1
|
Bugarski-Kirola D, Liu IY, Arango C, Marder SR. A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Pimavanserin as an Adjunctive Treatment for the Negative Symptoms of Schizophrenia (ADVANCE-2) in Patients With Predominant Negative Symptoms. Schizophr Bull 2025:sbaf034. [PMID: 40181715 DOI: 10.1093/schbul/sbaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND HYPOTHESES Negative symptoms of schizophrenia (NSS) carry a substantial burden, and there are no treatments currently approved for NSS. The efficacy of pimavanserin, a selective 5-HT2A inverse agonist and antagonist, in treating NSS was assessed. STUDY DESIGN ADVANCE-2 was a phase 3, randomized, double-blind, placebo-controlled study of pimavanserin in patients with schizophrenia and predominantly negative symptoms. Patients were randomized (1:1) to receive pimavanserin (34 mg/day) or placebo alongside ongoing background antipsychotic medication. Eligible adults were aged 18-55 years and had access to a caregiver. The primary and key secondary endpoints were the change from baseline to week 26 in the Negative Symptom Assessment-16 (NSA-16) total score and Clinical Global Impression-Schizophrenia Scale-Severity (CGI-SCH-S) negative symptom score, respectively. STUDY RESULTS Of the 454 randomized patients, 71 (39 placebo; 32 pimavanserin) discontinued and 383 (188 placebo; 195 pimavanserin) completed the study. The safety and full analysis sets comprised 453 and 446 patients, respectively. The NSA-16 change from baseline to week 26 was not significantly different between groups (least squares mean difference: -0.67; SE, 0.95; [95% CI: -2.54, 1.20]; P = .48; Cohen's d effect size: 0.07). Treatment-emergent adverse events occurred in 30.4% with pimavanserin and 40.3% with placebo. CONCLUSIONS In this study, pimavanserin was well tolerated, and although it demonstrated a similar treatment effect as in the prior phase 2 study favoring pimavanserin, treatment with pimavanserin vs placebo did not result in significant differences for primary or other endpoints.
Collapse
Affiliation(s)
| | - I-Yuan Liu
- Acadia Pharmaceuticals Inc., San Diego, CA, USA
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Stephen R Marder
- Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Begni V, Marchesin A, Riva MA. IUPHAR review - Novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res 2025; 214:107690. [PMID: 40073951 DOI: 10.1016/j.phrs.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models. Among these, some novel drugs still employ multimodal mechanisms, simultaneously targeting dopaminergic and serotonergic systems to enhance efficacy and tolerability. Given the well-documented excitatory/inhibitory imbalance in schizophrenia, significant efforts have been directed toward addressing NMDA receptor hypofunctionality. However, strategies targeting this pathway have yet to demonstrate consistent clinical efficacy. In contrast, therapies targeting the cholinergic system have shown greater promise. For instance, the xanomeline-trospium combination, which modulates muscarinic receptors, has recently gained approval, and other molecules with similar mechanisms are currently under development. Beyond these approaches, novel strategies are being explored to target innovative pathways, including neuroplasticity, neuroinflammation, and mitochondrial dysfunction. These efforts are often designed as part of a combinatorial strategy to enhance the efficacy of currently available antipsychotic drugs. Despite significant progress, challenges remain in translating experimental discoveries into effective clinical applications. Future research should prioritize biomarker-driven approaches and precision medicine to optimize individualized treatment outcomes. By integrating these emerging therapeutic targets, schizophrenia treatment may evolve toward a more comprehensive and personalized approach, addressing the disorder's full spectrum of symptoms and improving patient quality of life.
Collapse
Affiliation(s)
- Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
3
|
Ye N, Wang Q, Li Y, Zhen X. Current emerging therapeutic targets and clinical investigational agents for schizophrenia: Challenges and opportunities. Med Res Rev 2025; 45:755-787. [PMID: 39300769 DOI: 10.1002/med.22086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Since the first discovery of antipsychotics in the 1950s, targeting dopaminergic drugs has manifested to well manage the positive symptoms of schizophrenia with limited efficacy for the negative and cognitive symptoms. In past decades, extensive efforts have been undertaken towards the development of innovative agents that can effectively stabilize the dopamine and serotonin systems or target to nondopaminergic pathways, leading to various promising drug candidates entering into clinical trials. Notably, the sigma-2, 5-HT2A, and α1A receptor antagonist roluperidone, as well as a fixed-dose combination of the M1/4 receptor agonist KarXT, have been submitted for NDA applications. The dual agonist ulotaront, which targets TAAR1 and 5-HT1A receptors, and the GlyT1 inhibitor iclepertin have advanced into phase 3 clinical trials. Nevertheless, satisfactory therapeutic strategies for schizophrenia remain elusive. This review highlights current clinical endeavors in developing novel chemical small-molecule entities and fixed-dose combinations for the treatment of schizophrenia since 2017, thus facilitating the efficient development of the next generation of antipsychotics.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Qi Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Govil P, Kantrowitz JT. Negative Symptoms in Schizophrenia: An Update on Research Assessment and the Current and Upcoming Treatment Landscape. CNS Drugs 2025; 39:243-262. [PMID: 39799532 DOI: 10.1007/s40263-024-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/15/2025]
Abstract
The negative symptoms of schizophrenia include diminished emotional expression, avolition, alogia, anhedonia, and asociality, and due to their low responsiveness to available treatments, are a primary driver of functional disability in schizophrenia. This narrative review has the aim of providing a comprehensive overview of the current research developments in the treatment of negative symptoms in schizophrenia, and begins by introducing the concepts of primary, secondary, prominent, predominant, and broadly defined negative symptoms. We then compare and contrast commonly used research assessment scales for negative symptoms and review the evidence for the specific utility of widely available off-label and investigational treatments that have been studied for negative symptoms. Mechanism of action/putative treatments included are antipsychotics (D2R antagonists), N-methyl-D-aspartate receptor (NMDAR) and other glutamatergic modulators, serotonin receptor (5-HTR) modulators, anti-inflammatory agents, antidepressants, pro-dopaminergic modulators (non-D2R antagonists), acetylcholine modulators, oxytocin, and phosphodiesterase (PDE) inhibitors. With the caveat that no compounds are definitively proven as gold-standard treatments for broadly defined negative symptoms, the evidence base supports several potentially beneficial off-label and investigational medications for treating negative symptoms in schizophrenia, such as monotherapy with cariprazine, olanzapine, clozapine, and amisulpride, or adjunctive use of memantine, setrons such as ondansetron, minocycline, and antidepressants. These medications are widely available worldwide, generally tolerable and could be considered for an off-label, time-limited trial for a predesignated period of time, after which a decision to switch or stay can be made based on clinical response. Among investigational medications, NMDAR agonists, muscarinic agonists, and LB-102 remain under study. Suggestions for future research include reducing placebo effects by designing studies with a smaller number of high-quality study sites, potentially increasing the use of more precise rating scales for negative symptoms, and focused studies in people with predominant negative symptoms.
