to investigate complex interpersonal physiological changes.
Collapse
Affiliation(s)
- Sabino Guglielmini
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Gino Bopp
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Valentine L. Marcar
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
- University Hospital Zürich, Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Felix Scholkmann
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| |
Collapse
|
5
|
Feng YJ, Hung SM, Hsieh PJ. Detecting spontaneous deception in the brain. Hum Brain Mapp 2022; 43:3257-3269. [PMID: 35344258 PMCID: PMC9189038 DOI: 10.1002/hbm.25849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022] Open
Abstract
Deception detection can be of great value during the juristic investigation. Although the neural signatures of deception have been widely documented, most prior studies were biased by difficulty levels. That is, deceptive behavior typically required more effort, making deception detection possibly effort detection. Furthermore, no study has examined the generalizability across instructed and spontaneous responses and across participants. To explore these issues, we used a dual‐task paradigm, where the difficulty level was balanced between truth‐telling and lying, and the instructed and spontaneous truth‐telling and lying were collected independently. Using Multivoxel pattern analysis, we were able to decode truth‐telling versus lying with a balanced difficulty level. Results showed that the angular gyrus (AG), inferior frontal gyrus (IFG), and postcentral gyrus could differentiate lying from truth‐telling. Critically, linear classifiers trained to distinguish instructed truthful and deceptive responses could correctly differentiate spontaneous truthful and deceptive responses in AG and IFG with above‐chance accuracy. In addition, with a leave‐one‐participant‐out analysis, multivoxel neural patterns from AG could classify if the left‐out participant was lying or not in a trial. These results indicate the commonality of neural responses subserved instructed and spontaneous deceptive behavior as well as the feasibility of cross‐participant deception validation.
Collapse
Affiliation(s)
- Yen-Ju Feng
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shao-Min Hung
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Wang D, Wang C, Yi X, Sai L, Fu G, Lin XA. Detecting concealed information using functional near-infrared spectroscopy (fNIRS) combined with skin conductance, heart rate, and behavioral measures. Psychophysiology 2022; 59:e14029. [PMID: 35193157 DOI: 10.1111/psyp.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
In this study, brain imaging data from functional near-infrared spectroscopy (fNIRS) associated with skin conductance response (SCR), heart rate (HR), and reaction time (RT) were combined to determine if the combination of these indicators could improve the efficiency of deception detection in concealed information test (CIT). During the CIT, participants were presented with a series of names and cities that served as target, probe, or irrelevant stimuli. In the guilty group, the probe stimuli were the participants' own names and hometown cities, and they were asked to deny this information. Our results revealed that probe items were associated with longer RT, larger SCR, slower HR, and higher oxyhemoglobin (HbO) concentration changes in the inferior prefrontal gyrus (IFG), middle frontal gyrus (MFG), and the superior frontal gyrus (SFG) compared with irrelevant items for participants in the guilty group but not in the innocent group. Furthermore, our results suggested that the combination of RT, SCR, HR, and fNIRS indicators could improve the deception detection efficiency to a very high area under the ROC curve (0.94) compared with any of the single indicators (0.74-0.89). The improved deception detection efficiency might be attributed to the reduction of random error and the diversiform underlying the psychophysiological mechanisms reflected by each indicator. These findings demonstrate a feasible way to improve the deception detection efficiency by using combined multiple indicators.
Collapse
Affiliation(s)
- Di Wang
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Chongxiang Wang
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Xingyu Yi
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Liyang Sai
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Genyue Fu
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | | |
Collapse
|
7
|
Delgado-Herrera M, Reyes-Aguilar A, Giordano M. What Deception Tasks Used in the Lab Really Do: Systematic Review and Meta-analysis of Ecological Validity of fMRI Deception Tasks. Neuroscience 2021; 468:88-109. [PMID: 34111448 DOI: 10.1016/j.neuroscience.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022]
Abstract
Interpretation of the neural findings of deception without considering the ecological validity of the experimental tasks could lead to biased conclusions. In this study we classified the experimental tasks according to their inclusion of three essential components required for ecological validity: intention to lie, social interaction and motivation. First, we carried out a systematic review to categorize fMRI deception tasks and to weigh the degree of ecological validity of each one. Second, we performed a meta-analysis to identify if each type of task involves a different neural substrate and to distinguish the neurocognitive contribution of each component of ecological validity essential to deception. We detected six categories of deception tasks. Intention to lie was the component least frequently included, followed by social interaction. Monetary reward was the most frequent motivator. The results of the meta-analysis, including 59 contrasts, revealed that intention to lie is associated with activation in the left lateral occipital cortex (superior division) whereas the left angular gyrus and right inferior frontal gyrus (IFG) are engaged during lying under instructions. Additionally, the right IFG appears to participate in the social aspect of lying including simulated and real interactions. We found no effect of monetary reward in our analysis. Finally, tasks with high ecological validity recruited fewer brain areas (right insular cortex and bilateral anterior cingulate cortex (ACC)) compared to less ecological tasks, perhaps because they are more natural and realistic, and engage a wide network of brain mechanisms, as opposed to specific tasks that demand more centralized processes.
