1
|
Vinke LN, Avanaki M, Jeffrey C, Harikumar A, Mow JL, Tootell RBH, DeTore NR, Holt DJ. Neural correlates of personal space regulation in psychosis: role of the inferior parietal cortex. Mol Psychiatry 2025:10.1038/s41380-025-02906-4. [PMID: 39900675 DOI: 10.1038/s41380-025-02906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Regulation of interpersonal distance or "personal space" (PS; the space near the body into which others cannot intrude without eliciting discomfort) is a largely unconscious channel of non-verbal social communication used by many species including humans. PS abnormalities have been observed in neuropsychiatric illnesses, including schizophrenia. However, the neurophysiological basis of these abnormalities remains unknown. To investigate this question, in this study, functional magnetic resonance imaging (fMRI) data were collected while individuals with psychotic disorders (PD; n = 37) and demographically-matched healthy control (HC) subjects (n = 60) viewed images of faces moving towards or away from them. Responses of a frontoparietal-subcortical network of brain regions were measured to the approaching versus the withdrawing face stimuli, and resting-state fMRI data were also collected. PS size was measured using the classical Stop Distance Procedure. As expected, the PD group demonstrated a significantly larger PS compared to the HC group (P = 0.002). In both groups, a network of parietal and frontal cortical regions showed greater approach-biased responses, whereas subcortical areas (the striatum, amygdala and hippocampus) showed greater withdrawal-biased responses. Moreover, within the PD (but not the HC) group, approach-biased activation of the inferior parietal cortex (IPC) and functional connectivity between the IPC and the ventral/limbic striatum were significantly correlated with PS size. This study provides evidence that PS abnormalities in psychotic illness involve disrupted function and connectivity of the PS network. Such brain-behavior relationships may serve as objective treatment targets for novel interventions for schizophrenia and related psychotic illnesses.
Collapse
Affiliation(s)
- Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mona Avanaki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clayton Jeffrey
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Amritha Harikumar
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica L Mow
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Roger B H Tootell
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole R DeTore
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Feola B, Jenkins M, Sheffield JM, Blackford JU. Fear and Anxiety in Schizophrenia: A Focus on Development, Assessment, and Mechanisms. Curr Top Behav Neurosci 2024. [PMID: 39680318 DOI: 10.1007/7854_2024_558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In people with schizophrenia, anxiety is highly prevalent and related to numerous negative outcomes; unfortunately, anxiety is both underreported and understudied in schizophrenia. The current review highlights the importance and utility of assessing anxiety in schizophrenia by addressing four main questions: (1) What does anxiety look like throughout the development of schizophrenia?; (2) How do we measure anxiety in schizophrenia?; (3) What are the mechanisms underlying anxiety in schizophrenia; (4) How do we treat anxiety in schizophrenia? We also provide take-home points and propose future directions for the field. We hope this emphasis on the critical role of anxiety in schizophrenia will help researchers appropriately identify the presence of anxiety, better address these symptoms, and improve the lives of people at risk for or experiencing psychosis.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Marren Jenkins
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Xu R, Zhang X, Zhou S, Guo L, Mo F, Ma H, Zhu J, Qian Y. Brain structural damage networks at different stages of schizophrenia. Psychol Med 2024:1-11. [PMID: 39660416 DOI: 10.1017/s0033291724003088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia. METHODS We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks. RESULTS Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time. CONCLUSIONS Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
Collapse
Affiliation(s)
- Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Lixin Guo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Haining Ma
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| |
Collapse
|
4
|
Buck Z, Michalchyshyn E, Nishat A, Lisi M, Huang Y, Liu H, Makarenka A, Plyngam CP, Windle A, Yang Z, Walther DB. Aesthetic processing in neurodiverse populations. Neurosci Biobehav Rev 2024; 166:105878. [PMID: 39260715 DOI: 10.1016/j.neubiorev.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Neurodiversity is a perspective on cognition which suggests a non-pathological view of individual cognitive differences. Aesthetics research on neurodivergent brains has generally been limited to neuropsychological cases. Although this research has been integral to establishing the neurological correlates of aesthetic experience, it is crucial to expand this paradigm to more psychologically complex disorders. We offer a review of research on aesthetic preference in neurodivergent brains beyond neuropsychological cases: across populations with psychotic disorder, anhedonia and depression, anxiety disorder, and autism. We identify stable patterns of aesthetic bias in these populations, relate these biases to symptoms at perceptual, emotional, and evaluative levels of cognition, review relevant neurological correlates, and connect this evidence to current neuroaesthetics theory. Critically, we synthesize the reviewed evidence and discuss its relevance for three brain networks regularly implicated in aesthetic processing: the mesocorticolimbic reward circuit, frontolimbic connections, and the default mode network. Finally, we propose that broadening the subject populations for neuroaesthetics research to include neurodiverse populations is instrumental for yielding new insights into aesthetic processing in the brain.
