1
|
Lima J, Panayi MC, Sharp T, McHugh SB, Bannerman DM. More and Less Fear in Serotonin Transporter Knockout Mice. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70016. [PMID: 39917838 PMCID: PMC11803413 DOI: 10.1111/gbb.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Recent theories suggest that reduced serotonin transporter (5-HTT) function, which increases serotonin (5-HT) levels at the synapse, enhances neural plasticity and affects sensitivity to environmental cues. This may promote learning about emotionally relevant events. However, the boundaries that define such emotional learning remain to be established. This was investigated using 5-HTT knockout (5-HTTKO) mice which provide a model of long-term elevated 5-HT transmission and are associated with increased anxiety. Compared to wild-type controls, 5-HTTKO mice were faster to discriminate between an auditory cue that predicted footshock (CS+) and a cue predicting no footshock (CS-). Notably, this enhanced discrimination performance was driven not by faster learning that the CS+ predicted footshock, but rather by faster learning that the CS- cue signals the absence of footshock and thus provides temporary relief from fear/anxiety. Similarly, 5-HTTKO mice were also faster to reduce their fear of the CS+ cue during subsequent extinction. These findings are consistent with facilitated inhibitory learning that predicts the absence of potential threats in 5-HTTKO mice. However, 5-HTTKO mice also exhibited increased generalisation of fear learning about ambiguous aversive cues in a novel context, different from the training context. Thus, 5-HTTKO mice can exhibit both more and less fear compared to wild-type controls. Taken together, our results support the idea that loss of 5-HTT function, and corresponding increases in synaptic 5-HT availability, may facilitate learning by priming of aversive memories. This both facilitates inhibitory learning for fear memories but also enhances generalisation of fear.
Collapse
Affiliation(s)
- João Lima
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear MedicineCopenhagen University Hospital—Amager and HvidovreCopenhagenDenmark
| | - Marios C. Panayi
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Trevor Sharp
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Stephen B. McHugh
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Medical Research Council Brain Network Dynamics UnitOxfordUK
| | | |
Collapse
|
2
|
Tortora F, Hadipour AL, Battaglia S, Falzone A, Avenanti A, Vicario CM. The Role of Serotonin in Fear Learning and Memory: A Systematic Review of Human Studies. Brain Sci 2023; 13:1197. [PMID: 37626553 PMCID: PMC10452575 DOI: 10.3390/brainsci13081197] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fear is characterized by distinct behavioral and physiological responses that are essential for the survival of the human species. Fear conditioning (FC) serves as a valuable model for studying the acquisition, extinction, and expression of fear. The serotonin (5-hydroxytryptamine, 5-HT) system is known to play a significant role in emotional and motivational aspects of human behavior, including fear learning and expression. Accumulating evidence from both animal and human studies suggests that brain regions involved in FC, such as the amygdala, hippocampus, and prefrontal cortex, possess a high density of 5-HT receptors, implicating the crucial involvement of serotonin in aversive learning. Additionally, studies exploring serotonin gene polymorphisms have indicated their potential influence on FC. Therefore, the objective of this work was to review the existing evidence linking 5-HT with fear learning and memory in humans. Through a comprehensive screening of the PubMed and Web of Science databases, 29 relevant studies were included in the final review. These studies investigated the relationship between serotonin and fear learning using drug manipulations or by studying 5-HT-related gene polymorphisms. The results suggest that elevated levels of 5-HT enhance aversive learning, indicating that the modulation of serotonin 5-HT2A receptors regulates the expression of fear responses in humans. Understanding the role of this neurochemical messenger in associative aversive learning can provide insights into psychiatric disorders such as anxiety and post-traumatic stress disorder (PTSD), among others.
Collapse
Affiliation(s)
- Francesco Tortora
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Abed L. Hadipour
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
| | - Alessandra Falzone
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca 3460000, Chile
| | - Carmelo M. Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| |
Collapse
|
3
|
Bartlett EA, Zanderigo F, Stanley B, Choo TH, Galfalvy HC, Pantazatos SP, Sublette ME, Miller JM, Oquendo MA, Mann JJ. In vivo serotonin transporter and 1A receptor binding potential and ecological momentary assessment (EMA) of stress in major depression and suicidal behavior. Eur Neuropsychopharmacol 2023; 70:1-13. [PMID: 36780841 PMCID: PMC10121874 DOI: 10.1016/j.euroneuro.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/13/2023]
Abstract
We examined relationships between the serotonin system and stress in major depression and suicidal behavior. Twenty-five medication-free depressed participants (13 suicide attempters) underwent same-day [11C]DASB and [11C]CUMI-101 positron emission tomography (PET) imaging. Binding potential (BPND) to the serotonin transporter (5-HTT) and serotonin 1A (5-HT1A) receptor, respectively, was quantified using the NRU 5-HT atlas, reflecting distinct spatial distributions of multiple serotonin targets. Ecological momentary assessment (EMA) measured current stress over one week proximal to imaging. EMA stress did not differ between attempters and non-attempters. In all depressed participants, 5-HTT and 5-HT1A BPND were unrelated to EMA stress. There were region-specific effects of 5-HTT (p=0.002) and 5-HT1A BPND (p=0.03) in attempters vs. nonattempters. In attempters, region-specific associations between 5-HTT (p=0.03) and 5-HT1A (p=0.005) BPND and EMA stress emerged. While no post-hoc 5-HTT BPND correlations were significant, 5-HT1A BPND correlated positively with EMA stress in attempters in 9/10 regions (p-values<0.007), including the entire cortex except the largely occipital region 5. Brodmann-based regional analyses found diminished effects for 5-HTT and subcortically localized positive corrrelations between 5-HT1A and EMA stress, in attempters only. Given comparable depression severity and childhood and current stress between attempters and nonattempters, lower 5-HTT binding in attempters vs. nonattempters may suggest a biological risk marker. Localized lower 5-HTT and widespread higher 5-HT1A binding with stress among attempters specifically may suggest that a serotonergic phenotype might be a key determinant of risk or resiliency for suicidal behavior.
Collapse
Affiliation(s)
- Elizabeth A Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA.
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Barbara Stanley
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Tse-Hwei Choo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Hanga C Galfalvy
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Spiro P Pantazatos
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Department of Radiology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
4
|
Exner A, Tapia León I, Mueller EM, Klucken T. Cardiac response in aversive and appetitive olfactory conditioning: Evidence for a valence-independent CS-elicited bradycardia. Psychophysiology 2021; 58:e13912. [PMID: 34388264 DOI: 10.1111/psyp.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
While the examination of conditioned cardiac responses is well established in human fear conditioning research, comparable studies using less-aversive or rather appetitive unconditioned stimuli (UCS) are sparse and results are mixed. Therefore, the aim of this study was a systematic analysis of cardiac reactions in aversive and appetitive conditioning. Olfactory stimuli were used as unconditioned stimuli as they are suitable reinforcers in both an aversive and an appetitive conditioning offering the opportunity for a comparison between conditioned responses. In total, n = 86 participants took part in both an aversive and an appetitive differential conditioning task with a counterbalanced order across participants. Aversive or appetitive odors, respectively, served as UCS and neutral geometrical figures as CS. Subjective ratings, skin conductance response (SCRs), and evoked cardiac reactions were analyzed and compared between tasks. Conditioned responses in subjective ratings could be observed in both aversive conditioning and appetitive conditioning, while SCRs discriminated between CS+ and CS- in aversive conditioning only. Regarding conditioned cardiac responses, the deceleration for the CS+ was longer than for the CS- in both tasks. In addition, a higher deceleration magnitude and a shorter acceleration for the CS+ as compared to the CS- were found in aversive but not in appetitive conditioning. There were medium-size correlations between aversive and appetitive CRs for subjective ratings and none for physiological responses. The results suggest similarities between cardiac response patterns in aversive and appetitive conditioning, which implies that bradycardia in conditioning might not be fear-specific but presents a valence-independent CS-elicited bradycardia.