Collapse
Affiliation(s)
- Maribel Delgado-Herrera
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Azalea Reyes-Aguilar
- Departamento de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Av. Universidad 3004, Ciudad de México, México.
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
8
|
Zhang J, Zhang J, Ren H, Liu Q, Du Z, Wu L, Sai L, Yuan Z, Mo S, Lin X. A Look Into the Power of fNIRS Signals by Using the Welch Power Spectral Estimate for Deception Detection. Front Hum Neurosci 2021; 14:606238. [PMID: 33536888 PMCID: PMC7848231 DOI: 10.3389/fnhum.2020.606238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging technologies have improved our understanding of deception and also exhibit their potential in revealing the origins of its neural mechanism. In this study, a quantitative power analysis method that uses the Welch power spectrum estimation of functional near-infrared spectroscopy (fNIRS) signals was proposed to examine the brain activation difference between the spontaneous deceptive behavior and controlled behavior. The power value produced by the model was applied to quantify the activity energy of brain regions, which can serve as a neuromarker for deception detection. Interestingly, the power analysis results generated from the Welch spectrum estimation method demonstrated that the spontaneous deceptive behavior elicited significantly higher power than that from the controlled behavior in the prefrontal cortex. Meanwhile, the power findings also showed significant difference between the spontaneous deceptive behavior and controlled behavior, indicating that the reward system was only involved in the deception. The proposed power analysis method for processing fNIRS data provides us an additional insight to understand the cognitive mechanism of deception.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jingyue Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Houhua Ren
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Qihong Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Zhengcong Du
- School of Information Science and Technology, Xichang University, Xichang, China
| | - Lan Wu
- Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Liyang Sai
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Site Mo
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiaohong Lin
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Zheltyakova M, Kireev M, Korotkov A, Medvedev S. Neural mechanisms of deception in a social context: an fMRI replication study. Sci Rep 2020; 10:10713. [PMID: 32612101 PMCID: PMC7329834 DOI: 10.1038/s41598-020-67721-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Deception is a form of manipulation aimed at misleading another person by conveying false or truthful messages. Manipulative truthful statements could be considered as sophisticated deception and elicit an increased cognitive load. However, only one fMRI study reported its neural correlates. To provide independent evidence for sophisticated deception, we carried out an fMRI study replicating the experimental paradigm and Bayesian statistical approach utilized in that study. During the experiment, participants played a game against an opponent by sending deliberate deceptive or honest messages. Compared to truth-telling, deceptive intentions, regardless of how they were fulfilled, were associated with increased BOLD signals in the bilateral temporoparietal junction (TPJ), left precuneus, and right superior temporal sulcus (STS). The right TPJ participates in the attribution of mental states, acting in a social context, and moral behaviour. Moreover, the other revealed brain areas have been considered nodes in the theory of mind brain neural system. Therefore, the obtained results reflect an increased demand for socio‑cognitive processes associated with deceptive intentions. We replicated the original study showing the involvement of the right TPJ and expanded upon it by revealing the involvement of the left TPJ, left precuneus and right STS in actions with deceptive intentions.
Collapse
Affiliation(s)
- Maya Zheltyakova
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maxim Kireev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Alexander Korotkov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Svyatoslav Medvedev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
10
|
Hsu CW, Begliomini C, Dall'Acqua T, Ganis G. The effect of mental countermeasures on neuroimaging-based concealed information tests. Hum Brain Mapp 2019; 40:2899-2916. [PMID: 30864277 DOI: 10.1002/hbm.24567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 11/05/2022] Open
Abstract
During the last decade and a half, functional magnetic resonance imaging (fMRI) has been used to determine whether it is possible to detect concealed knowledge by examining brain activation patterns, with mixed results. Concealed information tests rely on the logic that a familiar item (probe) elicits a stronger response than unfamiliar, but otherwise comparable items (irrelevants). Previous work has shown that physical countermeasures can artificially modulate neural responses in concealed information tests, decreasing the accuracy of these methods. However, the question remains as to whether purely mental countermeasures, which are much more difficult to detect than physical ones, can also be effective. An fMRI study was conducted to address this question by assessing the effect of attentional countermeasures on the accuracy of the classification between knowledge and no-knowledge cases using both univariate and multivariate analyses. Results replicate previous work and show reliable group activation differences between the probe and the irrelevants in fronto-parietal networks. Critically, classification accuracy was generally reduced by the mental countermeasures, but only significantly so with region of interest analyses (both univariate and multivariate). For whole-brain analyses, classification accuracy was relatively low, but it was not significantly reduced by the countermeasures. These results indicate that mental countermeasure need to be addressed before these paradigms can be used in applied settings and that methods to defeat countermeasures, or at least to detect their use, need to be developed. HIGHLIGHTS: FMRI-based concealed information tests are vulnerable to mental countermeasures Measures based on regions of interest are affected by mental countermeasures Whole-brain analyses may be more robust than region of interest ones Methods to detect mental countermeasure use are needed for forensic applications.