Collapse
Affiliation(s)
- Zach Buck
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Amna Nishat
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Mikayla Lisi
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Yichen Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Hanyu Liu
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Arina Makarenka
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Abigail Windle
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Zhen Yang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Dirk B Walther
- Department of Psychology, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Feola B, Beermann A, Manzanarez Felix K, Coleman M, Bouix S, Holt DJ, Lewandowski KE, Öngür D, Breier A, Shenton ME, Heckers S, Brady RO, Blackford JU, Ward HB. Data-driven, connectome-wide analysis identifies psychosis-specific brain correlates of fear and anxiety. Mol Psychiatry 2024; 29:2601-2610. [PMID: 38503924 PMCID: PMC11411017 DOI: 10.1038/s41380-024-02512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Decades of psychosis research highlight the prevalence and the clinical significance of negative emotions, such as fear and anxiety. Translational evidence demonstrates the pivotal role of the amygdala in fear and anxiety. However, most of these approaches have used hypothesis-driven analyses with predefined regions of interest. A data-driven analysis may provide a complimentary, unbiased approach to identifying brain correlates of fear and anxiety. The aim of the current study was to identify the brain basis of fear and anxiety in early psychosis and controls using a data-driven approach. We analyzed data from the Human Connectome Project for Early Psychosis, a multi-site study of 125 people with psychosis and 58 controls with resting-state fMRI and clinical characterization. Multivariate pattern analysis of whole-connectome data was used to identify shared and psychosis-specific brain correlates of fear and anxiety using the NIH Toolbox Fear-Affect and Fear-Somatic Arousal scales. We then examined clinical correlations of Fear-Affect scores and connectivity patterns. Individuals with psychosis had higher levels of Fear-Affect scores than controls (p < 0.05). The data-driven analysis identified a cluster encompassing the amygdala and hippocampus where connectivity was correlated with Fear-Affect score (p < 0.005) in the entire sample. The strongest correlate of Fear-Affect was between this cluster and the anterior insula and stronger connectivity was associated with higher Fear-Affect scores (r = 0.31, p = 0.0003). The multivariate pattern analysis also identified a psychosis-specific correlate of Fear-Affect score between the amygdala/hippocampus cluster and a cluster in the ventromedial prefrontal cortex (VMPFC). Higher Fear-Affect scores were correlated with stronger amygdala/hippocampal-VMPFC connectivity in the early psychosis group (r = 0.33, p = 0.002), but not in controls (r = -0.15, p = 0.28). The current study provides evidence for the transdiagnostic role of the amygdala, hippocampus, and anterior insula in the neural basis of fear and anxiety and suggests a psychosis-specific relationship between fear and anxiety symptoms and amygdala/hippocampal-VMPFC connectivity. Our novel data-driven approach identifies novel, psychosis-specific treatment targets for fear and anxiety symptoms and provides complimentary evidence to decades of hypothesis-driven approaches examining the brain basis of threat processing.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam Beermann
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Michael Coleman
- Department of Psychiatry, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, QC, Canada
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School Boston, Boston, MA, USA
| | | | - Dost Öngür
- McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roscoe O Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Urbano Blackford