Collapse
Affiliation(s)
- Anna Exner
- Department of Clinical Psychology, University of Siegen, Siegen, Germany
| | - Isabell Tapia León
- Department of Clinical Psychology, University of Siegen, Siegen, Germany
| | - Erik M Mueller
- Department of Psychology, University of Marburg, Marburg, Germany
| | - Tim Klucken
- Department of Clinical Psychology, University of Siegen, Siegen, Germany
| |
Collapse
|
5
|
Willadsen M, Uengoer M, Sługocka A, Schwarting RK, Homberg JR, Wöhr M. Fear Extinction and Predictive Trait-Like Inter-Individual Differences in Rats Lacking the Serotonin Transporter. Int J Mol Sci 2021; 22:ijms22137088. [PMID: 34209318 PMCID: PMC8268876 DOI: 10.3390/ijms22137088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Anxiety disorders are associated with a failure to sufficiently extinguish fear memories. The serotonergic system (5-hydroxytryptamine, 5-HT) with the 5-HT transporter (5-HTT, SERT) is strongly implicated in the regulation of anxiety and fear. In the present study, we examined the effects of SERT deficiency on fear extinction in a differential fear conditioning paradigm in male and female rats. Fear-related behavior displayed during acquisition, extinction, and recovery, was measured through quantification of immobility and alarm 22-kHz ultrasonic vocalizations (USV). Trait-like inter-individual differences in novelty-seeking, anxiety-related behavior, habituation learning, cognitive performance, and pain sensitivity were examined for their predictive value in forecasting fear extinction. Our results show that SERT deficiency strongly affected the emission of 22-kHz USV during differential fear conditioning. During acquisition, extinction, and recovery, SERT deficiency consistently led to a reduction in 22-kHz USV emission. While SERT deficiency did not affect immobility during acquisition, genotype differences started to emerge during extinction, and during recovery rats lacking SERT showed higher levels of immobility than wildtype littermate controls. Recovery was reflected in increased levels of immobility but not 22-kHz USV emission. Prominent sex differences were evident. Among several measures for trait-like inter-individual differences, anxiety-related behavior had the best predictive quality.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
| | - Metin Uengoer
- Associative Learning, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany;
| | - Anna Sługocka
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland;
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Rainer K.W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands;
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32–16–19–45–57
| |
Collapse
|
6
|
Merz CJ, Lonsdorf TB. Methodische Anmerkungen und Anwendungsbereiche der Furchtkonditionierung in verschiedenen psychologischen Disziplinen. PSYCHOLOGISCHE RUNDSCHAU 2020. [DOI: 10.1026/0033-3042/a000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Die Furchtkonditionierung stellt ein bedeutsames Paradigma zur Untersuchung von emotionalen Lern- und Gedächtnisprozessen dar. Nach einer ungefähr hundertjährigen Geschichte wird deutlich, dass die Furchtkonditionierung nicht nur einen wichtigen Beitrag zur speziesübergreifenden Grundlagenforschung liefert, sondern auch unterschiedliche Anwendungsfelder zu neuen Erkenntnissen inspirieren kann. In diesem Übersichtartikel soll das grundlegende Paradigma mit verschiedenen methodischen Überlegungen zur experimentellen Durchführung vorgestellt werden. Im Anschluss werden ausgewählte Anwendungsbereiche der Furchtkonditionierung innerhalb der psychologischen Disziplinen dargestellt: die Allgemeine Psychologie wird bezüglich allgemeingültiger Gesetzmäßigkeiten von Lern- und Gedächtnisprozessen angesprochen, die Differentielle Psychologie wegen bedeutsamer interindividueller Unterschiede, die Biologische Psychologie und Neuropsychologie in Bezug auf physiologische und anatomische Grundlagen der Furchtkonditionierung, die Sozialpsychologie im Zuge der Einstellungsforschung, die Entwicklungspsychologie aufgrund altersspezifischer Aspekte sowie die Klinische Psychologie und Psychotherapie im Hinblick auf die Pathogenese von Angsterkrankungen und der Expositionstherapie. Insgesamt betrachtet hat die Furchtkonditionierung das Potenzial nicht nur unterschiedliche Disziplinen der Psychologie in synergistischer Weise zusammenzubringen, sondern auch die verschiedenen inhaltlichen Schwerpunkte zu unterstreichen.
Collapse
Affiliation(s)
| | - Tina B. Lonsdorf
- Institut für systemische Neurowissenschaften, Universitätsklinikum Hamburg-Eppendorf
| |
Collapse
|
7
|
Schipper P, Brivio P, de Leest D, Madder L, Asrar B, Rebuglio F, Verheij MMM, Kozicz T, Riva MA, Calabrese F, Henckens MJAG, Homberg JR. Impaired Fear Extinction Recall in Serotonin Transporter Knockout Rats Is Transiently Alleviated during Adolescence. Brain Sci 2019; 9:brainsci9050118. [PMID: 31121975 PMCID: PMC6562656 DOI: 10.3390/brainsci9050118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022] Open
Abstract
Adolescence is a developmental phase characterized by emotional turmoil and coincides with the emergence of affective disorders. Inherited serotonin transporter (5-HTT) downregulation in humans increases sensitivity to these disorders. To reveal whether and how 5-HTT gene variance affects fear-driven behavior in adolescence, we tested wildtype and serotonin transporter knockout (5-HTT-/-) rats of preadolescent, adolescent, and adult age for cued fear extinction and extinction recall. To analyze neural circuit function, we quantified inhibitory synaptic contacts and, through RT-PCR, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), and NDMA receptor subunits, in the medial prefrontal cortex (mPFC) and amygdala. Remarkably, the impaired recall of conditioned fear that characterizes preadolescent and adult 5-HTT-/- rats was transiently normalized during adolescence. This did not relate to altered inhibitory neurotransmission, since mPFC inhibitory immunoreactivity was reduced in 5-HTT-/- rats across all ages and unaffected in the amygdala. Rather, since mPFC (but not amygdala) c-Fos expression and NMDA receptor subunit 1 expression were reduced in 5-HTT-/- rats during adolescence, and since PFC c-Fos correlated negatively with fear extinction recall, the temporary normalization of fear extinction during adolescence could relate to altered plasticity in the developing mPFC.
Collapse
Affiliation(s)
- Pieter Schipper
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, 20133 Milan, Italy.
| | - David de Leest
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Leonie Madder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Beenish Asrar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Federica Rebuglio
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayp Clinic, Rochester, MN 55905, USA.
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, 20133 Milan, Italy.
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, 20133 Milan, Italy.
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Kroes MCW, Henckens MJAG, Homberg JR. How serotonin transporter gene variance affects defensive behaviours along the threat imminence continuum. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Lai CH. Fear Network Model in Panic Disorder: The Past and the Future. Psychiatry Investig 2019; 16:16-26. [PMID: 30176707 PMCID: PMC6354036 DOI: 10.30773/pi.2018.05.04.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
The core concept for pathophysiology in panic disorder (PD) is the fear network model (FNM). The alterations in FNM might be linked with disturbances in the autonomic nervous system (ANS), which is a common phenomenon in PD. The traditional FNM included the frontal and limbic regions, which were dysregulated in the feedback mechanism for cognitive control of frontal lobe over the primitive response of limbic system. The exaggerated responses of limbic system are also associated with dysregulation in the neurotransmitter system. The neuroimaging studies also corresponded to FNM concept. However, more extended areas of FNM have been discovered in recent imaging studies, such as sensory regions of occipital, parietal cortex and temporal cortex and insula. The insula might integrate the filtered sensory information via thalamus from the visuospatial and other sensory modalities related to occipital, parietal and temporal lobes. In this review article, the traditional and advanced FNM would be discussed. I would also focus on the current evidences of insula, temporal, parietal and occipital lobes in the pathophysiology. In addition, the white matter and functional connectome studies would be reviewed to support the concept of advanced FNM. An emerging dysregulation model of fronto-limbic-insula and temporooccipito-parietal areas might be revealed according to the combined results of recent neuroimaging studies. The future delineation of advanced FNM model can be beneficial from more extensive and advanced studies focusing on the additional sensory regions of occipital, parietal and temporal cortex to confirm the role of advanced FNM in the pathophysiology of PD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.,Department of Psychiatry, Yeezen General Hospital, Taoyuan, Taiwan
| |
Collapse
|
10
|
Using optimal combined moderators to define heterogeneity in neural responses to randomized conditions: Application to the effect of sleep loss on fear learning. Neuroimage 2018; 181:718-727. [PMID: 30041060 DOI: 10.1016/j.neuroimage.2018.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Comparing the neural outcomes of two randomized experimental groups is a primary aim of many functional neuroimaging studies. However, between-group effects can be obscured by heterogeneity in neural responses. Optimal Combined Moderator (OCM) approaches have previously been used to clarify heterogeneity in clinical outcomes following treatment randomization. We show that OCMs can also be used to clarify heterogeneity in the effect of a randomized experimental condition on neural responses. In 78 healthy adults aged 18-30 from the Effects of Dose-Dependent Sleep Disruption on Fear and Reward (SFeRe) study, we used demographic, clinical, genetic, and polysomnographic characteristics to develop OCMs for the effect of a randomized sleep restriction (SR) versus normal sleep (NS) condition on blood-oxygen-level dependent responses in the right amygdala (RAmyg) and subgenual anterior cingulate cortex (sgACC) during fear conditioning (FC) and extinction (FE) paradigms. The OCM for the RAmyg during FE was strongest [r (95% CI) = 0.52 (0.42, 0.68)], withstood cross-validation, and divided the sample into two subgroups with opposing experimental effects. Among N = 48 participants ("SR < NS"), those with SR exhibited less RAmyg activation during FE than those with NS [d (95%CI) = -1.10 (-1.86, -0.77)]. Among the remaining N = 30 participants ("SR > NS"), those with SR exhibited greater RAmyg activation during FE following SR than those with NS [d (95%CI) = 0.87 (0.37,1.78)]. SR > NS participants were more likely to be female, white, l/l genotype carriers, and have a psychiatric history. They had less sleep (overall and in REM), lower REM density, and lower spindle activity (12-16 Hz). Applying OCMs to randomized studies with neural outcomes can clarify neural heterogeneity and jumpstart mechanistic research; with further validation they also offer promise for personalized brain-based treatments and interventions.