Collapse
Affiliation(s)
- Chun-Wei Hsu
- School of Psychology and Cognition Institute, University of Plymouth, Plymouth, UK
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Padova, Italy.,Cognitive Neuroscience Center, University of Padova, Padova, Italy
| | | | - Giorgio Ganis
- School of Psychology and Cognition Institute, University of Plymouth, Plymouth, UK
| |
Collapse
|
11
|
Electrophysiological markers of working memory usage as an index for truth-based lies. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:1089-1104. [PMID: 30022430 DOI: 10.3758/s13415-018-0624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
People prefer to lie using altered truthful events from memory, perhaps because doing so can increase their credibility while reducing cognitive and working memory (WM) load. One possible way to counter such deceptive behavior is to track WM usage, since fabricating coherent lies or managing between truth and lies is likely to involve heavy WM load. In this study, participants memorized a list of words in the study session and used these old words to provide deceptive answers when cued later, in the testing session. Our behavioral results showed that people needed more time to make a deceptive response during the execution stage, and this prolonged deceptive reaction time (RT) was negatively correlated with each participant's WM capacity. Event-related potential findings showed a more negative-going frontal amplitude between the lie and truth conditions during the preparation stage, suggesting that WM preparatory processes can be detected long before a deceptive response is verbalized. Furthermore, we observed a larger positive frontal-central amplitude during the execution stage, which was negatively correlated with participants' lie-truth RT differences, suggesting that participants' efficiency in producing deceptive responses can be readily traced electrophysiologically. Together, these findings suggest that WM capacity and preparation are crucial to efficient lying and that their related electrophysiological signatures can potentially be used to uncover deceptive behaviors.
Collapse
|
12
|
Niioka K, Uga M, Nagata T, Tokuda T, Dan I, Ochi K. Cerebral Hemodynamic Response During Concealment of Information About a Mock Crime: Application of a General Linear Model With an Adaptive Hemodynamic Response Function. JAPANESE PSYCHOLOGICAL RESEARCH 2018. [DOI: 10.1111/jpr.12194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Suchotzki K, De Houwer J, Kleinberg B, Verschuere B. Using more different and more familiar targets improves the detection of concealed information. Acta Psychol (Amst) 2018; 185:65-71. [PMID: 29407246 DOI: 10.1016/j.actpsy.2018.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/30/2022] Open
Abstract
When embedded among a number of plausible irrelevant options, the presentation of critical (e.g., crime-related or autobiographical) information is associated with a marked increase in response time (RT). This RT effect crucially depends on the inclusion of a target/non-target discrimination task with targets being a dedicated set of items that require a unique response (press YES; for all other items press NO). Targets may be essential because they share a feature - familiarity - with the critical items. Whereas irrelevant items have not been encountered before, critical items are known from the event or the facts of the investigation. Target items are usually learned before the test, and thereby made familiar to the participants. Hence, familiarity-based responding needs to be inhibited on the critical items and may therefore explain the RT increase on the critical items. This leads to the hypothesis that the more participants rely on familiarity, the more pronounced the RT increase on critical items may be. We explored two ways to increase familiarity-based responding: (1) Increasing the number of different target items, and (2) using familiar targets. In two web-based studies (n = 357 and n = 499), both the number of different targets and the use of familiar targets facilitated concealed information detection. The effect of the number of different targets was small yet consistent across both studies, the effect of target familiarity was large in both studies. Our results support the role of familiarity-based responding in the Concealed Information Test and point to ways on how to improve validity of the Concealed Information Test.
Collapse
Affiliation(s)
- Kristina Suchotzki
- Department of Psychology, University of Würzburg, Marcusstr. 9-11, 97080 Würzburg, Germany.
| | - Jan De Houwer
- Department of Experimental-Clinical and Health Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Bennett Kleinberg
- Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 128, 1018, WS, Amsterdam, The Netherlands
| | - Bruno Verschuere
- Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 128, 1018, WS, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Functional neural networks of honesty and dishonesty in children: Evidence from graph theory analysis. Sci Rep 2017; 7:12085. [PMID: 28935904 PMCID: PMC5608888 DOI: 10.1038/s41598-017-11754-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/30/2017] [Indexed: 01/21/2023] Open
Abstract
The present study examined how different brain regions interact with each other during spontaneous honest vs. dishonest communication. More specifically, we took a complex network approach based on the graph-theory to analyze neural response data when children are spontaneously engaged in honest or dishonest acts. Fifty-nine right-handed children between 7 and 12 years of age participated in the study. They lied or told the truth out of their own volition. We found that lying decreased both the global and local efficiencies of children’s functional neural network. This finding, for the first time, suggests that lying disrupts the efficiency of children’s cortical network functioning. Further, it suggests that the graph theory based network analysis is a viable approach to study the neural development of deception.