Collapse
Affiliation(s)
- Preetika Govil
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
- College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Nathan Kline Institute, Orangeburg, NY, 10962, USA.
| |
Collapse
|
5
|
Gao Z, Xiao Y, Zhu F, Tao B, Zhao Q, Yu W, Bishop JR, Gong Q, Lui S. Neurobiological fingerprints of negative symptoms in schizophrenia identified by connectome-based modeling. Psychiatry Clin Neurosci 2025; 79:108-116. [PMID: 39815736 DOI: 10.1111/pcn.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
AIM As a central component of schizophrenia psychopathology, negative symptoms result in detrimental effects on long-term functional prognosis. However, the neurobiological mechanism underlying negative symptoms remains poorly understood, which limits the development of novel treatment interventions. This study aimed to identify the specific neural fingerprints of negative symptoms in schizophrenia. METHODS Based on resting-state functional connectivity data obtained in a large sample (n = 132) of first-episode drug-naïve schizophrenia patients (DN-FES), connectome-based predictive modeling (CPM) with cross-validation was applied to identify functional networks that predict the severity of negative symptoms. The generalizability of identified networks was then validated in an independent sample of n = 40 DN-FES. RESULTS A connectivity pattern significantly driving the prediction of negative symptoms (ρ = 0.28, MSE = 81.04, P = 0.012) was identified within and between networks implicated in motivation (medial frontal, subcortical, sensorimotor), cognition (default mode, frontoparietal, medial frontal) and error processing (medial frontal and cerebellum). The identified networks also predicted negative symptoms in the independent validation sample (ρ = 0.37, P = 0.018). Importantly, the predictive model was symptom-specific and robust considering the potential effects of demographic characteristics and validation strategies. CONCLUSIONS Our study discovers and validates a comprehensive network model as the unique neural substrates of negative symptoms in schizophrenia, which provides a novel and comprehensive perspective to the development of target treatment strategies for negative symptoms.
Collapse
Affiliation(s)
- Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fei Zhu
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiannan Zhao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wei Yu
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
6
|
Moccia L, Bardi F, Anesini MB, Barbonetti S, Kotzalidis GD, Rossi S, Caso R, Grisoni F, Mandracchia G, Margoni S, Callovini T, Janiri D, Mazza M, Simonetti A, Montanari S, Autullo G, Camardese G, Pepe M, Di Nicola M, Di Giorgio V, Conti F, Sani G. Pharmacological Interventions for Negative Symptoms in Schizophrenia: A Systematic Review of Randomised Control Trials. Biomedicines 2025; 13:540. [PMID: 40149518 PMCID: PMC11940281 DOI: 10.3390/biomedicines13030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: While positive symptoms of schizophrenia are often satisfactorily controlled, negative symptoms are difficult to treat, persisting despite treatment. Different strategies have been devised to deal with this problem. We aimed to review drug treatment for negative symptoms of schizophrenia in controlled trials of marketed drugs. Methods: We searched the PubMed database and the resulting records' reference lists to identify eligible trials using schizophrenia[ti] AND "negative symptom*"[ti] as a search strategy. We determined eligibility through Delphi rounds among all authors. Results: On 11 February 2025, we identified 1485 records on PubMed and 3 more from reference lists. Eligible were 95 records. Most studies were double-blind, randomized controlled trials, carried-out in add-on in patients stabilized with antipsychotics. Other antipsychotics were the most frequent comparators, followed by antidepressants, and recently, antioxidants are gaining importance in trials. Many trials, especially those conducted in the Western world, found no significant effects compared to placebo, while most Iranian studies were positive, although not with a strong effect size. Conclusions: Current research has contributed little to progress in the treatment of the negative symptoms of schizophrenia. The reason might reside in the absence of knowledge of the mechanisms whereby these symptoms are generated, which prevents us from designing possibly effective treatment strategies, and/or to the chronicity of negative symptoms, as they are the first to be established even when they do not become fully apparent.
Collapse
Affiliation(s)
- Lorenzo Moccia
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Bardi
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Maria Benedetta Anesini
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sara Barbonetti
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Georgios D. Kotzalidis
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sara Rossi
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Romina Caso
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Flavia Grisoni
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giuseppe Mandracchia
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Stella Margoni
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Tommaso Callovini
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Delfina Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessio Simonetti
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Silvia Montanari
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gianna Autullo
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Camardese
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Life Science, Health, and Health Professions, Link Campus University, Via del Casale di S. Pio V, 44, 00165 Rome, Italy
| | - Maria Pepe
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marco Di Nicola
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Vassilij Di Giorgio
- Istituto di Neuroscienze, Neomesia Kos Group, Via Nomentana 1362, 00137 Rome, Italy; (V.D.G.); (F.C.)
| | - Fabio Conti
- Istituto di Neuroscienze, Neomesia Kos Group, Via Nomentana 1362, 00137 Rome, Italy; (V.D.G.); (F.C.)
| | - Gabriele Sani
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (F.B.); (M.B.A.); (S.B.); (S.R.); (R.C.); (F.G.); (G.M.); (S.M.); (T.C.); (D.J.); (M.M.); (A.S.); (S.M.); (G.A.); (M.P.); (M.D.N.); (G.S.)
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | | |
Collapse
|
7
|
Harvey PD, Kaul I, Chataverdi S, Patel T, Claxton A, Sauder C, Saber JN, Brannan SK, Horan WP. Capturing changes in social functioning and positive affect using ecological momentary assessment during a 12-month trial of xanomeline and trospium chloride in schizophrenia. Schizophr Res 2025; 276:117-126. [PMID: 39889526 DOI: 10.1016/j.schres.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Experiential negative symptoms (NS) are determinants of disability in schizophrenia (SCZ). Xanomeline/Trospium Chloride (X/T), an M1/M4 muscarinic receptor agonist, is an approved monotherapy for treatment of schizophrenia, including NS. We used remote ecological momentary assessments (EMA) to track changes in indicators of NS during 12 months of outpatient treatment with X/T. METHODS After discontinuing previous medications, 566 outpatients with SCZ received open-label X/T monotherapy for up to 12 months. Participants completed 3 EMA surveys 7 days a week, one week a month. Surveys queried whether participants were home vs. away and alone vs with someone, as well as productive and unproductive activities, and moods. Hierarchical linear modeling (HLM) examined temporal changes and the relationships between the indicators of NS. RESULTS 500 participants answered one or more EMA surveys and 350 met 33 % adherence criteria, answering a total of 40,464 surveys, with overall adherence among these participants at 66 %. During treatment with X/T, there were significant decreases in surveys at home (p < .001), alone (p < .001), and engaging in unproductive activities (p < .001). There were significant increases in productive activities both home (p < .001) and away (p < .001) and in positive affect (PA) (p < .001). Improvements in PA converged with reduced unproductive activities, particularly when others were present (p < .001). CONCLUSIONS Behavioral indicators of NS improved early and were sustained with X/T treatment. Improvements were multidimensional, shifting toward more time with others, away from home, and engaged in productive activities. These improvements were associated with increases in PA, consistent with previous EMA studies of NS.