Collapse
|
11
|
Wannemueller A, Moser D, Kumsta R, Jöhren HP, Adolph D, Margraf J. Mechanisms, genes and treatment: Experimental fear conditioning, the serotonin transporter gene, and the outcome of a highly standardized exposure-based fear treatment. Behav Res Ther 2018; 107:117-126. [PMID: 29960126 DOI: 10.1016/j.brat.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
There is considerable interindividual variation in response to psychotherapeutical intervention. In order to realize the long-term goal of personalised treatment approaches, it is important to identify behavioural and biological moderators and mediators of treatment responses. Here, we tested the predictive value of experimental fear extinction efficacy as well as the role of genetic variation of the serotonin transporter gene for the outcome of a fear-exposure treatment. A discriminative fear conditioning paradigm was conducted in 159 adults highly fearful of spiders, dental surgeries or blood, injuries and injections. Participants were genotyped for the long (L) and short (S) allelic variant of the serotonin transporter gene linked polymorphic region (5HTTLPR) and treated with a highly standardized exposure-based one-session treatment. Participants' subjective fear was assessed during experimental fear conditioning and extinction. Furthermore, subjective phobic fear was assessed at pre-, post and at 7 months follow-up treatment assessment. A threat-biased contingency learning pattern characterized by exaggerated fear responses to the CS- was associated with larger initial subjective fear reduction immediately following the large-group treatment, p = .03. There were no learning pattern-associated differences in subjective fear at 7-month follow-up. The odds of homozygous s-allele carriers to display a threat-biased contingency learning pattern were 3.85 times larger compared to l-allele carriers, p = .01. Fear-recovery in homozygous S-allele carriers at follow-up assessment, p = .01, emerged regardless of the experimental fear acquisition pattern. Our results suggest the homozygous S-allele carriers are biologically biased towards ignoring safety signals in threat-related situations. Short-term, this response pattern might be positively related to the outcome of exposure treatments, potentially due to increased responding to safe context conditions or a stronger violation of threat expectancies. However, alterations in inhibiting the response to cues formerly signalling threat evidenced for S-allele carriers can have negative impact on exposure success.
Collapse
Affiliation(s)
- André Wannemueller
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Germany.
| | - Dirk Moser
- Department of Genetic Psychology, Ruhr-Universität Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Ruhr-Universität Bochum, Germany
| | | | - Dirk Adolph
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Germany
| |
Collapse
|
12
|
Nees F, Witt SH, Flor H. Neurogenetic Approaches to Stress and Fear in Humans as Pathophysiological Mechanisms for Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:810-820. [PMID: 29454655 DOI: 10.1016/j.biopsych.2017.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
In this review article, genetic variation associated with brain responses related to acute and chronic stress reactivity and fear learning in humans is presented as an important mechanism underlying posttraumatic stress disorder. We report that genes related to the regulation of the hypothalamic-pituitary-adrenal axis, as well as genes that modulate serotonergic, dopaminergic, and neuropeptidergic functions or plasticity, play a role in this context. The strong overlap of the genetic targets involved in stress and fear learning suggests that a dimensional and mechanistic model of the development of posttraumatic stress disorder based on these constructs is promising. Genome-wide genetic analyses on fear and stress mechanisms are scarce. So far, reliable replication is still lacking for most of the molecular genetic findings, and the proportion of explained variance is rather small. Further analysis of neurogenetic stress and fear learning needs to integrate data from animal and human studies.
Collapse
Affiliation(s)
- Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| |
Collapse
|
13
|
Schipper P, Henckens MJAG, Lopresto D, Kozicz T, Homberg JR. Acute inescapable stress alleviates fear extinction recall deficits caused by serotonin transporter abolishment. Behav Brain Res 2017; 346:16-20. [PMID: 29233642 DOI: 10.1016/j.bbr.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Life stress increases risk for developing post-traumatic stress disorder (PTSD), and more prominently so in short-allele carriers of the serotonin transporter linked polymorphic region (5-HTTLPR). Serotonin transporter knockout (5-HTT-/-) rats show compromised extinction (recall) of conditioned fear, which might mediate the increased risk for PTSD and reduce the therapeutic efficacy of exposure therapy. Here, we assessed whether acute inescapable stress (IS) differentially affects fear extinction and extinction recall in 5-HTT-/- rats and wildtype controls. Surprisingly, IS experience improved fear extinction recall in 5-HTT-/- rats to the level of wildtype animals, while wildtypes were unaffected by this IS. Thus, whereas 5-HTT-/- rats evidently were more responsive to the stressor, the behavioral consequences presented themselves as adaptive.
Collapse
Affiliation(s)
- Pieter Schipper
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (Route 126), 6525 EZ Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (Route 126), 6525 EZ Nijmegen, The Netherlands
| | - Dora Lopresto
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (Route 126), 6525 EZ Nijmegen, The Netherlands
| | - Tamas Kozicz
- Anatomy Department, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (Route 109), 6525 EZ Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (Route 126), 6525 EZ Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Perry LM, Goldstein-Piekarski AN, Williams LM. Sex differences modulating serotonergic polymorphisms implicated in the mechanistic pathways of risk for depression and related disorders. J Neurosci Res 2017; 95:737-762. [PMID: 27870440 DOI: 10.1002/jnr.23877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Despite consistent observations of sex differences in depression and related emotional disorders, we do not yet know how these sex differences modulate the effects of genetic polymorphisms implicated in risk for these disorders. This Mini-Review focuses on genetic polymorphisms of the serotonergic system to illustrate how sex differences might modulate the neurobiological pathways involved in the development of depression. We consider the interacting role of environmental factors such as early-life stress. Given limited current knowledge about this topic, we highlight methodological considerations, challenges, and guidelines for future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LeeAnn M Perry
- Neurosciences Program, Stanford University, Stanford, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
15
|
Kruse O, Tapia León I, Stark R, Klucken T. Neural correlates of appetitive extinction in humans. Soc Cogn Affect Neurosci 2017; 12:106-115. [PMID: 27803289 PMCID: PMC5537618 DOI: 10.1093/scan/nsw157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Appetitive extinction receives attention as an important model for the treatment of psychiatric disorders. However, in humans, its underlying neural correlates remain unknown. To close this gap, we investigated appetitive acquisition and extinction with fMRI in a 2-day monetary incentive delay paradigm. During appetitive conditioning, one stimulus (CS+) was paired with monetary reward, while another stimulus (CS−) was never rewarded. Twenty-four hours later, subjects underwent extinction, in which neither CS was reinforced. Appetitive conditioning elicited stronger skin conductance responses to the CS+ as compared with the CS−. Regarding subjective ratings, the CS+ was rated more pleasant and arousing than the CS− after conditioning. Furthermore, fMRI-results (CS+ − CS−) showed activation of the reward circuitry including amygdala, midbrain and striatal areas. During extinction, conditioned responses were successfully extinguished. In the early phase of extinction, we found a significant activation of the caudate, the hippocampus, the dorsal and ventral anterior cingulate cortex (dACC and vACC). In the late phase, we found significant activation of the nucleus accumbens (NAcc) and the amygdala. Correlational analyses with subjective ratings linked extinction success to the vACC and the NAcc, while associating the dACC with reduced extinction. The results reveal neural correlates of appetitive extinction in humans and extend assumptions from models for human extinction learning.