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Heather Burrell Ward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Feola B, Flook EA, Seo DJ, Fox V, Oler J, Heckers S, Woodward ND, Blackford JU. Altered brain and physiological stress responses in early psychosis. Schizophr Res 2024; 271:112-119. [PMID: 39024959 DOI: 10.1016/j.schres.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Stress is proposed to be a crucial factor in the onset and presentation of psychosis. The early stage of psychosis provides a window into how stress interacts with the emergence of psychosis. Yet, how people with early psychosis respond to stress remains unclear. The current study examined how stress responses (brain, physiological, self-report) differ in early psychosis. Forty participants (20 early psychosis [EP], 20 healthy controls [HC]) completed a stress task in the scanner that involved viewing stressful and neutral-relaxing images. Physiological responses (cortisol, heart rate) and self-report of stress were also assessed. Region of Interest analyses were conducted with brain regions previously shown to be activated during the stress task (amygdala, hippocampus, striatum, hypothalamus, prefrontal cortex [dorsolateral, ventrolateral, medial orbital]). Linear mixed models were used to test for effects of group (EP, HC) and emotion (stress, neutral-relaxing). HC had higher hippocampus activation to stress versus neutral-relaxing conditions while EP did not show a difference (group x emotion interaction, p = 0.04). There were also significant main effects of group with EP having higher amygdala activation (p = 0.01), ventrolateral prefrontal cortex activation (vlPFC, p = 0.03), self-report of stress (p = 0.01), and heart rate (p < 0.001). Our study found preliminary evidence that people with early psychosis showed heightened response to stressful and non-threatening situations, across multiple levels of stress responses. Our findings suggest a novel perspective on stress alterations in early psychosis and highlight the importance of considering both stressful and non-stressful situations.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America.
| | | | - Dongju J Seo
- Yale School of Medicine, United States of America
| | - Victoria Fox
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America
| | - Jesse Oler
- University of Miami School of Medicine, United States of America
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America
| | | |
Collapse
|
7
|
Varkevisser T, Geuze E, van Honk J. Amygdala fMRI-A Critical Appraisal of the Extant Literature. Neurosci Insights 2024; 19:26331055241270591. [PMID: 39148643 PMCID: PMC11325331 DOI: 10.1177/26331055241270591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Even before the advent of fMRI, the amygdala occupied a central space in the affective neurosciences. Yet this amygdala-centred view on emotion processing gained even wider acceptance after the inception of fMRI in the early 1990s, a landmark that triggered a goldrush of fMRI studies targeting the amygdala in vivo. Initially, this amygdala fMRI research was mostly confined to task-activation studies measuring the magnitude of the amygdala's response to emotional stimuli. Later, interest began to shift more towards the study of the amygdala's resting-state functional connectivity and task-based psychophysiological interactions. Later still, the test-retest reliability of amygdala fMRI came under closer scrutiny, while at the same time, amygdala-based real-time fMRI neurofeedback gained widespread popularity. Each of these major subdomains of amygdala fMRI research has left its marks on the field of affective neuroscience at large. The purpose of this review is to provide a critical assessment of this literature. By integrating the insights garnered by these research branches, we aim to answer the question: What part (if any) can amygdala fMRI still play within the current landscape of affective neuroscience? Our findings show that serious questions can be raised with regard to both the reliability and validity of amygdala fMRI. These conclusions force us to cast doubt on the continued viability of amygdala fMRI as a core pilar of the affective neurosciences.