Collapse
Affiliation(s)
- Philip D Harvey
- University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | - Tej Patel
- Bristol Myers Squibb, Boston, MA, USA
| | | | | | | | | | - William P Horan
- Bristol Myers Squibb, Boston, MA, USA; University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Gee A, Dazzan P, Grace AA, Modinos G. Corticolimbic circuitry as a druggable target in schizophrenia spectrum disorders: a narrative review. Transl Psychiatry 2025; 15:21. [PMID: 39856031 PMCID: PMC11760974 DOI: 10.1038/s41398-024-03221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Schizophrenia spectrum disorders (SSD) involve disturbances in the integration of perception, emotion and cognition. The corticolimbic system is an interacting set of cortical and subcortical brain regions critically involved in this process. Understanding how neural circuitry and molecular mechanisms within this corticolimbic system may contribute to the development of not only positive symptoms but also negative and cognitive deficits in SSD has been a recent focus of intense research, as the latter are not adequately treated by current antipsychotic medications and are more strongly associated with poorer functioning and long-term outcomes. This review synthesises recent developments examining corticolimbic dysfunction in the pathophysiology of SSD, with a focus on neuroimaging advances and related novel methodologies that enable the integration of data across different scales. We then integrate how these findings may inform the identification of novel therapeutic and preventive targets for SSD symptomatology. A range of pharmacological interventions have shown initial promise in correcting corticolimbic dysfunction and improving negative, cognitive and treatment-resistant symptoms. We discuss current challenges and opportunities for improving the still limited translation of these research findings into clinical practice. We argue how our knowledge of the role of corticolimbic dysfunction can be improved by combining multiple research modalities to examine hypotheses across different spatial and temporal scales, combining neuroimaging with experimental interventions and utilising large-scale consortia to advance biomarker identification. Translation of these findings into clinical practice will be aided by consideration of optimal intervention timings, biomarker-led patient stratification, and the development of more selective medications.
Collapse
Affiliation(s)
- Abigail Gee
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
9
|
Biso L, Carli M, Scarselli M, Longoni B. Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds. Biomedicines 2025; 13:85. [PMID: 39857669 PMCID: PMC11763187 DOI: 10.3390/biomedicines13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Antipsychotic medications are a vast class of drugs used for the treatment of psychotic disorders such as schizophrenia. Although numerous compounds have been developed since their introduction in the 1950s, several patients do not adequately respond to current treatments, or they develop adverse reactions that cause treatment discontinuation. Moreover, in the past few decades, discoveries in the pathophysiology of psychotic disorders have opened the way for experimenting with novel compounds that have alternative mechanisms of action, with some of them showing promising results in early trials. The scope of this review was to summarize the novel antipsychotics developed, their current experimental status, and their mechanisms of action. In particular, we analyzed the main classes of investigational antipsychotics, such as monoamine, glutamate, acetylcholine, cannabinoid receptor modulators, enzyme inhibitors, ion channel modulators, and mixed receptor modulators. In addition, the safety profiles and adverse effects of these drugs were carefully evaluated, considering the relevance of these aspects for patients' drug adherence and quality of life, especially in the long-term treatment. Lastly, we tried to understand which compounds have greater potential to be approved by the principal drug regulatory agencies in the next years and if they could be used for diseases other than psychotic disorders.
Collapse
Affiliation(s)
| | | | | | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.C.); (M.S.)
| |
Collapse
|
10
|
Yoon J, Mayer MR, Berro T, Brazis S, Kantrowitz JT. Knowing is Half the Battle: The Factors Leading to Efficient Recruitment of Representative Samples in Schizophrenia Research. Pharmaceut Med 2025; 39:29-38. [PMID: 39794624 DOI: 10.1007/s40290-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND AND OBJECTIVES Drug development in schizophrenia is limited by the differential scaling of the active treatment and placebo arms of a study, such that, as the number of sites increases, the magnitude of placebo response disproportionately increases. The objective of this article was to identify factors conducive to efficient recruitment as a step towards trial designs allowing recruitment of more participants per site, leading to reduced variability, and potentially a smaller placebo effect. PATIENTS AND METHODS Using the information of 554 individuals, we calculated the percentage of individuals who were screened, consented, and retained in our research, along with rationale for nonconsent. Independent t tests and Chi-squared tests were performed to compare participant characteristics. RESULTS Out of the 273 individuals who were fully screened, 84 did not progress to the consented stage owing to various reasons, leading to a total of 189 individuals who were screened and consented and a total of 365 individuals who were either incompletely screened or not consented into a study. Individuals with an externally validated medical history showed the highest yield in being consented and retained in research as new participants. In particular, chart reviews from clinics were highly efficient (25.8%) in facilitating new participants' enrollment, even when these individuals were not actively/prospectively seeking research. The most common reason for nonconsent was difficulty in telephone or email contact. Consenting and nonconsenting participants were similar in demographics, and recruitment sources only differed in their reported substance use. CONCLUSIONS Referrals and chart reviews from known clinics were the most efficient method in retaining new participants, highlighting the importance of external validation and communication between research and clinical staff within a system. Consenting participants showed no significant differences from the database as a whole, demonstrating that the study samples were representative. Future studies should aim to confirm the present findings at other academic and commercial research centers.
Collapse
Affiliation(s)
- Joohyun Yoon
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Megan R Mayer
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Tala Berro
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Stephanie Brazis
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
11
|
Ge Y, Zhang S, Ge X, Li R, Zhai J, Gao Y. Research progress in estrogen as an adjunctive therapy for schizophrenia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1849-1860. [PMID: 40177768 PMCID: PMC11964812 DOI: 10.11817/j.issn.1672-7347.2024.240289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 04/05/2025]
Abstract
Schizophrenia is a chronic psychiatric disorder with complex etiology and diverse clinical manifestations, whose pathogenesis and triggering factors remain incompletely understood. Numerous studies have demonstrated significant gender differences in the age of onset, clinical presentation, disease progression, treatment efficacy, and prognosis among patients with schizophrenia. These differences are largely attributed to variations in sex hormone levels, with estrogen emerging as a key focus of research. Some studies suggest that adjunctive estrogen therapy during schizophrenia treatment not only alleviates symptoms but also reduces the required dosage of antipsychotic medications. A systematic review of research on estrogen as an adjunctive treatment for schizophrenia may provide new perspectives and references for future therapeutic strategies.
Collapse
Affiliation(s)
- Yanyu Ge
- School of Mental Health, Jining Medical University, Jining Shandong 272067.