Collapse
Affiliation(s)
- Onno Kruse
- Department of Psychotherapy and Systems Neuroscience.,Bender Institute for Neuroimaging (BION), Justus Liebig University, Giessen, Germany
| | - Isabell Tapia León
- Department of Psychotherapy and Systems Neuroscience.,Bender Institute for Neuroimaging (BION), Justus Liebig University, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience.,Bender Institute for Neuroimaging (BION), Justus Liebig University, Giessen, Germany
| | - Tim Klucken
- Department of Psychotherapy and Systems Neuroscience.,Bender Institute for Neuroimaging (BION), Justus Liebig University, Giessen, Germany
| |
Collapse
|
16
|
More than just noise: Inter-individual differences in fear acquisition, extinction and return of fear in humans - Biological, experiential, temperamental factors, and methodological pitfalls. Neurosci Biobehav Rev 2017; 80:703-728. [DOI: 10.1016/j.neubiorev.2017.07.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/12/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023]
|
17
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Serotonin transporter gene (SLC6A4) polymorphism and susceptibility to a home-visiting maternal-infant attachment intervention delivered by community health workers in South Africa: Reanalysis of a randomized controlled trial. PLoS Med 2017; 14:e1002237. [PMID: 28245280 PMCID: PMC5330451 DOI: 10.1371/journal.pmed.1002237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clear recognition of the damaging effects of poverty on early childhood development has fueled an interest in interventions aimed at mitigating these harmful consequences. Psychosocial interventions aimed at alleviating the negative impacts of poverty on children are frequently shown to be of benefit, but effect sizes are typically small to moderate. However, averaging outcomes over an entire sample, as is typically done, could underestimate efficacy because weaker effects on less susceptible individuals would dilute estimation of effects on those more disposed to respond. This study investigates whether a genetic polymorphism of the serotonin transporter gene moderates susceptibility to a psychosocial intervention. METHODS AND FINDINGS We reanalyzed data from a randomized controlled trial of a home-visiting program delivered by community health workers in a black, isiXhosa-speaking population in Khayelitsha, South Africa. The intervention, designed to enhance maternal-infant attachment, began in the third trimester and continued until 6 mo postpartum. Implemented between April 1999 and February 2003, the intervention comprised 16 home visits delivered to 220 mother-infant dyads by specially trained community health workers. A control group of 229 mother-infant dyads did not receive the intervention. Security of maternal-infant attachment was the main outcome measured at infant age 18 mo. Compared to controls, infants in the intervention group were significantly more likely to be securely attached to their primary caregiver (odds ratio [OR] = 1.7, p = 0.029, 95% CI [1.06, 2.76], d = 0.29). After the trial, 162 intervention and 172 control group children were reenrolled in a follow-up study at 13 y of age (December 2012-June 2014). At this time, DNA collected from 279 children (134 intervention and 145 control) was genotyped for a common serotonin transporter polymorphism. There were both genetic data and attachment security data for 220 children (110 intervention and 110 control), of whom 40% (44 intervention and 45 control) carried at least one short allele of the serotonin transporter gene. For these 220 individuals, carrying at least one short allele of the serotonin transporter gene was associated with a 26% higher rate of attachment security relative to controls (OR = 3.86, p = 0.008, 95% CI [1.42, 10.51], d = 0.75), whereas there was a negligible (1%) difference in security between intervention and control group individuals carrying only the long allele (OR = 0.95, p = 0.89, 95% CI [0.45, 2.01], d = 0.03). Expressed in terms of absolute risk, for those with the short allele, the probability of secure attachment being observed in the intervention group was 84% (95% CI [73%, 95%]), compared to 58% (95% CI [43%, 72%]) in the control group. For those with two copies of the long allele, 70% (95% CI [59%, 81%]) were secure in the intervention group, compared to 71% (95% CI [60%, 82%]) of infants in the control group. Controlling for sex, maternal genotype, and indices of socioeconomic adversity (housing, employment, education, electricity, water) did not change these results. A limitation of this study is that we were only able to reenroll 49% of the original sample randomized to the intervention and control conditions. Attribution of the primary outcome to causal effects of intervention in the present subsample should therefore be treated with caution. CONCLUSIONS When infant genotype for serotonin transporter polymorphism was taken into account, the effect size of a maternal-infant attachment intervention targeting impoverished pregnant women increased more than 2.5-fold when only short allele carriers were considered (from d = 0.29 for all individuals irrespective of genotype to d = 0.75) and decreased 10-fold when only those carrying two copies of the long allele were considered (from d = 0.29 for all individuals to d = 0.03). Genetic differential susceptibility means that averaging across all participants is a misleading index of efficacy. The study raises questions about how policy-makers deal with the challenge of balancing equity (equal treatment for all) and efficacy (treating only those whose genes render them likely to benefit) when implementing psychosocial interventions. TRIAL REGISTRATION Current Controlled Trials ISRCTN25664149.
Collapse
|
19
|
Sensory processing sensitivity and serotonin gene variance: Insights into mechanisms shaping environmental sensitivity. Neurosci Biobehav Rev 2016; 71:472-483. [PMID: 27697602 DOI: 10.1016/j.neubiorev.2016.09.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
Current research supports the notion that the apparently innate trait Sensory Processing Sensitivity (SPS) may act as a modulator of development as function of the environment. Interestingly, the common serotonin transporter linked polymorphic region (5-HTTLPR) does the same. While neural mechanisms underlying SPS are largely unknown, those associated with the 5-HTTLPR have been extensively investigated. We perform a comparative analysis of research findings on sensory processing facets associated with the trait and polymorphism to: 1. detect shared phenotypes and frame a hypothesis towards neural mechanisms underlying SPS; 2. increase the understanding of 5-HTTLPR-associated behavioral patterns. Trait and polymorphism are both associated with differential susceptibility to environmental stimuli; additionally, both involve 1. having stronger emotional reactions, 2. processing of sensory information more deeply, 3. being more aware of environmental subtleties, and 4. being easily overstimulated. We discuss neural mechanisms and environmental conditions that may underlie these four facets. Besides urging the actual assessment of the link between the two, the conclusions of our analyses may guide and focus future research strategies.
Collapse
|
20
|
Take your mind off it: Coping style, serotonin transporter linked polymorphic region genotype (5-HTTLPR), and children's internalizing and externalizing problems. Dev Psychopathol 2016; 27:1129-43. [PMID: 26439066 DOI: 10.1017/s0954579415000723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Individuals with the short variant of the serotonin transporter linked polymorphic region gene are more susceptible than individuals homozygous for the long allele to the effects of stressful life events on risk for internalizing and externalizing problems. We tested whether individual differences in coping style explained this increased risk for problem behavior among youth who were at both genetic and environmental risk. Participants included 279 children, ages 8-11, from the Children's Experiences and Development Study. Caregivers and teachers reported on children's internalizing and externalizing symptoms, and caregivers and children on children's exposure to harsh parenting and parental warmth in middle childhood, and traumatic events. Children reported how frequently they used various coping strategies. Results revealed that short/short homozygotes had higher levels of internalizing problems compared with long allele carriers and that short allele carriers had higher levels of externalizing problems compared with long/long homozygotes under conditions of high cumulative risk. Moreover, among children who were homozygous for the short allele, those who had more cumulative risk indicators less frequently used distraction coping strategies, which partly explained why they had higher levels of internalizing problems. Coping strategies did not significantly mediate Gene × Environment effects on externalizing symptoms.
Collapse
|
21
|
Schweckendiek J, Stark R, Klucken T. Neuroticism and extraversion moderate neural responses and effective connectivity during appetitive conditioning. Hum Brain Mapp 2016; 37:2992-3002. [PMID: 27132706 DOI: 10.1002/hbm.23221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 02/03/2023] Open
Abstract
Classical appetitive conditioning constitutes a basic learning process through which environmental stimuli can be associated with reward. Previous studies showed that individual differences in neuroticism and extraversion influence emotional processing and have been shown to modulate neural activity in subcortical and prefrontal areas in response to emotional stimuli. However, the role of individual differences in appetitive conditioning has so far not been investigated in detail. The aim of this study was to assess the association between neuroticism and extraversion with neural activity and connectivity during appetitive conditioning. The conditioned stimulus (CS) was either a picture of a dish or a cup. One stimulus (CS+) was paired with a monetary reward and the other stimulus (CS-) was associated with its absence while hemodynamic activity was measured by means of functional magnetic resonance imaging. A significant negative correlation of neuroticism scores with amygdala activity was observed during appetitive conditioning. Further, extraversion was positively associated with responses in the hippocampus and the thalamus. In addition, effective connectivity between the amygdala as a seed region and the anterior cingulate cortex, the insula, and the thalamus was negatively correlated with neuroticism scores and positively correlated with extraversion scores. The results may indicate a neural correlate for the deficits in appetitive learning in subjects with high neuroticism scores and point to a facilitating effect of extraversion on reward-related learning. Hum Brain Mapp 37:2992-3002, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jan Schweckendiek
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
| | - Tim Klucken
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Klucken T, Kruse O, Schweckendiek J, Kuepper Y, Mueller EM, Hennig J, Stark R. No evidence for blocking the return of fear by disrupting reconsolidation prior to extinction learning. Cortex 2016; 79:112-22. [PMID: 27111105 DOI: 10.1016/j.cortex.2016.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/04/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Fear extinction is a central model for the treatment of anxiety disorders. Initial research has reported that the single presentation of a conditioned stimulus prior to extinction learning can permanently block the return of fear. However, only few studies have explored this issue and could not always replicate the findings. The present study examined human fear extinction using a four-day design. On the first day, two neutral stimuli were paired with electrical stimulation (UCS), while a third stimulus (CS-) was not. Twenty-four hours later, one conditioned stimulus (CS+rem) and the CS- were reminded once, 10 min before extinction learning, while the other conditioned stimulus (CS+non-rem) was not presented prior to extinction learning. All stimuli were presented during extinction learning and during two re-extinction sessions (24 h and 6-months after extinction learning) without reinforcement. Blood oxygen level-dependent (BOLD) responses and skin conductance responses (SCRs) to both CS+ and the CS- were explored during acquisition, extinction, and in both re-extinction sessions. Regarding SCRs, the results showed that a single presentation of a conditioned stimulus did not block the return of fear during re-extinction: Fear recovery during re-extinction (24 h and 6-months after extinction learning) was observed for both CS+ compared with the CS- with no difference between CS+rem and CS+non-rem. Regarding BOLD-responses, no significant differences between CS+rem and CS+non-rem were found in region of interest (ROI)-analyses (amygdala, ventromedial prefrontal cortex) during extinction learning and both re-extinction sessions. Whole-brain analyses showed increased BOLD-responses to the CS+non-rem as compared to the CS+rem in several regions (e.g., middle frontal gyrus) during extinction learning and re-extinction (24 h after extinction learning). The present findings suggest that the effect of preventing the return of fear by disrupting reconsolidation seems to be a more labile phenomenon than previously assumed. Possible boundary conditions and implications are discussed.