Collapse
|
15
|
Ganis G, Bridges D, Hsu CW, Schendan HE. Is anterior N2 enhancement a reliable electrophysiological index of concealed information? Neuroimage 2016; 143:152-165. [PMID: 27570109 DOI: 10.1016/j.neuroimage.2016.08.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022] Open
Abstract
Concealed information tests (CITs) are used to determine whether an individual possesses information about an item of interest. Event-related potential (ERP) measures in CITs have focused almost exclusively on the P3b component, showing that this component is larger when lying about the item of interest (probe) than telling the truth about control items (irrelevants). Recent studies have begun to examine other ERP components, such as the anterior N2, with mixed results. A seminal CIT study found that visual probes elicit a larger anterior N2 than irrelevants (Gamer and Berti, 2010) and suggested that this component indexes cognitive control processes engaged when lying about probes. However, this study did not control for potential intrinsic differences among the stimuli: the same probe and irrelevants were used for all participants, and there was no control condition composed of uninformed participants. Here, first we show that the N2 effect found in the study by Gamer and Berti (2010) was in large part due to stimulus differences, as the effect observed in a concealed information condition was comparable to that found in two matched control conditions without any concealed information (Experiments 1 and 2). Next, we addressed the issue of the generality of the N2 findings by counterbalancing a new set of stimuli across participants and by using a control condition with uninformed participants (Experiment 3). Results show that the probe did not elicit a larger anterior N2 than the irrelevants under these controlled conditions. These findings suggest that caution should be taken in using the N2 as an index of concealed information in CITs. Furthermore, they are a reminder that results of CIT studies (not only with ERPs) performed without stimulus counterbalancing and suitable control conditions may be confounded by differential intrinsic properties of the stimuli employed.
Collapse
Affiliation(s)
- Giorgio Ganis
- School of Psychology, University of Plymouth, Plymouth, UK; Cognition Institute, University of Plymouth, Plymouth, UK; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.
| | - David Bridges
- School of Psychology, University of Plymouth, Plymouth, UK; Cognition Institute, University of Plymouth, Plymouth, UK
| | - Chun-Wei Hsu
- School of Psychology, University of Plymouth, Plymouth, UK; Cognition Institute, University of Plymouth, Plymouth, UK
| | - Haline E Schendan
- School of Psychology, University of Plymouth, Plymouth, UK; Cognition Institute, University of Plymouth, Plymouth, UK
| |
Collapse
|
16
|
Novel, ERP-based, concealed information detection: Combining recognition-based and feedback-evoked ERPs. Biol Psychol 2016; 114:13-22. [DOI: 10.1016/j.biopsycho.2015.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
|
17
|
Meijer EH, Verschuere B, Gamer M, Merckelbach H, Ben-Shakhar G. Deception detection with behavioral, autonomic, and neural measures: Conceptual and methodological considerations that warrant modesty. Psychophysiology 2016; 53:593-604. [DOI: 10.1111/psyp.12609] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Ewout H. Meijer
- Department of Clinical Psychological Science; Maastricht University; Maastricht The Netherlands
| | - Bruno Verschuere
- Department of Clinical Psychological Science; Maastricht University; Maastricht The Netherlands
- Department of Clinical Psychology; University of Amsterdam; Amsterdam The Netherlands
| | - Matthias Gamer
- Department of Psychology; University of Würzburg; Würzburg Germany
| | - Harald Merckelbach
- Department of Clinical Psychological Science; Maastricht University; Maastricht The Netherlands
| | | |
Collapse
|
18
|
Debey E, Ridderinkhof RK, De Houwer J, De Schryver M, Verschuere B. Suppressing the truth as a mechanism of deception: Delta plots reveal the role of response inhibition in lying. Conscious Cogn 2015; 37:148-59. [PMID: 26397036 DOI: 10.1016/j.concog.2015.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 11/27/2022]
|
19
|
Memory detection using fMRI - does the encoding context matter? Neuroimage 2015; 113:164-74. [PMID: 25819306 DOI: 10.1016/j.neuroimage.2015.03.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/31/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022] Open
Abstract
Recent research revealed that the presentation of crime related details during the Concealed Information Test (CIT) reliably activates a network of bilateral inferior frontal, right medial frontal and right temporal-parietal brain regions. However, the ecological validity of these findings as well as the influence of the encoding context are still unclear. To tackle these questions, three different groups of subjects participated in the current study. Two groups of guilty subjects encoded critical details either only by planning (guilty intention group) or by really enacting (guilty action group) a complex, realistic mock crime. In addition, a group of informed innocent subjects encoded half of the relevant details in a neutral context. Univariate analyses showed robust activation differences between known relevant compared to neutral details in the previously identified ventral frontal-parietal network with no differences between experimental groups. Moreover, validity estimates for average changes in neural activity were similar between groups when focusing on the known details and did not differ substantially from the validity of electrodermal recordings. Additional multivariate analyses provided evidence for differential patterns of activity in the ventral fronto-parietal network between the guilty action and the informed innocent group and yielded higher validity coefficients for the detection of crime related knowledge when relying on whole brain data. Together, these findings demonstrate that an fMRI-based CIT enables the accurate detection of concealed crime related memories, largely independent of encoding context. On the one hand, this indicates that even persons who planned a (mock) crime could be validly identified as having specific crime related knowledge. On the other hand, innocents with such knowledge have a high risk of failing the test, at least when considering univariate changes of neural activation.