- Department of Psychiatry, Fourth People's Hospital, Liaocheng Shandong 252000.
| | - Shungeng Zhang
- School of Clinical Medicine, Jining Medical University, Jining Shandong 272067
| | - Xinbin Ge
- Department of General Surgery, Third Bethune Hospital of Jilin University, Changchun 130033
| | - Ranran Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Jining Shandong 272067
| | - Yan Gao
- School of Mental Health, Jining Medical University, Jining Shandong 272067.
| |
Collapse
|
12
|
Howes OD, Dawkins E, Lobo MC, Kaar SJ, Beck K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol Psychiatry 2024; 96:638-650. [PMID: 38815885 DOI: 10.1016/j.biopsych.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Schizophrenia is a leading cause of global disease burden. Current drug treatments are associated with significant side effects and have limited efficacy for many patients, highlighting the need to develop new approaches that target other aspects of the neurobiology of schizophrenia. Preclinical, in vivo imaging, postmortem, genetic, and pharmacological studies have highlighted the key role of cortical GABAergic (gamma-aminobutyric acidergic)-glutamatergic microcircuits and their projections to subcortical dopaminergic circuits in the pathoetiology of negative, cognitive, and psychotic symptoms. Antipsychotics primarily act downstream of the dopaminergic component of this circuit. However, multiple drugs are currently in development that could target other elements of this circuit to treat schizophrenia. These include drugs for GABAergic or glutamatergic targets, including glycine transporters, D-amino acid oxidase, sodium channels, or potassium channels. Other drugs in development are likely to primarily act on pathways that regulate the dopaminergic system, such as muscarinic or trace amine receptors or 5-HT2A receptors, while PDE10A inhibitors are being developed to modulate the downstream consequences of dopaminergic dysfunction. Our review considers where new drugs may act on this circuit and their latest clinical trial evidence in terms of indication, efficacy, and side effects. Limitations of the circuit model, including whether there are neurobiologically distinct subgroups of patients, and future directions are also considered. Several drugs based on the mechanisms reviewed have promising clinical data, with the muscarinic agonist KarXT most advanced. If these drugs are approved for clinical use, they have the potential to revolutionize understanding of the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom.
| | - Eleanor Dawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Maria C Lobo
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Greater Manchester Mental Health National Health Service Foundation Trust, Manchester, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| |
Collapse
|
13
|
James SH, Ahmed AO, Harvey PD, Saoud JB, Davidson M, Kuchibhatla R, Luthringer R, Strauss GP. Network intervention analysis indicates that roluperidone achieves its effect on negative symptoms of schizophrenia by targeting avolition. Eur Neuropsychopharmacol 2024; 87:18-23. [PMID: 39024856 DOI: 10.1016/j.euroneuro.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Roluperidone, a 5-HT2A, sigma2, and ɑ1A-adrenergic receptor antagonist, has proven efficacious for treating negative symptoms of schizophrenia in phase 2b and phase 3 clinical trials. Using network analysis, we demonstrated that the improvements observed in the phase 2b trial resulted from targeting avolition which was highly central and spurred a cascading effect of global negative symptom reductions when successfully treated. The current study aims to replicate these network findings using the phase 3 roluperidone clinical trial data. Participants included 496 schizophrenia patients with moderate to severe negative symptoms who were randomized to either roluperidone 32 mg/day (n =167), 64 mg/day (n = 162), or placebo (n = 167). Negative symptoms were assessed at baseline and weeks 2,4,8, and 12. Network intervention analysis (NIA) evaluated treatment-induced symptom changes over time to identify direct and indirect treatment effects. This analytic approach extends prior work by determining whether the symptoms with highest centrality have causal effects on the entire negative symptom construct and directly lead to symptom improvement. NIA indicated that the efficacious 64 mg/day dose of roluperidone had a direct effect on avolition, suggesting that changes in avolition propels treatment effects across the entire negative symptom constellation. These phase 3 findings replicated the phase 2b findings, indicating that from a network perspective, roluperidone achieves its effect by influencing the extent to which avolition drives other negative symptoms. These findings are relevant for understanding negative symptoms and how to treat them in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sydney H James
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, NY, USA
| | - Philip D Harvey
- Department of Psychiatry, University of Miami Health System, Miami, FL, USA
| | - Jay B Saoud
- Pharmaceutical Product Development Associates, LLC, Groton, MA, USA
| | - Michael Davidson
- Minerva Neurosciences, Inc., Burlington, MA, USA; Department of Basic and Clinical Sciences, Psychiatry, University of Nicosia Medical School, 2414, Nicosia, Cyprus
| | | | | | | |
Collapse
|
14
|
Harvey PD, Davidson M, Saoud JB, Kuchibhatla R, Moore RC, Depp CA, Pinkham AE. Prevalence of prominent and predominant negative symptoms across different criteria for negative symptom severity and minimal positive symptoms: A comparison of different criteria. Schizophr Res 2024; 271:246-252. [PMID: 39059248 PMCID: PMC11384184 DOI: 10.1016/j.schres.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Negative symptoms are a source of disability in schizophrenia, but criteria for identifying patients for clinical trials are in flux. Minimum severity for negative symptoms is paired with a definition of minimal psychosis to identify predominant negative symptoms. Two previous successful negative symptoms treatment studies used very different severity and selection criteria. We compared the prevalence of participants meeting those two criteria in a large outpatient sample of participants with schizophrenia. Data from 867 outpatients with schizophrenia who participated in one of four NIMH-funded studies were analyzed. Common data elements included diagnoses, the PANSS, and an assessment of everyday functioning. We compared previous criterion for premoninant negative symptoms based on low levels of agitation and psychosis and different cut-offs for negative symptoms severity. 57 % of the participants met the agitation-based criteria for low scores and 33 % met the psychosis-based criteria. 18 % met total PANSS score ≥ 20 and 8 % met ≥24 prominent negative symptoms criteria. 14 % met low agitation and PANSS≥20 and 2 % met the low psychosis and negative symptoms ≥24 criteria. Participants who met all predominant criteria had more impairments in social functioning (all p < .001, all d > 0.37). Criteria for predominant negative symptoms from previous clinical trials identify widely different numbers of cases, with criteria for negative symptom severity and low symptoms both impacting. All criteria yield the expected profile of relatively specific social deficits. Even in unselected populations who participated in complex research protocols, 14 % meet low- agitation based criteria for predominant negative symptoms and many more participants would be expected to meet criteria with enrichment for the presence of negative symptoms.
Collapse
Affiliation(s)
- Philip D Harvey
- University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Dudzik P, Lustyk K, Pytka K. Beyond dopamine: Novel strategies for schizophrenia treatment. Med Res Rev 2024; 44:2307-2330. [PMID: 38653551 DOI: 10.1002/med.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Despite extensive research efforts aimed at discovering novel antipsychotic compounds, a satisfactory pharmacological strategy for schizophrenia treatment remains elusive. All the currently available drugs act by modulating dopaminergic neurotransmission, leading to insufficient management of the negative and cognitive symptoms of the disorder. Due to these challenges, several attempts have been made to design agents with innovative, non-dopaminergic mechanisms of action. Consequently, a number of promising compounds are currently progressing through phases 2 and 3 of clinical trials. This review aims to examine the rationale behind the most promising of these strategies while simultaneously providing a comprehensive survey of study results. We describe the versatility behind the cholinergic neurotransmission modulation through the activation of M1 and M4 receptors, exemplified by the prospective drug candidate KarXT. Our discussion extends to the innovative approach of activating TAAR1 receptors via ulotaront, along with the promising outcomes of iclepertin, a GlyT-1 inhibitor with the potential to become the first treatment option for cognitive impairment associated with schizophrenia. Finally, we evaluate the 5-HT2A antagonist paradigm, assessing two recently developed serotonergic agents, pimavanserin and roluperidone. We present the latest advancements in developing novel solutions to the complex challenges posed by schizophrenia, offering an additional perspective on the diverse investigated drug candidates.