Collapse
Affiliation(s)
- Tim Klucken
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany.
| | - Onno Kruse
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Jan Schweckendiek
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Yvonne Kuepper
- Personality Psychology and Individual Differences, Justus Liebig University Giessen, Germany
| | - Erik M Mueller
- Department of Clinical Psychology, Justus Liebig University Giessen, Germany
| | - Juergen Hennig
- Personality Psychology and Individual Differences, Justus Liebig University Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| |
Collapse
|
23
|
Klucken T, Wehrum-Osinsky S, Schweckendiek J, Kruse O, Stark R. Altered Appetitive Conditioning and Neural Connectivity in Subjects With Compulsive Sexual Behavior. J Sex Med 2016; 13:627-36. [PMID: 26936075 DOI: 10.1016/j.jsxm.2016.01.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/04/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION There has been growing interest in a better understanding of the etiology of compulsive sexual behavior (CSB). It is assumed that facilitated appetitive conditioning might be an important mechanism for the development and maintenance of CSB, but no study thus far has investigated these processes. AIM To explore group differences in neural activity associated with appetitive conditioning and connectivity in subjects with CSB and a healthy control group. METHODS Two groups (20 subjects with CSB and 20 controls) were exposed to an appetitive conditioning paradigm during a functional magnetic resonance imaging experiment, in which a neutral stimulus (CS+) predicted visual sexual stimuli and a second stimulus (CS-) did not. MAIN OUTCOME MEASURES Blood oxygen level-dependent responses and psychophysiologic interaction. RESULTS As a main result, we found increased amygdala activity during appetitive conditioning for the CS+ vs the CS- and decreased coupling between the ventral striatum and prefrontal cortex in the CSB vs control group. CONCLUSION The findings show that neural correlates of appetitive conditioning and neural connectivity are altered in patients with CSB. The increased amygdala activation might reflect facilitated conditioning processes in patients with CSB. In addition, the observed decreased coupling could be interpreted as a marker for impaired emotion regulation success in this group.
Collapse
Affiliation(s)
- Tim Klucken
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany.
| | - Sina Wehrum-Osinsky
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Jan Schweckendiek
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Onno Kruse
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| |
Collapse
|
24
|
Yu R. Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI) model. Neurobiol Stress 2016; 3:83-95. [PMID: 27981181 PMCID: PMC5146206 DOI: 10.1016/j.ynstr.2015.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/28/2015] [Indexed: 02/08/2023] Open
Abstract
Humans often make decisions in stressful situations, for example when the stakes are high and the potential consequences severe, or when the clock is ticking and the task demand is overwhelming. In response, a whole train of biological responses to stress has evolved to allow organisms to make a fight-or-flight response. When under stress, fast and effortless heuristics may dominate over slow and demanding deliberation in making decisions under uncertainty. Here, I review evidence from behavioral studies and neuroimaging research on decision making under stress and propose that stress elicits a switch from an analytic reasoning system to intuitive processes, and predict that this switch is associated with diminished activity in the prefrontal executive control regions and exaggerated activity in subcortical reactive emotion brain areas. Previous studies have shown that when stressed, individuals tend to make more habitual responses than goal-directed choices, be less likely to adjust their initial judgment, and rely more on gut feelings in social situations. It is possible that stress influences the arbitration between the emotion responses in subcortical regions and deliberative processes in the prefrontal cortex, so that final decisions are based on unexamined innate responses. Future research may further test this 'stress induced deliberation-to-intuition' (SIDI) model and examine its underlying neural mechanisms.
Collapse
Affiliation(s)
- Rongjun Yu
- Department of Psychology, National University of Singapore, Singapore; Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore; Singapore Institute for Neurotechnology (SINAPSE), Center for Life Sciences, National University of Singapore, Singapore
| |
Collapse
|
25
|
Abstract
OBJECTIVE Fear conditioning seems to account for the acquisition of post-traumatic stress disorder, whereas conscious recall of events in aftermath of trauma reflects episodic memory. Studies show that both fear conditioning and episodic memory are heritable, but no study has evaluated whether they reflect common or separate genetic factors. To this end, we studied episodic memory and fear conditioning in 173 healthy twin pairs using visual stimuli predicting unconditioned electric shocks. METHODS Fear conditioning acquisition and extinction was determined using conditioned visual stimuli predicting unconditioned mild electric shocks, whereas electrodermal activity served as the fear learning index. Episodic memory was evaluated using cued recall of pictorial stimuli unrelated to conditioning. We used multivariate structural equation modeling to jointly analyze memory performance and acquisition as well as extinction of fear conditioning. RESULTS Best-fit twin models estimated moderate genetic loadings for conditioning and memory measures, with no genetic covariation between them. CONCLUSION Individual differences in fear conditioning and episodic memory reflect distinct genetically influenced processes, suggesting that the genetic risk for learning-induced anxiety disorders includes at least two memory-related genetic factors. These findings are consistent with the facts that the two separate learning forms are distant in their evolutionary development, involve different brain mechanisms, and support that genetically independent memory systems are pivotal in the development and maintenance of syndromes related to fear learning.
Collapse
|
26
|
Sumner JA, Powers A, Jovanovic T, Koenen KC. Genetic influences on the neural and physiological bases of acute threat: A research domain criteria (RDoC) perspective. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:44-64. [PMID: 26377804 PMCID: PMC4715467 DOI: 10.1002/ajmg.b.32384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/01/2015] [Indexed: 01/13/2023]
Abstract
The NIMH Research Domain Criteria (RDoC) initiative aims to describe key dimensional constructs underlying mental function across multiple units of analysis-from genes to observable behaviors-in order to better understand psychopathology. The acute threat ("fear") construct of the RDoC Negative Valence System has been studied extensively from a translational perspective, and is highly pertinent to numerous psychiatric conditions, including anxiety and trauma-related disorders. We examined genetic contributions to the construct of acute threat at two units of analysis within the RDoC framework: (1) neural circuits and (2) physiology. Specifically, we focused on genetic influences on activation patterns of frontolimbic neural circuitry and on startle, skin conductance, and heart rate responses. Research on the heritability of activation in threat-related frontolimbic neural circuitry is lacking, but physiological indicators of acute threat have been found to be moderately heritable (35-50%). Genetic studies of the neural circuitry and physiology of acute threat have almost exclusively relied on the candidate gene method and, as in the broader psychiatric genetics literature, most findings have failed to replicate. The most robust support has been demonstrated for associations between variation in the serotonin transporter (SLC6A4) and catechol-O-methyltransferase (COMT) genes with threat-related neural activation and physiological responses. However, unbiased genome-wide approaches using very large samples are needed for gene discovery, and these can be accomplished with collaborative consortium-based research efforts, such as those of the Psychiatric Genomics Consortium (PGC) and Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Center for Behavioral Cardiovascular Health, Columbia University Medical Center, New York, New York
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- The Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
27
|
Greco JA, Liberzon I. Neuroimaging of Fear-Associated Learning. Neuropsychopharmacology 2016; 41:320-34. [PMID: 26294108 PMCID: PMC4677141 DOI: 10.1038/npp.2015.255] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 01/08/2023]
Abstract
Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning.