Collapse
Affiliation(s)
- Tim Varkevisser
- University Medical Center, Utrecht, The Netherlands
- Brain Research and Innovation Center, Ministry of Defence, Utrecht, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| | - Elbert Geuze
- University Medical Center, Utrecht, The Netherlands
- Brain Research and Innovation Center, Ministry of Defence, Utrecht, The Netherlands
| | - Jack van Honk
- Utrecht University, Utrecht, The Netherlands
- University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Liang J, Chen L, Li Y, Chen Y, Yuan L, Qiu Y, Ma S, Fan F, Cheng Y. Unraveling the Prefrontal Cortex-Basolateral Amygdala Pathway's Role on Schizophrenia's Cognitive Impairments: A Multimodal Study in Patients and Mouse Models. Schizophr Bull 2024; 50:913-923. [PMID: 38811350 PMCID: PMC11283200 DOI: 10.1093/schbul/sbae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND HYPOTHESIS This study investigated the role of the medial prefrontal cortex (mPFC)-basolateral amygdala (BLA) pathway in schizophrenia (SCZ)-related cognitive impairments using various techniques. STUDY DESIGN This study utilized clinical scales, magnetic resonance imaging, single-cell RNA sequencing, and optogenetics to investigate the mPFC-BLA pathway in SCZ patients. In the mouse model, 6-week-old methylazoxymethanol acetate-induced mice demonstrated significant cognitive deficits, which were addressed through stereotaxic injections of an adeno-associated viral vector to unveil the neural connection between the mPFC and BLA. STUDY RESULTS Significant disparities in brain volume and neural activity, particularly in the dorsolateral prefrontal cortex (DLPFC) and BLA regions, were found between SCZ patients and healthy controls. Additionally, we observed correlations indicating that reduced volumes of the DLPFC and BLA were associated with lower cognitive function scores. Activation of the mPFC-BLA pathway notably improved cognitive performance in the SCZ model mice, with the targeting of excitatory or inhibitory neurons alone failing to replicate this effect. Single-cell transcriptomic profiling revealed gene expression differences in excitatory and inhibitory neurons in the BLA of SCZ model mice. Notably, genes differentially expressed in the BLA of these model mice were also found in the blood exosomes of SCZ patients. CONCLUSIONS Our research provides a comprehensive understanding of the role of the PFC-BLA pathway in SCZ, underscoring its significance in cognitive impairment and offering novel diagnostic and therapeutic avenues. Additionally, our research highlights the potential of blood exosomal mRNAs as noninvasive biomarkers for SCZ diagnosis, underscoring the clinical feasibility and utility of this method.
Collapse
Affiliation(s)
- Jiaquan Liang
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- The Third People’s Hospital of Foshan, Guangdong, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yue Qiu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| |
Collapse
|
9
|
Toro VD, Antonucci LA, Quarto T, Passiatore R, Fazio L, Ursini G, Chen Q, Masellis R, Torretta S, Sportelli L, Kikidis GC, Massari F, D'Ambrosio E, Rampino A, Pergola G, Weinberger DR, Bertolino A, Blasi G. The interaction between early life complications and a polygenic risk score for schizophrenia is associated with brain activity during emotion processing in healthy participants. Psychol Med 2024; 54:1876-1885. [PMID: 38305128 DOI: 10.1017/s0033291724000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND Previous evidence suggests that early life complications (ELCs) interact with polygenic risk for schizophrenia (SCZ) in increasing risk for the disease. However, no studies have investigated this interaction on neurobiological phenotypes. Among those, anomalous emotion-related brain activity has been reported in SCZ, even if evidence of its link with SCZ-related genetic risk is not solid. Indeed, it is possible this relationship is influenced by non-genetic risk factors. Thus, this study investigated the interaction between SCZ-related polygenic risk and ELCs on emotion-related brain activity. METHODS 169 healthy participants (HP) in a discovery and 113 HP in a replication sample underwent functional magnetic resonance imaging (fMRI) during emotion processing, were categorized for history of ELCs and genome-wide genotyped. Polygenic risk scores (PRSs) were computed using SCZ-associated variants considering the most recent genome-wide association study. Furthermore, 75 patients with SCZ also underwent fMRI during emotion processing to verify consistency of their brain activity patterns with those associated with risk factors for SCZ in HP. RESULTS Results in the discovery and replication samples indicated no effect of PRSs, but an interaction between PRS and ELCs in left ventrolateral prefrontal cortex (VLPFC), where the greater the activity, the greater PRS only in presence of ELCs. Moreover, SCZ had greater VLPFC response than HP. CONCLUSIONS These results suggest that emotion-related VLPFC response lies in the path from genetic and non-genetic risk factors to the clinical presentation of SCZ, and may implicate an updated concept of intermediate phenotype considering early non-genetic factors of risk for SCZ.