Collapse
Affiliation(s)
- Paulina Dudzik
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
16
|
Barabássy Á, Dombi ZB, Németh G. D3 Receptor-Targeted Cariprazine: Insights from Lab to Bedside. Int J Mol Sci 2024; 25:5682. [PMID: 38891871 PMCID: PMC11172134 DOI: 10.3390/ijms25115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Until the late 1800s, drug development was a chance finding based on observations and repeated trials and errors. Today, drug development must go through many iterations and tests to ensure it is safe, potent, and effective. This process is a long and costly endeavor, with many pitfalls and hurdles. The aim of the present review article is to explore what is needed for a molecule to move from the researcher bench to the patients' bedside, presented from an industry perspective through the development program of cariprazine. Cariprazine is a relatively novel antipsychotic medication, approved for the treatment of schizophrenia, bipolar mania, bipolar depression, and major depression as an add-on. It is a D3-preferring D3-D2 partial agonist with the highest binding to the D3 receptors compared to all other antipsychotics. Based on the example of cariprazine, there are several key factors that are needed for a molecule to move from the researcher bench to the patients' bedside, such as targeting an unmet medical need, having a novel mechanism of action, and a smart implementation of development plans.
Collapse
Affiliation(s)
| | | | - György Németh
- Medical Division, Gedeon Richter Plc., 1103 Budapest, Hungary; (Á.B.)
| |
Collapse
|
17
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
18
|
Dashtestani P, Karami L. The molecular mechanism of the effects of the anti-neuropathic ligands on the modulation of the Sigma-2 receptor: An in-silico study. Int J Biol Macromol 2024; 254:127925. [PMID: 37944735 DOI: 10.1016/j.ijbiomac.2023.127925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Neuropathic pain (NP) is a prevalent medical condition that lacks an effective treatment. Recently, the Sigma-2 receptor (S2R) has been proposed as a potential therapeutic target for NP. Some highly-selective S2R ligands (UKH1114, CM398, and YTD) have shown promising results in vivo, but the molecular interaction between the S2R and these ligands has been scarcely investigated. This work explores changes in the S2R upon interaction with the three mentioned ligands using in silico approaches. The results indicated that the ICL1, H1, ICL2, and ECL are the most dynamic regions of S2R in all systems. Binding interaction analysis identified amino acids with significant contribution to the binding free energy. Notably, the UKH1114-S2R simulation trajectory revealed that small alterations in the ICL1, H1, ICL2, and ECL form a new stable opening in the S2R, linking the occluded S2R binding pocket to the endoplasmic reticulum lumen, providing more evidence for the assumptions about the EBP and S2R mechanism of function. Further, the agreement between the membrane parameters in our study and experimental values confirms the validity of the MD simulations. Overall, this study provides new insights into the interaction between anti-NP ligands and the S2R.
Collapse
Affiliation(s)
- Parisa Dashtestani
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
19
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
20
|
Osaka H, Kanazawa T. Emerging trends in antipsychotic and antidepressant drug development: Targeting nonmonoamine receptors and innovative mechanisms. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e157. [PMID: 38868733 PMCID: PMC11114387 DOI: 10.1002/pcn5.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 06/14/2024]
Abstract
The domain of psychiatric drug development is currently witnessing a notable transformation, with a paramount emphasis on targeting nonmonoamine receptors and exploring inventive mechanisms of action. This paper presents an overview of the ongoing advancements in antipsychotic and antidepressant drug development. Historically, antipsychotics predominantly targeted dopamine receptors, but there is now an escalating interest in drugs that act on alternative receptors, exemplified by the TAAR1 receptor. One noteworthy candidate is Ulotaront (SEP-363856), an agent acting as a TAAR1 agonist with 5-HT1A agonist activity, demonstrating promising outcomes in the treatment of schizophrenia, devoid of extrapyramidal symptoms or metabolic side-effects. Similarly, MIN-101 (Roluperidone) and KarXT are currently in development, with its focus on addressing the symptoms in schizophrenia. In the domain of antidepressants, novel therapeutic approaches have surfaced, such as Auvelity, a Food and Drug Administration (FDA)-approved NMDA receptor antagonist synergistically combined with Bupropion to enhance its effects. Another notable candidate is Zuranolone, operating as a GABA A receptor-positive allosteric modulator, showcasing efficacy in treating major depressive disorder (MDD) and postpartum depression. Additionally, TAK-653 (NBI-1065845) and MJI821 (Onfasprodil) have emerged as potential antidepressants targeting AMPA receptors and NMDA receptor 2B (NR2B) negative allosteric modulation, respectively. This paper underscores the transformative potential of these novel drug candidates in psychiatric treatment and their ability to address cases that were previously treatment-resistant. By focusing on nonmonoamine receptors and introducing innovative mechanisms, these drugs offer a promising prospect of improved outcomes for individuals suffering from schizophrenia and MDD. Thus, sustained attention and dedication to the development of such drugs are essential to augmenting the therapeutic options available for psychiatric patients.
Collapse
Affiliation(s)
- Hitoshi Osaka
- Department of NeuropsychiatryOsaka Medical and Pharmaceutical UniversityTakatsuki‐cityOsakaJapan
| | - Tetsufumi Kanazawa
- Department of NeuropsychiatryOsaka Medical and Pharmaceutical UniversityTakatsuki‐cityOsakaJapan
| |
Collapse
|
21
|
Lyngstad SH, Lyne JP, Ihler HM, van der Meer L, Færden A, Melle I. Turning the Spotlight on Apathy: Identification and Treatment in Schizophrenia Spectrum Disorders. Schizophr Bull 2023; 49:1099-1104. [PMID: 37193675 PMCID: PMC10483442 DOI: 10.1093/schbul/sbad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Among negative symptoms, apathy is central to the impairments in real-life functioning in schizophrenia spectrum disorders (SSD). Thus, optimizing treatment for apathy appears key to improve outcomes. In treatment research, however, negative symptoms are typically studied as a unifactorial construct. We, therefore, aim to shed necessary light on the status of apathy identification and treatment in SSD.
Collapse
Affiliation(s)
- Siv Hege Lyngstad
- Nydalen DPS, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - John Paul Lyne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Newcastle Hospital, Wicklow, Ireland
| | - Henrik Myhre Ihler
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisette van der Meer
- Department of Rehabilitation, Lentis Psychiatric Institute, Zuidlaren, The Netherlands
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands
| | - Ann Færden
- Department of Acute Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Rucci P, Caporusso E, Sanmarchi F, Giordano GM, Mucci A, Giuliani L, Pezzella P, Perrottelli A, Bucci P, Rocca P, Rossi A, Bertolino A, Galderisi S, Maj M. The structure stability of negative symptoms: longitudinal network analysis of the Brief Negative Symptom Scale in people with schizophrenia. BJPsych Open 2023; 9:e168. [PMID: 37674282 PMCID: PMC10594087 DOI: 10.1192/bjo.2023.541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The structure of negative symptoms of schizophrenia is still a matter of controversy. Although a two-dimensional model (comprising the expressive deficit dimension and the motivation and pleasure dimension) has gained a large consensus, it has been questioned by recent investigations. AIMS To investigate the latent structure of negative symptoms and its stability over time in people with schizophrenia using network analysis. METHOD Negative symptoms were assessed in 612 people with schizophrenia using the Brief Negative Symptom Scale (BNSS) at baseline and at 4-year follow-up. A network invariance analysis was conducted to investigate changes in the network structure and strength of connections between the two time points. RESULTS The network analysis carried out at baseline and follow-up, supported by community detection analysis, indicated that the BNSS's items aggregate to form four or five distinct domains (avolition/asociality, anhedonia, blunted affect and alogia). The network invariance test indicated that the network structure remained unchanged over time (network invariance test score 0.13; P = 0.169), although its overall strength decreased (6.28 at baseline, 5.79 at follow-up; global strength invariance test score 0.48; P = 0.016). CONCLUSIONS The results lend support to a four- or five-factor model of negative symptoms and indicate overall stability over time. These data have implications for the study of pathophysiological mechanisms and the development of targeted treatments for negative symptoms.