Collapse
Affiliation(s)
- John A Greco
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Israel Liberzon
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Åhs F, Frick A, Furmark T, Fredrikson M. Human serotonin transporter availability predicts fear conditioning. Int J Psychophysiol 2015; 98:515-9. [DOI: 10.1016/j.ijpsycho.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 11/29/2022]
|
29
|
Klumpers F, Kroes MC, Heitland I, Everaerd D, Akkermans SEA, Oosting RS, van Wingen G, Franke B, Kenemans JL, Fernández G, Baas JMP. Dorsomedial Prefrontal Cortex Mediates the Impact of Serotonin Transporter Linked Polymorphic Region Genotype on Anticipatory Threat Reactions. Biol Psychiatry 2015; 78:582-9. [PMID: 25444169 DOI: 10.1016/j.biopsych.2014.07.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Excessive anticipatory reactions to potential future adversity are observed across a range of anxiety disorders, but the neurogenetic mechanisms driving interindividual differences are largely unknown. We aimed to discover and validate a gene-brain-behavior pathway by linking presumed genetic risk for anxiety-related psychopathology, key neural activity involved in anxious anticipation, and resulting aversive emotional states. METHODS The functional neuroanatomy of aversive anticipation was probed through functional magnetic resonance imaging in two independent samples of healthy subjects (n = 99 and n = 69), and we studied the influence of genetic variance in the serotonin transporter linked polymorphic region (5-HTTLPR). Skin conductance and startle data served as objective psychophysiological indices of the intensity of individuals' anticipatory responses to potential threat. RESULTS Threat cues signaling risk of future electrical shock activated the dorsomedial prefrontal cortex (dmPFC), anterior insula, bed nucleus of the stria terminalis, thalamus, and midbrain consistently across both samples. Threat-related dmPFC activation was enhanced in 5-HTTLPR short allele carriers in sample 1 and this effect was validated in sample 2. Critically, we show that this region mediates the increase in anticipatory psychophysiological reactions in short allele carriers indexed by skin conductance (experiment 1) and startle reactions (experiment 2). CONCLUSIONS The converging results from these experiments demonstrate that innate 5-HTTLPR linked variation in dmPFC activity predicts psychophysiological responsivity to pending threats. Our results reveal a neurogenetic pathway mediating interindividual variability in anticipatory responses to threat and yield a novel mechanistic account for previously reported associations between genetic variability in serotonin transporter function and stress-related psychopathology.
Collapse
Affiliation(s)
- Floris Klumpers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen; Department of Experimental Psychology, Utrecht University, Utrecht.
| | - Marijn C Kroes
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen
| | - Ivo Heitland
- Department of Experimental Psychology, Utrecht University, Utrecht
| | - Daphne Everaerd
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen; Department of Psychiatry, Radboud University Medical Center, Nijmegen
| | | | - Ronald S Oosting
- Department of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht
| | - Guido van Wingen
- Brain Imaging Center, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Barbara Franke
- Department of Psychiatry, Radboud University Medical Center, Nijmegen; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Leon Kenemans
- Department of Experimental Psychology, Utrecht University, Utrecht
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen
| | - Johanna M P Baas
- Department of Experimental Psychology, Utrecht University, Utrecht
| |
Collapse
|
30
|
Klucken T, Kruse O, Schweckendiek J, Stark R. Increased skin conductance responses and neural activity during fear conditioning are associated with a repressive coping style. Front Behav Neurosci 2015; 9:132. [PMID: 26082695 PMCID: PMC4451418 DOI: 10.3389/fnbeh.2015.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/10/2015] [Indexed: 01/04/2023] Open
Abstract
The investigation of individual differences in coping styles in response to fear conditioning is an important issue for a better understanding of the etiology and treatment of psychiatric disorders. It has been assumed that an avoidant (repressive) coping style is characterized by increased emotion regulation efforts in context of fear stimuli as compared to a more vigilant coping style. However, no study so far has investigated the neural correlates of fear conditioning of repressors and sensitizers. In the present fMRI study, 76 participants were classified as repressors or as sensitizers and were exposed to a fear conditioning paradigm, in which the CS+ predicted electrical stimulation, while another neutral stimulus (CS-) did not. In addition, skin conductance responses (SCRs) were measured continuously. As the main findings, we found increased neural activity in repressors as compared to sensitizers in the ventromedial prefrontal cortex and the anterior cingulate cortex (ACC) during fear conditioning. In addition, elevated activity to the CS+ in amygdala, insula, occipital, and orbitofrontal cortex (OFC) as well as elevated conditioned SCRs were found in repressors. The present results demonstrate increased neural activations in structures linked to emotion down-regulation mechanisms like the ventromedial prefrontal cortex, which may reflect the increased coping effort in repressors. At the same time, repressors showed increased activations in arousal and evaluation-associated structures like the amygdala, the occipital cortex (OCC), and the OFC, which was mirrored in increased SCRs. The present results support recent assumptions about a two-process model of repression postulating a fast vigilant response to fear stimuli, and a second process associated with the down-regulation of emotional responses.
Collapse
Affiliation(s)
- Tim Klucken
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen Giessen, Germany ; Bender Institute of Neuroimaging, Justus Liebig University Giessen Giessen, Germany
| | - Onno Kruse
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen Giessen, Germany ; Bender Institute of Neuroimaging, Justus Liebig University Giessen Giessen, Germany
| | - Jan Schweckendiek
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen Giessen, Germany ; Bender Institute of Neuroimaging, Justus Liebig University Giessen Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen Giessen, Germany ; Bender Institute of Neuroimaging, Justus Liebig University Giessen Giessen, Germany
| |
Collapse
|
31
|
Klucken T, Schweckendiek J, Blecker C, Walter B, Kuepper Y, Hennig J, Stark R. The association between the 5-HTTLPR and neural correlates of fear conditioning and connectivity. Soc Cogn Affect Neurosci 2015; 10:700-7. [PMID: 25140050 PMCID: PMC4420749 DOI: 10.1093/scan/nsu108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/07/2014] [Accepted: 08/13/2014] [Indexed: 12/31/2022] Open
Abstract
Strong evidence links the 5-HTTLPR genotype to the modulation of amygdala reactivity during fear conditioning, which is considered to convey the increased vulnerability for anxiety disorders in s-allele carriers. In addition to amygdala reactivity, the 5-HTTLPR has been shown to be related to alterations in structural and effective connectivity. The aim of this study was to investigate the effects of 5-HTTLPR genotype on amygdala reactivity and effective connectivity during fear conditioning, as well as structural connectivity [as measured by diffusion tensor imaging (DTI)]. To integrate different classification strategies, we used the bi-allelic (s-allele vs l/l-allele group) as well as the tri-allelic (low-functioning vs high-functioning) classification approach. S-allele carriers showed exaggerated amygdala reactivity and elevated amygdala-insula coupling during fear conditioning (CS + > CS-) compared with the l/l-allele group. In addition, DTI analysis showed increased fractional anisotropy values in s-allele carriers within the uncinate fasciculus. Using the tri-allelic classification approach, increased amygdala reactivity and amygdala insula coupling were observed in the low-functioning compared with the high-functioning group. No significant differences between the two groups were found in structural connectivity. The present results add to the current debate on the influence of the 5-HTTLPR on brain functioning. These differences between s-allele and l/l-allele carriers may contribute to altered vulnerability for psychiatric disorders.
Collapse
Affiliation(s)
- Tim Klucken
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany
| | - Jan Schweckendiek
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany
| | - Carlo Blecker
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany
| | - Bertram Walter
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany
| | - Yvonne Kuepper
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany
| | - Juergen Hennig
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, and Department of Personality Psychology and Individual Differences, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
32
|
Neural signatures of the interaction between the 5-HTTLPR genotype and stressful life events in healthy women. Psychiatry Res 2014; 223:157-63. [PMID: 24914006 DOI: 10.1016/j.pscychresns.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/24/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022]
Abstract
A change in neural connectivity of brain structures implicated in the memory of negative life events has been hypothesized to explain the enhancement of memory encoding during the processing of negative stimuli in depressed patients. Here, we investigated the effects of the interaction between negative life events and the 5-HTTLPR genotype - a polymorphism of the serotonin transporter gene - on the functional and structural connectivity of the hippocampal area in 34 healthy women. All participants were genotyped for the presence of the 5-HTTLPR short variant and for the A/G single-nucleotide polymorphism; they underwent clinical assessment including structured diagnostic interviews to exclude the presence of psychiatric disorders and to assess the presence of stressful life events. Resting state functional magnetic resonance imaging and diffusion tensor imaging scans were performed. We found significant interactions between stressful events and the 5-HTTLPR genotype in both the functional connectivity of the parahippocampus with the posterior cingulate cortex and the structural connectivity between the hippocampus and both the amygdala and the putamen. In addition, we found several genotype-related differences in the relationship between functional/structural connectivity of the hippocampal area and the ability to update expectations or stress-related phenotypes, such as anxiety symptoms. If confirmed by future studies, these mechanisms may clarify the role of the 5HTTLPR genotype as a risk factor for depression, in interaction with negative events.