Collapse
|
20
|
Suchotzki K, Crombez G, Smulders FT, Meijer E, Verschuere B. The cognitive mechanisms underlying deception: An event-related potential study. Int J Psychophysiol 2015; 95:395-405. [DOI: 10.1016/j.ijpsycho.2015.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 12/30/2014] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
21
|
Credibility assessment: Preliminary Process Theory, the polygraph process, and construct validity. Int J Psychophysiol 2015; 95:3-13. [DOI: 10.1016/j.ijpsycho.2014.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
|
22
|
Suchotzki K, Crombez G, Debey E, van Oorsouw K, Verschuere B. In Vino Veritas? Alcohol, Response Inhibition and Lying. Alcohol Alcohol 2014; 50:74-81. [DOI: 10.1093/alcalc/agu079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Suchotzki K, Verschuere B, Peth J, Crombez G, Gamer M. Manipulating item proportion and deception reveals crucial dissociation between behavioral, autonomic, and neural indices of concealed information. Hum Brain Mapp 2014; 36:427-39. [PMID: 25277495 DOI: 10.1002/hbm.22637] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/11/2022] Open
Abstract
Developed as an alternative to traditional deception detection methods, the concealed information test (CIT) assesses recognition of critical (e.g., crime-relevant) "probes." Most often, recognition has been measured as enhanced skin conductance responses (SCRs) to probes compared to irrelevant foils (CIT effect). More recently, also differentially enlarged reaction times (RTs) and increased neural activity in the bilateral inferior frontal gyrus, the right middle frontal gyrus, and the right temporo-parietal junction have been observed. The aims of the current functional magnetic resonance imaging (fMRI) study were to (1) investigate the boundary conditions of the CIT effects in all three measures and thereby (2) gain more insight into the relative contribution of two mechanisms underlying enhanced responding to concealed information (i.e., orienting versus response inhibition). Therefore, we manipulated the proportion of probe versus irrelevant items, and whether suspects were instructed to actively deny recognition of probe knowledge (i.e., deceive) during the test. Results revealed that whereas overt deception was not necessary for the SCR CIT effect, it was crucial for the RT and the fMRI-based CIT effects. The proportion manipulation enhanced the CIT effect in all three measures. The results indicate that different mental processes might underlie the response pattern in the CIT. While skin conductance responding to concealed information may best be explained by orienting theory, it seems that response inhibition drives RT and blood oxygen level dependent responding to concealed information.
Collapse
Affiliation(s)
- Kristina Suchotzki
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
24
|
An exploratory study of using polygraph to detect deception in patients with traumatic brain injury. Neuroreport 2014; 25:943-7. [DOI: 10.1097/wnr.0000000000000217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Bowman CR, Dennis NA. Age differences in the neural correlates of novelty processing: The effects of item-relatedness. Brain Res 2014; 1612:2-15. [PMID: 25149192 DOI: 10.1016/j.brainres.2014.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Past research finds that age-related increases in false recognitions are a key contributor to age-related memory decline, suggesting that older adults have difficulty in correctly distinguishing between new and old information, particularly when new items at retrieval are semantically or perceptually related to items from encoding. However, little work has examined the neural mechanisms older adults engage to avoid false recognitions and successfully identify information as novel. In the present study, young and older adults were scanned during a retrieval task in which new items were exemplars from studied categories (related lures) or unstudied categories (unrelated lures) in order to detect age-related differences in the neural correlates of related and unrelated novelty processing. Results showed that, unlike young adults, older adults did not differentially recruit regions such as the anterior cingulate and bilateral middle/inferior temporal gyrus to capitalize on the salient categorical differences in unrelated items. Likewise, older adults did not differentially recruit regions of early visual cortex or anterior hippocampus, suggesting that older adults have difficulty using item-specific details to make successful related novelty decisions. Instead, older adults recruited bilateral ventrolateral prefrontal cortex differentially for successful novelty processing and particularly for related novelty processing. Overall, results suggest that age deficits in novelty processing may arise because older adults process related and unrelated lures similarly and do not capitalize on categorical or item-specific properties of novel items. Similar to aging patterns in memory retrieval, results also showed that older adults have the strongest novelty success activity in lateral PFC regions associated with control and monitoring processes. This article is part of a Special Issue entitled SI: Memory & Aging.
Collapse
Affiliation(s)
- Caitlin R Bowman
- The Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nancy A Dennis
- The Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
26
|
Abstract
Even though electroencephalography has played a prominent role for lie detection via personally relevant information, the electrophysiological signature of active lying is still elusive. We addressed this signature with two experiments in which participants helped a virtual police officer to locate a knife. Crucially, before this response, they announced whether they would lie or tell the truth about the knife's location. This design allowed us to study the signature of lie-telling in the absence of rare and personally significant oddball stimuli that are typically used for lie detection via electrophysiological markers, especially the P300 component. Our results indicate that active lying attenuated P300 amplitudes as well as N200 amplitudes for such non-oddball stimuli. These results support accounts that stress the high cognitive demand of lie-telling, including the need to suppress the truthful response and to generate a lie.