Collapse
Affiliation(s)
- Paola Rucci
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Edoardo Caporusso
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesco Sanmarchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia M. Giordano
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Pasquale Pezzella
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Andrea Perrottelli
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Paola Bucci
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | | |
Collapse
|
23
|
Marder SR, Umbricht D. Negative symptoms in schizophrenia: Newly emerging measurements, pathways, and treatments. Schizophr Res 2023; 258:71-77. [PMID: 37517366 DOI: 10.1016/j.schres.2023.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The negative symptoms of schizophrenia, which often appear earlier than any other symptom, are prominent and clinically relevant in the majority of patients. As a result, interest in their treatment has increased. Patients who exhibit significant negative symptoms have worse functional outcomes than those without, resulting in impairments in occupational, household, and recreational functioning, as well as difficulties in relationships. Yet treatment with currently available medications does not lead to any significant improvements in this core component of schizophrenia. An increased understanding of the pathophysiology underlying negative symptoms and the discovery of novel treatments that do not directly target dopamine offer the potential to develop therapies that may reduce negative symptoms and increase quality of life for patients. The current article will discuss the impact of negative symptoms, outline current measurement tools for the assessment of negative symptoms, and examine how these measures may be improved. Insights into the neural circuitry underlying negative symptoms will be discussed, and promising targets for the development of effective treatments for these symptoms will be identified. As more prospective, large-scale, randomized studies focus on the effects of treatments on negative symptoms, progress in this area is foreseeable. However, improvements in clinical assessment instruments, a better understanding of the underlying neural mechanisms, development of novel treatments with varied targets, and a greater focus on personalized treatment are all important to produce significant benefits for patients with negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Stephen R Marder
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States of America; Veterans Affairs Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, United States of America.
| | - Daniel Umbricht
- Xperimed LLC, Basel, Switzerland; University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Racher M, Carpenter W, Kane JM. A Patient-Clinician Discussion of Current Challenges in Schizophrenia Part 2: Negative Symptoms in Schizophrenia [Podcast]. Neuropsychiatr Dis Treat 2023; 19:1339-1345. [PMID: 37292182 PMCID: PMC10244616 DOI: 10.2147/ndt.s419397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Dr John Kane discusses negative symptoms in schizophrenia alongside fellow expert, Dr William Carpenter, and Mr Matthew Racher, a Certified Recovery Peer Specialist and dedicated advocate for people living with schizophrenia, who is currently studying for his Master of Social Work (MSW) in Miami, Florida. In this podcast, the authors discuss challenges and opportunities faced by patients and clinicians in the assessment and treatment of negative symptoms. They also touch upon emerging therapeutic strategies, with the aim of raising awareness of the unmet therapeutic needs of those living with negative symptoms. Mr Racher provides a unique patient perspective to this discussion, drawing on his own daily experiences of living with negative symptoms, as well as offering positive insights from his recovery from schizophrenia.
Collapse
Affiliation(s)
- Matthew Racher
- National Alliance on Mental Illness, Arlington, Virginia, USA
| | | | - John M Kane
- Zucker School of Medicine at Hofstra/Northwell, New York, USA
| |
Collapse
|
25
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
Li J, Zhang X, Yang H, Yang M, Sun H. Lack of correlation between hippocampal substructure atrophy and attention dysfunction in deficit schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:24. [PMID: 37080983 PMCID: PMC10119300 DOI: 10.1038/s41537-023-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Hippocampal abnormalities are an established finding in the neuroimaging study of schizophrenia. However, no studies have examined the possibility of regional hippocampal abnormalities specific to deficit schizophrenia (DS) and associations with the unique symptoms of this schizophrenia subtype. This study compared 33 DS and 39 non-deficit schizophrenia (NDS) patients and 38 healthy subjects for hippocampal subfield volumetry. Clinical symptoms were assessed by PANSS, cognition by the neurocognitive battery on the day of the MRI scan. The automatic hippocampal segmentation were preprocesses use FreeSurfer 7.2.0. Unfortunately, the associations between neurocognitive scores and hippocampal subfield volumes in the DS group were not significant after the Bonferroni correction. Our results did not support a causal relationship between hippocampal subregional atrophy and cognitive deficits in DS.
Collapse
Affiliation(s)
- Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China
| | - Hongyan Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China.
| |
Collapse
|
27
|
Rabinowitz J, Staner C, Saoud J, Weiser M, Kuchibhatla R, Davidson M, Harvey PD, Luthringer R. Long-term effects of Roluperidone on negative symptoms of schizophrenia. Schizophr Res 2023; 255:9-13. [PMID: 36933291 DOI: 10.1016/j.schres.2023.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/20/2023]
Abstract
Roluperidone has antagonist properties for 5-HT2A, sigma2, α1A- and α1B-adrenergic receptors, but no dopaminergic binding affinities. In 2 randomized controlled trials (RCT), treatment improved negative symptoms of schizophrenia and social functioning among patients with moderate to severe negative symptoms. We report results of the protocol specified analysis of 2 open-label extension studies of 24 and 40 weeks investigating whether improvement of negative symptoms was sustained without significant adverse effects or worsening of psychosis. Following 12-week double-blind phase of both RCTs, patients were eligible to receive monotherapy roluperidone 32 mg/day or 64 mg/day for 24 weeks (trial 1) or 40 weeks (trial 2) in open-label extension study. Trial 1 included 244 patients of whom 142 entered 24-week open-label extension and trial 2 included 513 patients of whom 341 entered 40-week open-label extension. Trial 1 had PANSS negative factor score of Pentagonal Structure Model as primary outcome. Trial 2 had Marder Negative Symptoms Factor Score as primary outcome measure and Personal and Social Performance (PSP) Total score as secondary outcome. During open-label extensions, continued improvements in negative symptoms and on PSP were observed. Overall rate of symptomatic worsening requiring discontinuation of roluperidone and treatment with an antipsychotic was <10 %. Roluperidone was well tolerated with no meaningful changes in vital signs, laboratory values, weight gain, metabolic indices, or extrapyramidal symptoms. Results of 2 open-label extension trials support roluperidone as a treatment of negative symptoms and social functioning deficits in patients with moderate to severe negative symptoms of schizophrenia.