Collapse
|
33
|
Wetherill RR, Childress AR, Jagannathan K, Bender J, Young KA, Suh JJ, O’Brien CP, Franklin TR. Neural responses to subliminally presented cannabis and other emotionally evocative cues in cannabis-dependent individuals. Psychopharmacology (Berl) 2014; 231:1397-407. [PMID: 24186078 PMCID: PMC6218642 DOI: 10.1007/s00213-013-3342-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/10/2013] [Indexed: 01/22/2023]
Abstract
RATIONALE Addiction theories posit that drug-related cues maintain and contribute to drug use and relapse. Indeed, our recent study in cocaine-dependent patients demonstrated that subliminally presented cocaine-related stimuli activate reward neurocircuitry without being consciously perceived. Activation of reward neurocircuitry may provoke craving and perhaps prime an individual for subsequent drug-seeking behaviors. OBJECTIVES Using an equivalent paradigm, we tested whether cannabis cues activate reward neurocircuitry in treatment-seeking, cannabis-dependent individuals and whether activation was associated with relevant behavioral anchors: baseline cannabis craving (drug-seeking behavior) and duration of use (degree of conditioning). METHODS Twenty treatment-seeking, cannabis-dependent individuals (12 males) underwent event-related blood oxygen level-dependent functional magnetic resonance imaging during exposure to 33-ms cannabis, sexual, and aversive cues presented in a backward-masking paradigm. Drug use history and cannabis craving were assessed prior to imaging. RESULTS Participants showed increased activity to backward-masked cannabis cues in regions supporting reward detection and interoception, including the left anterior insula, left ventral striatum/amygdala, and right ventral striatum. Cannabis cue-related activity in the bilateral insula and perigenual anterior cingulate cortex was positively associated with baseline cannabis craving, and cannabis cue-related activity in the medial orbitofrontal cortex was positively correlated with years of cannabis use. Neural responses to backward-masked sexual cues were similar to those observed during cannabis cue exposure, while activation to aversive cues was observed only in the left anterior insula and perigenual anterior cingulate cortex. CONCLUSIONS These data highlight the sensitivity of the brain to subliminal reward signals and support hypotheses promoting a common pathway of appetitive motivation.
Collapse
Affiliation(s)
- Reagan R. Wetherill
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA
| | - Anna Rose Childress
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA; Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - Kanchana Jagannathan
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA
| | - Julian Bender
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA
| | - Kimberly A. Young
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA
| | - Jesse J. Suh
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA; Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - Charles P. O’Brien
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA; Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - Teresa R. Franklin
- Department of Psychiatry, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Hornung OP, Heim CM. Gene-environment interactions and intermediate phenotypes: early trauma and depression. Front Endocrinol (Lausanne) 2014; 5:14. [PMID: 24596569 PMCID: PMC3925849 DOI: 10.3389/fendo.2014.00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/01/2014] [Indexed: 11/16/2022] Open
Abstract
This review focuses on current research developments in the study of gene by early life stress (ELS) interactions and depression. ELS refers to aversive experiences during childhood and adolescence such as sexual, physical or emotional abuse, emotional or physical neglect as well as parental loss. Previous research has focused on investigating and characterizing the specific role of ELS within the pathogenesis of depression and linking these findings to neurobiological changes of the brain, especially the stress response system. The latest findings highlight the role of genetic factors that increase vulnerability or, likewise, promote resilience to depression after childhood trauma. Considering intermediate phenotypes has further increased our understanding of the complex relationship between early trauma and depression. Recent findings with regard to epigenetic changes resulting from adverse environmental events during childhood promote current endeavors to identify specific target areas for prevention and treatment schemes regarding the long-term impact of ELS. Taken together, the latest research findings have underscored the essential role of genotypes and epigenetic processes within the development of depression after childhood trauma, thereby building the basis for future research and clinical interventions.
Collapse
Affiliation(s)
- Orla P. Hornung
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany
| | - Christine M. Heim
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany
- *Correspondence: Christine M. Heim, Institute of Medical Psychology, Charité University Medicine Berlin, Luisenstraße 57, Berlin 10117, Germany e-mail:
| |
Collapse
|
35
|
Cheon BK, Livingston RW, Hong YY, Chiao JY. Gene × environment interaction on intergroup bias: the role of 5-HTTLPR and perceived outgroup threat. Soc Cogn Affect Neurosci 2013; 9:1268-75. [PMID: 23887814 DOI: 10.1093/scan/nst111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perceived threat from outgroups is a consistent social-environmental antecedent of intergroup bias (i.e. prejudice, ingroup favoritism). The serotonin transporter gene polymorphism (5-HTTLPR) has been associated with individual variations in sensitivity to context, particularly stressful and threatening situations. Here, we examined how 5-HTTLPR and environmental factors signaling potential outgroup threat dynamically interact to shape intergroup bias. Across two studies, we provide novel evidence for a gene-environment interaction on the acquisition of intergroup bias and prejudice. Greater exposure to signals of outgroup threat, such as negative prior contact with outgroups and perceived danger from the social environment, were more predictive of intergroup bias among participants possessing at least one short allele (vs two long alleles) of 5-HTTLPR. Furthermore, this gene x environment interaction was observed for biases directed at diverse ethnic and arbitrarily-defined outgroups across measures reflecting intergroup biases in evaluation and discriminatory behavior. These findings reveal a candidate genetic mechanism for the acquisition of intergroup bias, and suggest that intergroup bias is dually inherited and transmitted through the interplay of social (i.e. contextual cues of outgroup threat) and biological mechanisms (i.e. genetic sensitivity toward threatening contexts) that regulate perceived intergroup threats.
Collapse
Affiliation(s)
- Bobby K Cheon
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA, Nanyang Business School, Nanyang Technological University, Singapore 639798, Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA, and School of Psychology, Beijing Normal University, Beijing 100875, P. R. China Department of Psychology, Northwestern University, Evanston, IL 60208, USA, Nanyang Business School, Nanyang Technological University, Singapore 639798, Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA, and School of Psychology, Beijing Normal University, Beijing 100875, P. R. China
| | - Robert W Livingston
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA, Nanyang Business School, Nanyang Technological University, Singapore 639798, Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA, and School of Psychology, Beijing Normal University, Beijing 100875, P. R. China
| | - Ying-Yi Hong
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA, Nanyang Business School, Nanyang Technological University, Singapore 639798, Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA, and School of Psychology, Beijing Normal University, Beijing 100875, P. R. China Department of Psychology, Northwestern University, Evanston, IL 60208, USA, Nanyang Business School, Nanyang Technological University, Singapore 639798, Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA, and School of Psychology, Beijing Normal University, Beijing 100875, P. R. China
| | - Joan Y Chiao
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA, Nanyang Business School, Nanyang Technological University, Singapore 639798, Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA, and School of Psychology, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
36
|
Stoltenberg SF, Christ CC, Carlo G. Afraid to help: social anxiety partially mediates the association between 5-HTTLPR triallelic genotype and prosocial behavior. Soc Neurosci 2013; 8:400-6. [PMID: 23789884 DOI: 10.1080/17470919.2013.807874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is growing evidence that the serotonin system influences prosocial behavior. We examined whether anxiety mediated the association between variation in the serotonin transporter gene regulatory region (5-HTTLPR) and prosocial behavior. We collected self-reported tendencies to avoid certain situations and history of helping others using standard instruments and buccal cells for standard 5-HTTLPR genotyping from 398 undergraduate students. Triallelic 5-HTTLPR genotype was significantly associated with prosocial behavior and the effect was partially mediated by social anxiety, such that those carrying the S' allele reported higher levels of social avoidance and lower rates of helping others. These results are consistent with accounts of the role of serotonin on anxiety and prosocial behavior and suggest that targeted efforts to reduce social anxiety in S' allele carriers may enhance prosocial behavior.
Collapse
|
37
|
Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter. PLoS One 2013; 8:e63772. [PMID: 23717480 PMCID: PMC3661730 DOI: 10.1371/journal.pone.0063772] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/08/2013] [Indexed: 12/16/2022] Open
Abstract
The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS) was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886) and the serotonin transporter (5HTTLPR). These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886) showed no acquisition of fear conditioned responses (FPS) to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele) and 5HTTLPR (short allele) was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.