Collapse
Affiliation(s)
- Roland Pfister
- a Department of Psychology III , Julius-Maximilians University of Würzburg , Würzburg , Germany
| | | | | |
Collapse
|
27
|
Holper L, Scholkmann F, Wolf M. The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy. Behav Brain Res 2014; 270:95-107. [PMID: 24845305 DOI: 10.1016/j.bbr.2014.04.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Simultaneous measurement of cortical and peripheral affective processing is relevant in many neuroscientific research fields. The aim was to investigate the influence of different affective task components on the coherence between cortical hemodynamic signals and peripheral autonomic skin potential signals. Seventeen healthy subjects performed four tasks, i.e. a finger-tapping task, a hyperventilation task, a working memory task and a risk-taking task. Cortical hemodynamic responses were measured using functional near-infrared spectroscopy (fNIRS). Peripheral skin conductance responses (SCRs) were assessed using electrodermal activity (EDA). Coherence between the fNIRS and the EDA time series was calculated using the S transform coherence (STC), a method that tests the temporal dynamics between two time series for consistent phase relationships and thus for a functional relationship. The following characteristics of fNIRS-EDA coherence were observed: (1) Simple motor performance was not a contributor to enhanced coherence, as revealed by the finger-tapping task. (2) Changes in respiration rate and/or heart rate acted as relevant contributors to enhanced coherence, as revealed by the hyperventilation task. (3) Working memory performance did not induce changes in coherence, (4) whereas risk-taking behavior was a significant contributor to enhanced coherence. (5) Based on all four tasks, we also observed that coherence may be subject to habituation or sensitization effects over the trial-to-trial course of a task. Increased fNIRS-EDA coherence may be an indicator of a psychophysiological link between the underlying cortical and peripheral affective systems. Our findings are relevant for several neuroscientific research areas seeking to evaluate the interplay between cortical and peripheral affective performance.
Collapse
Affiliation(s)
- Lisa Holper
- Biomedical Optics Research Laboratory (BORL), Division of Neonatology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory (BORL), Division of Neonatology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| | - Martin Wolf
- Biomedical Optics Research Laboratory (BORL), Division of Neonatology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| |
Collapse
|
28
|
Abstract
Functional MRI (fMRI)-based lie detection has been marketed as a tool for enhancing personnel selection, strengthening national security and protecting personal reputations, and at least three US courts have been asked to admit the results of lie detection scans as evidence during trials. How well does fMRI-based lie detection perform, and how should the courts, and society more generally, respond? Here, we address various questions — some of which are based on a meta-analysis of published studies — concerning the scientific state of the art in fMRI-based lie detection and its legal status, and discuss broader ethical and societal implications. We close with three general policy recommendations.
Collapse
|
29
|
Sai L, Zhou X, Ding XP, Fu G, Sang B. Detecting Concealed Information Using Functional Near-Infrared Spectroscopy. Brain Topogr 2014; 27:652-62. [PMID: 24514911 DOI: 10.1007/s10548-014-0352-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/16/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Liyang Sai
- Department of Psychology, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | | | | | | | | |
Collapse
|
30
|
Ding XP, Sai L, Fu G, Liu J, Lee K. Neural correlates of second-order verbal deception: A functional near-infrared spectroscopy (fNIRS) study. Neuroimage 2014; 87:505-14. [PMID: 24161626 DOI: 10.1016/j.neuroimage.2013.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 08/13/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | | | | | - Kang Lee
- Zhejiang Normal University, China; University of Toronto, Canada.
| |
Collapse
|
31
|
Abstract
Traditional lie detection tools, such as the polygraph, voice stress analysis, or special interrogation techniques, rely on behavioral or psychophysiological manifestations of deception. With the advent of neuroimaging techniques, the question emerged whether it would be possible to directly identify deceit in the part of the body where it is generated: the brain. After a few promising studies, these techniques became soon commercially available and there have been attempts to use such results in the court in recent years. The current article reviews the development of neuroimaging techniques in the field of deception detection and critically discusses the potential but also the shortcomings of such methods. Unfortunately, the majority of research in this field was rather unsystematic and neglected the accumulated knowledge regarding methodological pitfalls that were extensively discussed in the scientific community in conjunction with the polygraph. Therefore, neuroimaging studies on deception largely differ with respect to the experimental paradigm (the interrogation technique), the methods for analyzing the data, and the procedures to obtain individual diagnoses. Moreover, most studies used artificial laboratory settings that differ considerably from real-life applications. As a consequence, neuroimaging techniques are not applicable for detecting deception in individual field cases at the moment. However, recent advantages such as multivariate pattern analysis might yield novel neuroimaging applications in the near future that are capable of improving established techniques for detecting deception or concealed knowledge.