Collapse
Affiliation(s)
| | - Corinne Staner
- PPRS, 4e Av. du Général de Gaulle, 68000 Colmar, Grand EST, France
| | - Jay Saoud
- Minerva Neurosciences, 1601 Trapelo Rd., Watham, MA 02451, USA
| | - Mark Weiser
- University of Tel Aviv School of Medicine, Ramat Aviv 699780, Israel
| | | | - Michael Davidson
- Minerva Neurosciences, 1601 Trapelo Rd., Watham, MA 02451, USA; Department of Psychiatry Nicosia Cyprus, Nicosia University Medical School, 93 Ayiou Nikolaou Street, Egkomi 2408, Cyprus
| | - Phillip D Harvey
- University of Miami Miller School of Medicine, Suite 1450, 1120 NW 14th Street, Miami, FL 33136, USA
| | - Remy Luthringer
- Minerva Neurosciences, 1601 Trapelo Rd., Watham, MA 02451, USA
| |
Collapse
|
28
|
Correll CU, Solmi M, Cortese S, Fava M, Højlund M, Kraemer HC, McIntyre RS, Pine DS, Schneider LS, Kane JM. The future of psychopharmacology: a critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de-risk trial programmes of novel agents. World Psychiatry 2023; 22:48-74. [PMID: 36640403 PMCID: PMC9840514 DOI: 10.1002/wps.21056] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 01/15/2023] Open
Abstract
Despite considerable progress in pharmacotherapy over the past seven decades, many mental disorders remain insufficiently treated. This situation is in part due to the limited knowledge of the pathophysiology of these disorders and the lack of biological markers to stratify and individualize patient selection, but also to a still restricted number of mechanisms of action being targeted in monotherapy or combination/augmentation treatment, as well as to a variety of challenges threatening the successful development and testing of new drugs. In this paper, we first provide an overview of the most promising drugs with innovative mechanisms of action that are undergoing phase 2 or 3 testing for schizophrenia, bipolar disorder, major depressive disorder, anxiety and trauma-related disorders, substance use disorders, and dementia. Promising repurposing of established medications for new psychiatric indications, as well as variations in the modulation of dopamine, noradrenaline and serotonin receptor functioning, are also considered. We then critically discuss the clinical trial parameters that need to be considered in depth when developing and testing new pharmacological agents for the treatment of mental disorders. Hurdles and perils threatening success of new drug development and testing include inadequacy and imprecision of inclusion/exclusion criteria and ratings, sub-optimally suited clinical trial participants, multiple factors contributing to a large/increasing placebo effect, and problems with statistical analyses. This information should be considered in order to de-risk trial programmes of novel agents or known agents for novel psychiatric indications, increasing their chances of success.
Collapse
Affiliation(s)
- Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Marco Solmi
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikkel Højlund
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
- Mental Health Services in the Region of Southern Denmark, Department of Psychiatry Aabenraa, Aabenraa, Denmark
| | - Helena C Kraemer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Cupertino, CA, USA
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Daniel S Pine
- Section on Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Lon S Schneider
- Department of Psychiatry and Behavioral Sciences, and Department of Neurology, Keck School of Medicine, and L. Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - John M Kane
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
29
|
Maroney M. Management of cognitive and negative symptoms in schizophrenia. Ment Health Clin 2022; 12:282-299. [DOI: 10.9740/mhc.2022.10.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Currently available antipsychotics provide only modest benefit in managing the cognitive and negative symptoms of schizophrenia even though these symptoms are often the most impairing in patients' daily lives. Certain antipsychotics may have slight benefits over others, and several nonpharmacologic and pharmacologic adjunctive treatments have been evaluated in recent clinical trials. Recently published meta-analyses and clinical studies of such treatments are reviewed. Potential strategies to manage cognitive and negative symptoms, including deprescribing of medications that may exacerbate these symptoms, are described using theoretical case examples.
Collapse
Affiliation(s)
- Megan Maroney
- 1 (Corresponding author) Clinical Associate Professor, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey; Clinical Psychiatric Pharmacist, Monmouth Medical Center, Long Branch, New Jersey,
| |
Collapse
|
30
|
Abstract
UNLABELLED This continuing education supplement is jointly provided by Medical Education Resources and CMEology. The supplement is supported by an independent educational grant from Sunovion Pharmaceuticals Inc. It was edited and peer reviewed by the Journal of Clinical Psychopharmacology.After reviewing the learning objectives and reading the supplement, please complete the Activity Evaluation/Credit Request form online at https://www.cmesurvey.site/TAAR1. ABSTRACT All currently available antipsychotics work via essentially the same mechanism: by antagonizing the dopamine D2 receptor. However, schizophrenia is an extremely heterogeneous condition, and antipsychotics do not adequately control symptoms for all patients. Negative and cognitive symptoms are especially difficult to manage with existing medications. Therefore, antipsychotic agents with novel mechanisms of action are urgently needed. Recently, a phase 2 clinical trial and extension study demonstrated that, relative to placebo, the trace amine-associated receptor 1 (TAAR1) agonist ulotaront was effective at controlling the positive, negative, and cognitive symptoms of schizophrenia. In addition, ulotaront seems to lack the weight gain, metabolic issues, and extrapyramidal symptoms associated with traditional antipsychotics. This agent is currently undergoing multiple phase 3 trials for the treatment of schizophrenia. Another TAAR1 agonist, ralmitaront, is being investigated for the treatment of schizophrenia and schizoaffective disorders. Two phase 2 clinical trials are underway, evaluating ralmitaront both as a monotherapy and an add-on therapy to traditional antipsychotics. In this supplement, we review the biologic, preclinical, and clinical data available for TAAR1 agonists, so that if and when they are approved for the treatment of schizophrenia, psychiatry specialists will be ready to use them to optimize patient outcomes. We also briefly review other emerging therapies in late-stage development for the treatment of schizophrenia.
Collapse
|
31
|
Deckler E, Ferland M, Brazis S, Mayer MR, Carlson M, Kantrowitz JT. Challenges and Strategies for the Recruitment of Patients With Schizophrenia in a Research Setting. Int J Neuropsychopharmacol 2022; 25:924-932. [PMID: 36037521 PMCID: PMC9452184 DOI: 10.1093/ijnp/pyac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND With numerous potentially novel targets and pharmacodynamic biomarkers for schizophrenia entering late-stage testing, the next decade will bring an urgent need for well-conducted clinical trials. A critically important step for the successful execution of clinical research trials is timely and appropriate recruitment of participants. Patients with schizophrenia can be especially challenging to recruit because of the disability inherent in psychotic spectrum disorders. Research on how best to recruit for clinical trials is understudied. Clearly defining a model for recruitment procedures would be valuable for researchers and, by extension, the patient populations that may benefit from the insight gained by future clinical research. METHODS This article aims to offer suggestions for recruitment based on years of experience at the Columbia Schizophrenia Research Clinic (CSRC), a hub for clinical trials focusing on the etiology and treatment of various psychotic disorders. RESULTS The present report provides practical, step-by-step recommendations for implementing the highly effective CSRC recruitment model, including the benefits of 2 recruitment initiatives that were instituted in 2018: hiring a dedicated recruiter and targeted chart reviews at affiliated clinics. Other topics discussed include our umbrella protocol and database, advertising, and tips for collaborating with external sites. CONCLUSIONS Despite ongoing complications from coronavirus disease 2019, these strategies have been successful, increasing the rate of both consents and study enrollments by approximately 40% and enabling the CSRC to conduct multiple studies simultaneously.