Collapse
|
38
|
Tomoda A, Nishitani S, Matsuura N, Fujisawa TX, Kawatani J, Toyohisa D, Ono M, Shinohara K. No interaction between serotonin transporter gene (5-HTTLPR) polymorphism and adversity on depression among Japanese children and adolescents. BMC Psychiatry 2013; 13:134. [PMID: 23663729 PMCID: PMC3653806 DOI: 10.1186/1471-244x-13-134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/16/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Identification of gene × environment interactions (G × E) for depression is a crucial step in ascertaining the mechanisms underpinning the disorder. Earlier studies have indicated strong genetic influences and numerous environmental risk factors. In relation to childhood and adolescent depression, evidence is accumulating that the quality of the parental environment is associated with serotonin biology in children. We hypothesized that maternal depression is a crucial environmental risk factor associated with serotonin-regulating genes. METHODS This study was designed to ascertain the G × E interaction for diagnosis of depression in a Japanese pediatric sample. DNA samples from 55 pediatric patients with depression and 58 healthy schoolchildren were genotyped for the 5-HTT (2 short (S) alleles at the 5-HTT locus) promoter serotonin-transporter-linked polymorphic region (5-HTTLPR) polymorphism. We examined whether an adverse parental environment, operationalized as the mother's history of recurrent major depressive disorder, interacts with 5-HTTLPR polymorphism to predict patients' depression symptoms. RESULTS Binary logistic regression analyses revealed that maternal depression (adversity), gender, and FSIQ significantly affect the diagnosis of depression among children and adolescents. However, no main effect was found for adversity or genotype. Results of multivariable logistic regression analyses using stepwise procedure have elicited some models with a good fit index, which also suggests no interaction between 5-HTTLPR and adversity on depression. CONCLUSIONS To assess G × E interaction, data obtained from children and adolescents who had been carefully diagnosed categorically and data from age-matched controls were analyzed using logistic regression. Despite an equivocal interaction effect, adversity and gender showed significant main effects.
Collapse
Affiliation(s)
- Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
| | - Shota Nishitani
- Department of Neurobiology& Behavior Unit of Basic Medical Sciences Course of Medical & Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naomi Matsuura
- School of Education, Tokyo University and Graduate School of Social Welfare, Tokyo, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan,Department of Neurobiology& Behavior Unit of Basic Medical Sciences Course of Medical & Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junko Kawatani
- Department of Child Development, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daiki Toyohisa
- Department of Child Development, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mai Ono
- Department of Child Development, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology& Behavior Unit of Basic Medical Sciences Course of Medical & Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
39
|
Glotzbach-Schoon E, Andreatta M, Reif A, Ewald H, Tröger C, Baumann C, Deckert J, Mühlberger A, Pauli P. Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle. Front Behav Neurosci 2013; 7:31. [PMID: 23630477 PMCID: PMC3632789 DOI: 10.3389/fnbeh.2013.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/01/2013] [Indexed: 01/25/2023] Open
Abstract
The serotonin (5-HT) and neuropeptide S (NPS) systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through contextual fear conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT) and the NPS receptor (NPSR1) were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers) and NPSR1 rs324981 (T+ vs. AA carriers) polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA) of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality (VR) paradigm. During acquisition, one virtual office room (anxiety context, CXT+) was paired with an unpredictable electric stimulus (unconditioned stimulus, US), whereas another virtual office room was not paired with any US (safety context, CXT−). During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+) exhibited higher startle responses in CXT+ compared to CXT−. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT−. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Enhanced contextual fear conditioning as reflected in potentiated startle responses may be an endophenotype for anxiety disorders.
Collapse
Affiliation(s)
- Evelyn Glotzbach-Schoon
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Würzburg Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Homberg JR. Serotonergic modulation of conditioned fear. SCIENTIFICA 2012; 2012:821549. [PMID: 24278743 PMCID: PMC3820492 DOI: 10.6064/2012/821549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
Conditioned fear plays a key role in anxiety disorders as well as depression and other neuropsychiatric conditions. Understanding how neuromodulators drive the associated learning and memory processes, including memory consolidation, retrieval/expression, and extinction (recall), is essential in the understanding of (individual differences in vulnerability to) these disorders and their treatment. The human and rodent studies I review here together reveal, amongst others, that acute selective serotonin reuptake inhibitor (SSRI) treatment facilitates fear conditioning, reduces contextual fear, and increases cued fear, chronic SSRI treatment reduces both contextual and cued fear, 5-HT1A receptors inhibit the acquisition and expression of contextual fear, 5-HT2A receptors facilitates the consolidation of cued and contextual fear, inactivation of 5-HT2C receptors facilitate the retrieval of cued fear memory, the 5-HT3 receptor mediates contextual fear, genetically induced increases in serotonin levels are associated with increased fear conditioning, impaired cued fear extinction, or impaired extinction recall, and that genetically induced 5-HT depletion increases fear conditioning and contextual fear. Several explanations are presented to reconcile seemingly paradoxical relationships between serotonin levels and conditioned fear.
Collapse
Affiliation(s)
- Judith R. Homberg
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Geert Grooteplein 21, Route 126, 6525 EZ Nijmegen, The Netherlands
| |
Collapse
|
41
|
Walsh ND, Dalgleish T, Dunn VJ, Abbott R, St Clair MC, Owens M, Fairchild G, Kerslake WS, Hiscox LV, Passamonti L, Ewbank M, Ban M, Calder AJ, Goodyer IM. 5-HTTLPR-environment interplay and its effects on neural reactivity in adolescents. Neuroimage 2012; 63:1670-80. [PMID: 23034517 PMCID: PMC3480648 DOI: 10.1016/j.neuroimage.2012.07.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/16/2012] [Accepted: 07/24/2012] [Indexed: 01/07/2023] Open
Abstract
It is not known how 5-HTTLPR genotype × childhood adversity (CA) interactions that are associated with an increased risk for affective disorders in population studies operate at the neural systems level. We hypothesized that healthy adolescents at increased genetic and environmental risk for developing mood disorders (depression and anxiety) would demonstrate increased amygdala reactivity to emotional stimuli compared to those with only one such risk factor or those with none. Participants (n = 67) were classified into one of 4 groups dependent on being homozygous for the long or short alleles within the serotonin-transporter-linked polymorphic region (5-HTTLPR) of the SLC6A4 gene and exposure to CA in the first 11 years of life (present or absent). A functional magnetic resonance imaging investigation was undertaken which involved viewing emotionally-salient face stimuli. In addition, we assessed the role of other variables hypothesized to influence amygdala reactivity, namely recent negative life-events (RNLE) assessed at ages 14 and 17, current anxiety symptoms and psychiatric history. We replicated prior findings demonstrating moderation by gene variants in 5-HTTLPR, but found no support for an effect of CA on amygdala reactivity. We also found a significant effect of RNLE aged 17 with amygdala reactivity demonstrating additive, but not interactive effects with 5-HTTLPR. A whole-brain analysis found a 5-HTTLPR × CA interaction in the lingual gyrus whereby CA appears to differentially modify neural reactivity depending on genotype. These results demonstrate that two different forms of environmental adversities interplay with 5-HTTLPR and thereby differentially impact amygdala and cortical reactivity.
Collapse
Affiliation(s)
- Nicholas D Walsh
- Developmental and Life-course Research Group, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Klucken T, Wehrum S, Schweckendiek J, Merz CJ, Hennig J, Vaitl D, Stark R. The 5-HTTLPR polymorphism is associated with altered hemodynamic responses during appetitive conditioning. Hum Brain Mapp 2012; 34:2549-60. [PMID: 22505321 DOI: 10.1002/hbm.22085] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/20/2012] [Accepted: 02/28/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Current models suggest that a variation in the promoter region of the serotonin transporter gene (5-HTTLPR) is associated with altered amygdala reactivity not only towards negative but also towards positive stimuli, which has been neglected in the past. This association may possibly convey an elevated vulnerability for psychopathology like abuse, craving, and relapses. Since appetitive conditioning is a crucial mechanism in the pathogenesis of these psychiatric disorders, the identification of specific factors contributing to interindividual variation is important. METHODS In the present study (N = 86), an appetitive conditioning paradigm was conducted, in which a neutral stimulus (CS+) was associated with appetitive stimuli, while a second stimulus (CS-) predicted their absence. Subjects were genotyped according to the 5-HTTLPR genotype. RESULTS As the main result, we report a significant association between the 5-HTTLPR genotype and hemodynamic responses. Individuals with the s-allele displayed elevated conditioned bilateral amygdala activity in contrast to l/l-allele carriers. Further, increased hemodynamic responses in s-allele carriers were also found in the extended emotional network including the orbitofrontal cortex, the thalamus, and the ventral striatum. CONCLUSION The present findings indicate an association of the 5-HTTLPR and altered conditioned responses in appetitive conditioning. Further, the findings contribute to the ongoing debate on 5-HTTLPR dependent hemodynamic response patterns by emphasizing that s-allele carriers are not exclusively biased towards fearful, but also towards positive stimuli. In conclusion, our results imply that s-allele carriers might be better described as hyper-reactive towards salient stimuli, which may convey vulnerability for the development of psychiatric disorders.
Collapse
Affiliation(s)
- Tim Klucken
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|