Collapse
Affiliation(s)
- Matthias Gamer
- Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Germany
| |
Collapse
|
32
|
Sip KE, Carmel D, Marchant JL, Li J, Petrovic P, Roepstorff A, McGregor WB, Frith CD. When Pinocchio's nose does not grow: belief regarding lie-detectability modulates production of deception. Front Hum Neurosci 2013; 7:16. [PMID: 23382715 PMCID: PMC3563087 DOI: 10.3389/fnhum.2013.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/14/2013] [Indexed: 11/22/2022] Open
Abstract
Does the brain activity underlying the production of deception differ depending on whether or not one believes their deception can be detected? To address this question, we had participants commit a mock theft in a laboratory setting, and then interrogated them while they underwent functional MRI (fMRI) scanning. Crucially, during some parts of the interrogation participants believed a lie-detector was activated, whereas in other parts they were told it was switched-off. We were thus able to examine the neural activity associated with the contrast between producing true vs. false claims, as well as the independent contrast between believing that deception could and could not be detected. We found increased activation in the right amygdala and inferior frontal gyrus (IFG), as well as the left posterior cingulate cortex (PCC), during the production of false (compared to true) claims. Importantly, there was a significant interaction between the effects of deception and belief in the left temporal pole and right hippocampus/parahippocampal gyrus, where activity increased during the production of deception when participants believed their false claims could be detected, but not when they believed the lie-detector was switched-off. As these regions are associated with binding socially complex perceptual input and memory retrieval, we conclude that producing deceptive behavior in a context in which one believes this deception can be detected is associated with a cognitively taxing effort to reconcile contradictions between one's actions and recollections.
Collapse
Affiliation(s)
- Kamila E Sip
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital Aarhus, Denmark ; Department of Aesthetics and Communication - Linguistics, Aarhus University Aarhus, Denmark ; Department of Psychology, Rutgers University - Newark NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ding XP, Gao X, Fu G, Lee K. Neural correlates of spontaneous deception: A functional near-infrared spectroscopy (fNIRS)study. Neuropsychologia 2013; 51:704-12. [PMID: 23340482 DOI: 10.1016/j.neuropsychologia.2012.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Deception is commonly seen in everyday social interactions. However, most of the knowledge about the underlying neural mechanism of deception comes from studies where participants were instructed when and how to lie. To study spontaneous deception, we designed a guessing game modeled after Greene and Paxton (2009) "Proceedings of the National Academy of Sciences, 106(30), 12506-12511", in which lying is the only way to achieve the performance level needed to end the game. We recorded neural responses during the game using near-infrared spectroscopy (NIRS). We found that when compared to truth-telling, spontaneous deception, like instructed deception, engenders greater involvement of such prefrontal regions as the left superior frontal gyrus. We also found that the correct-truth trials produced greater neural activities in the left middle frontal gyrus and right superior frontal gyrus than the incorrect-truth trials, suggesting the involvement of the reward system. Furthermore, the present study confirmed the feasibility of using NIRS to study spontaneous deception.
Collapse
Affiliation(s)
- Xiao Pan Ding
- Hangzhou College of Preschool Teacher Education, Zhejiang University, Hangzhou, 310012, China
| | | | | | | |
Collapse
|
34
|
Gamer M, Berti S. P300 amplitudes in the concealed information test are less affected by depth of processing than electrodermal responses. Front Hum Neurosci 2012; 6:308. [PMID: 23162454 PMCID: PMC3498630 DOI: 10.3389/fnhum.2012.00308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/24/2012] [Indexed: 11/13/2022] Open
Abstract
The Concealed Information Test (CIT) has been used in the laboratory as well as in field applications to detect concealed crime related memories. The presentation of crime relevant details to guilty suspects has been shown to elicit enhanced N200 and P300 amplitudes of the event-related brain potentials (ERPs) as well as greater skin conductance responses (SCRs) as compared to neutral test items. These electrophysiological and electrodermal responses were found to incrementally contribute to the validity of the test, thereby suggesting that these response systems are sensitive to different psychological processes. In the current study, we tested whether depth of processing differentially affects N200, P300, and SCR amplitudes in the CIT. Twenty participants carried out a mock crime and became familiar with central and peripheral crime details. A CIT that was conducted 1 week later revealed that SCR amplitudes were larger for central details although central and peripheral items were remembered equally well in a subsequent explicit memory test. By contrast, P300 amplitudes elicited by crime related details were larger but did not differ significantly between question types. N200 amplitudes did not allow for detecting concealed knowledge in this study. These results indicate that depth of processing might be one factor that differentially affects central and autonomic nervous system responses to concealed information. Such differentiation might be highly relevant for field applications of the CIT.
Collapse
Affiliation(s)
- Matthias Gamer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | | |
Collapse
|
35
|
Ding XP, Du X, Lei D, Hu CS, Fu G, Chen G. The neural correlates of identity faking and concealment: an FMRI study. PLoS One 2012; 7:e48639. [PMID: 23144915 PMCID: PMC3492494 DOI: 10.1371/journal.pone.0048639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/27/2012] [Indexed: 11/24/2022] Open
Abstract
The neural basis of self and identity has received extensive research. However, most of these existing studies have focused on situations where the internal representation of the self is consistent with the external one. The present study used fMRI methodology to examine the neural correlates of two different types of identity conflict: identity faking and concealment. Participants were presented with a sequence of names and asked to either conceal their own identity or fake another one. The results revealed that the right insular cortex and bilaterally inferior frontal gyrus were more active for identity concealment compared to the control condition, whereas identity faking elicited a significantly larger percentage signal increase than the control condition in the right superior frontal gyrus, left calcarine, and right caudate. These results suggest that different neural systems associated with both identity processing and deception were involved in identity concealment and faking.