Collapse
Affiliation(s)
| | | | | | | | - Marlene Carlson
- New York State Psychiatric Institute, New York, USA,Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Joshua T Kantrowitz
- Correspondence: Joshua Kantrowitz MD, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032 ()
| |
Collapse
|
32
|
Meyer-Lindenberg A, Nielsen J, Such P, Lemming OM, Zambori J, Buller R, der Goltz CV. A double-blind, randomized, placebo-controlled proof of concept study of the efficacy and safety of Lu AF11167 for persistent negative symptoms in people with schizophrenia. Eur Neuropsychopharmacol 2022; 61:4-14. [PMID: 35704951 DOI: 10.1016/j.euroneuro.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
Lu AF11167 is a selective, high-affinity inhibitor of PDE10A that modulates dopamine D1 and D2 receptor-mediated intraneuronal signalling without binding to these receptors. This randomized, double-blind, parallel-group, placebo-controlled study (NCT03793712) with open-label extension (NCT03929497) evaluated the efficacy of two fixed-flexible doses (1-2mg/day and 3-4mg/day) of Lu AF11167 in stable, non-acute patients with schizophrenia and persistent prominent negative symptoms. The studies were discontinued following a futility analysis of the double-blind study, and we report data collected up to study termination. Of the 210 patients screened, 162 were randomized, 111 completed the double-blind study and 96 entered the open-label study before early termination. The withdrawal rate due to impending relapse was low and comparable across treatment groups (n = 2-4 per group in the double-blind study and n = 1 in the open-label extension). Double-blind treatment with Lu AF11167 3-4mg was not superior to placebo in the reduction of Brief Negative Symptom Scale (BNSS) total scores from Baseline to Week 12 (primary endpoint); adjusted mean changes were -6.8 with placebo, -5.7 with Lu AF11167 1-2 mg group and -6.0 with Lu AF11167 3-4mg. Treatment with Lu AF11167 1-2mg also failed to separate from placebo on the primary endpoint. Neither dose group showed significant improvements versus placebo on any of the secondary efficacy measures exploring effect of treatment on overall symptomology, negative symptoms, positive symptoms, or functioning. Administration of Lu AF11167 was safe and well tolerated and adverse events were not a major reason for withdrawal from the study.
Collapse
Affiliation(s)
- Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Giordano GM, Caporusso E, Pezzella P, Galderisi S. Updated perspectives on the clinical significance of negative symptoms in patients with schizophrenia. Expert Rev Neurother 2022; 22:541-555. [PMID: 35758871 DOI: 10.1080/14737175.2022.2092402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Negative symptoms in schizophrenia are associated with poor response to available treatments, poor quality of life, and functional outcome. Therefore, they represent a substantial burden for people with schizophrenia, their families, and health-care systems. AREAS COVERED In this manuscript, we will provide an update on the conceptualization, assessment, and treatment of this complex psychopathological dimension of schizophrenia. EXPERT OPINION Despite the progress in the conceptualization of negative symptoms and in the development of state-of-the-art assessment instruments made in the last decades, these symptoms are still poorly recognized, and not always assessed in line with current conceptualization. Every effort should be made to disseminate the current knowledge on negative symptoms, on their assessment instruments and available treatments whose efficacy is supported by research evidence. Longitudinal studies should be promoted to evaluate the natural course of negative symptoms, improve our ability to identify the different sources of secondary negative symptoms, provide effective interventions, and target primary and persistent negative symptoms with innovative treatment strategies. Further research is needed to identify pathophysiological mechanisms of primary negative symptoms and foster the development of new treatments.
Collapse
|
34
|
Czobor P, Kakuszi B, Bitter I. Placebo Response in Trials of Negative Symptoms in Schizophrenia: A Critical Reassessment of the Evidence. Schizophr Bull 2022; 48:1228-1240. [PMID: 35713342 PMCID: PMC9673255 DOI: 10.1093/schbul/sbac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Summarizing evidence from clinical trials of patients with schizophrenia with predominant or prominent negative symptoms (NS), a prior meta-analysis reported a large placebo effect in negative symptoms (Cohen's d = 2.909). Assuming that such an effect was clinically not plausible, we performed a critical re-assessment and an update of the previous results with newly available data from add-on and monotherapy studies. STUDY DESIGN Random-effect meta/regression analysis of trials that focused on predominant or prominent NS; and adopted a double-blind, randomized, placebo-controlled design. The final pooled meta-analytic database, based on the available add-on and monotherapy studies combined, included 24 publications containing data on a total of 25 studies (21 add-on, 4 monotherapy). STUDY RESULTS The pooled overall estimate for the placebo effect from the primary analysis for all included studies had a medium effect size, with a Cohen's d value of 0.6444 (SE = 0.091). The estimates were similar in the add-on and monotherapy studies. Meta-regression indicated that the high placebo response was significantly associated with clinical trial characteristics, including the high ratio of patients assigned to active vs. placebo treatment and short trial duration. CONCLUSIONS These results represent a major downward correction for a current effect size estimate of the placebo response in the negative symptoms of schizophrenia. Our findings also pinpoint certain clinical trial characteristics, which may serve as important predictors of the placebo response. The knowledge of these factors can have important implications for drug development and trial design for new drugs for negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Pál Czobor
- To whom correspondence should be addressed; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Balassa u. 6. 1083, Hungary; tel: +36-20-825-0177, fax: +36-1-210-0336, e-mail:
| | - Brigitta Kakuszi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - István Bitter
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
35
|
Veselinović T, Neuner I. Progress and Pitfalls in Developing Agents to Treat Neurocognitive Deficits Associated with Schizophrenia. CNS Drugs 2022; 36:819-858. [PMID: 35831706 PMCID: PMC9345797 DOI: 10.1007/s40263-022-00935-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 12/11/2022]
Abstract
Cognitive impairments associated with schizophrenia (CIAS) represent a central element of the symptomatology of this severe mental disorder. CIAS substantially determine the disease prognosis and hardly, if at all, respond to treatment with currently available antipsychotics. Remarkably, all drugs presently approved for the treatment of schizophrenia are, to varying degrees, dopamine D2/D3 receptor blockers. In turn, rapidly growing evidence suggests the immense significance of systems other than the dopaminergic system in the genesis of CIAS. Accordingly, current efforts addressing the unmet needs of patients with schizophrenia are primarily based on interventions in other non-dopaminergic systems. In this review article, we provide a brief overview of the available evidence on the importance of specific systems in the development of CIAS. In addition, we describe the promising targets for the development of new drugs that have been used so far. In doing so, we present the most important candidates that have been investigated in the field of the specific systems in recent years and present a summary of the results available at the time of drafting this review (May 2022), as well as the currently ongoing studies.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Aachen, Germany
| |
Collapse
|