Collapse
Affiliation(s)
- Xiao Pan Ding
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, P.R. China
- Department of Psychology, Zhejiang Normal University, Hangzhou, P.R. China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal Universtity, Shanghai, P.R. China
| | - Du Lei
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal Universtity, Shanghai, P.R. China
| | - Chao Super Hu
- Department of Psychology, Zhejiang Normal University, Hangzhou, P.R. China
| | - Genyue Fu
- Department of Psychology, Zhejiang Normal University, Hangzhou, P.R. China
- * E-mail:
| | - Guopeng Chen
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, P.R. China
| |
Collapse
|
36
|
Rosenfeld JP, Hu X, Pederson K. Deception awareness improves P300-based deception detection in concealed information tests. Int J Psychophysiol 2012; 86:114-21. [DOI: 10.1016/j.ijpsycho.2012.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
37
|
Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 2011; 1224:40-62. [PMID: 21486295 DOI: 10.1111/j.1749-6632.2011.05958.x] [Citation(s) in RCA: 460] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Delineating the functional organization of the prefrontal cortex is central to advancing models of goal-directed cognition. Considerable evidence indicates that specific forms of cognitive control are associated with distinct subregions of the left ventrolateral prefrontal cortex (VLPFC), but less is known about functional specialization within the right VLPFC. We report a functional MRI meta-analysis of two prominent theories of right VLPFC function: stopping of motor responses and reflexive orienting to abrupt perceptual onsets. Along with a broader review of right VLPFC function, extant data indicate that stopping and reflexive orienting similarly recruit the inferior frontal junction (IFJ), suggesting that IFJ supports the detection of behaviorally relevant stimuli. By contrast, other right VLPFC subregions are consistently active during motor inhibition, but not reflexive reorienting tasks, with posterior-VLPFC being active during the updating of action plans and mid-VLPFC responding to decision uncertainty. These results highlight the rich functional heterogeneity that exists within right VLPFC.
Collapse
Affiliation(s)
- Benjamin J Levy
- Department of PsychologyNeurosciences Program, Stanford University, Stanford, California
| | - Anthony D Wagner
- Department of PsychologyNeurosciences Program, Stanford University, Stanford, California
| |
Collapse
|
38
|
Ambach W, Stark R, Vaitl D. An interfering n-back task facilitates the detection of concealed information with EDA but impedes it with cardiopulmonary physiology. Int J Psychophysiol 2011; 80:217-26. [DOI: 10.1016/j.ijpsycho.2011.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 11/26/2022]
|
39
|
Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 2011. [PMID: 21486295 DOI: 10.1111/j.1749-6632.2011.05958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Delineating the functional organization of the prefrontal cortex is central to advancing models of goal-directed cognition. Considerable evidence indicates that specific forms of cognitive control are associated with distinct subregions of the left ventrolateral prefrontal cortex (VLPFC), but less is known about functional specialization within the right VLPFC. We report a functional MRI meta-analysis of two prominent theories of right VLPFC function: stopping of motor responses and reflexive orienting to abrupt perceptual onsets. Along with a broader review of right VLPFC function, extant data indicate that stopping and reflexive orienting similarly recruit the inferior frontal junction (IFJ), suggesting that IFJ supports the detection of behaviorally relevant stimuli. By contrast, other right VLPFC subregions are consistently active during motor inhibition, but not reflexive reorienting tasks, with posterior-VLPFC being active during the updating of action plans and mid-VLPFC responding to decision uncertainty. These results highlight the rich functional heterogeneity that exists within right VLPFC.
Collapse
Affiliation(s)
- Benjamin J Levy
- Department of PsychologyNeurosciences Program, Stanford University, Stanford, California
| | - Anthony D Wagner
- Department of PsychologyNeurosciences Program, Stanford University, Stanford, California
| |
Collapse
|
40
|
Lying in the scanner: Covert countermeasures disrupt deception detection by functional magnetic resonance imaging. Neuroimage 2011; 55:312-9. [PMID: 21111834 DOI: 10.1016/j.neuroimage.2010.11.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/27/2010] [Accepted: 11/05/2010] [Indexed: 11/21/2022] Open
|
41
|
Ito A, Abe N, Fujii T, Ueno A, Koseki Y, Hashimoto R, Mugikura S, Takahashi S, Mori E. The role of the dorsolateral prefrontal cortex in deception when remembering neutral and emotional events. Neurosci Res 2011; 69:121-8. [PMID: 21074583 DOI: 10.1016/j.neures.2010.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
|
42
|
Hu X, Wu H, Fu G. Temporal course of executive control when lying about self- and other-referential information: An ERP study. Brain Res 2011; 1369:149-57. [DOI: 10.1016/j.brainres.2010.10.106] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/02/2010] [Accepted: 10/31/2010] [Indexed: 11/25/2022]
|