Collapse
Affiliation(s)
- Veronica Debora Toro
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Linda A Antonucci
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Tiziana Quarto
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Roberta Passiatore
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Leonardo Fazio
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Department of Medicine and Surgery, Libera Università Mediterranea "Giuseppe Degennaro", Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Rita Masellis
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Silvia Torretta
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Leonardo Sportelli
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluca Christos Kikidis
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Massari
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Enrico D'Ambrosio
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Antonio Rampino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Giulio Pergola
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Alessandro Bertolino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Giuseppe Blasi
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
10
|
Kent J, Pinkham A. Cerebral and cerebellar correlates of social cognitive impairment in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110850. [PMID: 37657639 DOI: 10.1016/j.pnpbp.2023.110850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Social cognition is a broad construct encompassing the ways in which individuals perceive, process, and use information about other people. Social cognition involves both lower- and higher-level processes such as emotion recognition and theory of mind, respectively. Social cognitive impairments have been repeatedly demonstrated in schizophrenia spectrum illnesses and, crucially, are related to functional outcomes. In this review, we summarize the literature investigating the brain networks implicated in social cognitive impairments in schizophrenia spectrum illnesses. In addition to cortical and limbic loci and networks, we also discuss evidence for cerebellar contributions to social cognitive impairment in this population. We conclude by synthesizing these two literatures, with an emphasis on current knowledge gaps, particularly in regard to cerebellar influences, and future directions.
Collapse
Affiliation(s)
- Jerillyn Kent
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Amy Pinkham
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
11
|
Feola B, Moussa-Tooks AB, Sheffield JM, Heckers S, Woodward ND, Blackford JU. Threat Responses in Schizophrenia: A Negative Valence Systems Framework. Curr Psychiatry Rep 2024; 26:9-25. [PMID: 38183600 PMCID: PMC10962319 DOI: 10.1007/s11920-023-01479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE OF REVIEW Emotions are prominent in theories and accounts of schizophrenia but are largely understudied compared to cognition. Utilizing the Research Domain Criteria (RDoC) Negative Valence Systems framework, we review the current knowledge of emotions in schizophrenia. Given the pivotal role of threat responses in theories of schizophrenia and the substantial evidence of altered threat responses, we focus on three components of Negative Valence Systems tied to threat responses: responses to acute threat, responses to potential threat, and sustained threat. RECENT FINDINGS Individuals with schizophrenia show altered responses to neutral stimuli during acute threat, bed nucleus of the stria terminalis connectivity in response to potential threat, and threat responses associated with sustained threat. Our review concludes that Negative Valence Systems are altered in schizophrenia; however, the level and evidence of alterations vary across the types of threat responses. We suggest avenues for future research to further understand and intervene on threat responses in schizophrenia.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA.
| | - Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Jennifer U Blackford
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Fritze S, Brandt GA, Kubera KM, Schmitgen MM, Northoff G, Geiger-Primo LS, Tost H, Meyer-Lindenberg A, Wolf RC, Hirjak D. Structural alterations of amygdala and hypothalamus contribute to catatonia. Schizophr Res 2024; 263:122-130. [PMID: 35597738 DOI: 10.1016/j.schres.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
At present, current diagnostic criteria and systems neglect affective symptom expression in catatonia. This potentially serious omission could explain why putative contributions of limbic system structures, such as amygdala, hippocampus or hypothalamus, to catatonia in schizophrenia spectrum disorders (SSD) have been scarcely investigated so far. To determine whether topographical alterations of the amygdala, hippocampus and hypothalamus contribute to catatonia in SSD patients, we conducted structural magnetic resonance imaging (MRI) of SSD patients with (SSD-Cat, n = 30) and without (SSD-nonCat, n = 28) catatonia as defined by a Northoff Catatonia Rating Scale (NCRS) total score of ≥3 and =0, respectively, in comparison with healthy controls (n = 20). FreeSurfer v7.2 was used for automated segmentation of the amygdala and its 9 nuclei, hippocampus and its 21 subfields and hypothalamus and its associated 5 subunits. SSD-Cat had significantly smaller anterior inferior hypothalamus, cortical nucleus of amygdala, and hippocampal fimbria volumes when compared to SSD-nonCat. SSD-Cat had significantly smaller amygdala, hippocampus and hypothalamus whole and subunit volumes when compared to healthy controls. In SSD-Cat according to DSM-IV-TR (n = 44), we identified positive correlations between Brief Psychiatric Rating Scale (BPRS) item #2 (reflecting anxiety) and respective amygdala nuclei as well as negative correlation between NCRS behavioral score and hippocampus subiculum head. The lower volumes of respective limbic structures involved in affect regulation may point towards central affective pathomechanisms in catatonia.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Lena S Geiger-Primo
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
13
|
Mąka S, Chrustowicz M, Okruszek Ł. Can we dissociate hypervigilance to social threats from altered perceptual decision-making processes in lonely individuals? An exploration with Drift Diffusion Modeling and event-related potentials. Psychophysiology 2023; 60:e14406. [PMID: 37547994 DOI: 10.1111/psyp.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
It has been hypothesized that lonely individuals demonstrate hypervigilance toward social threats. However, recent studies have raised doubts about the reliability of tasks commonly used to measure attentional biases toward threats. Two alternative approaches have been suggested to overcome the limitations of traditional analysis of attentional bias. First, the neurophysiological indicators of orienting to threats were shown to have superior psychometric characteristics compared to overt measures of behavioral performance. The second approach involves utilizing computational modeling to isolate latent components corresponding to specific cognitive mechanisms from observable data. To test the usefulness of these approaches in loneliness research, we analyzed behavioral and electroencephalographic (EEG) data from 26 lonely and 26 non-lonely participants who performed a dot-probe task using a computational modeling approach. We applied the Drift Diffusion Model (DDM) and extracted N2pc-an event-related potential that serves as an indicator of spatial attention. No evidence for social threat hypervigilance has been found in DDM parameters nor in N2pc characteristics in the current study. However, we did observe decreased drift rate and increased variability in drift rate between trials within the lonely group, indicating reduced efficiency in perceptual decision-making among lonely individuals. These effects were not detected using standard behavioral measures used in the dot-probe paradigm. Given that DDM indicators were sensitive to differences in perceptual discrimination between the two groups, even when no overt differences were found in standard behavioral measures, it may be postulated that computational approaches offer a more comprehensive understanding of cognitive processes.
Collapse
Affiliation(s)
- Szymon Mąka
- Social Neuroscience Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Chrustowicz
- Social Neuroscience Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Okruszek
- Social Neuroscience Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Osborne KJ, Zhang W, Gupta T, Farrens J, Geiger M, Kraus B, Krugel C, Nusslock R, Kappenman ES, Mittal VA. Clinical high risk for psychosis syndrome is associated with reduced neural responding to unpleasant images. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:1060-1071. [PMID: 37796541 PMCID: PMC11812458 DOI: 10.1037/abn0000862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Deficits in emotion processing are core features of psychotic disorders. Electrophysiology research in schizophrenia suggests deficits in sustained engagement with emotional content (indexed by the late positive potential [LPP]) may contribute to emotion processing impairments. Despite similar behavioral emotion processing dysfunction in those at clinical high risk (CHR) for psychosis, limited research has examined neural mechanisms of impaired emotion processing in the high-risk period, where research can inform risk models. To examine mechanisms of emotion processing deficits in those at CHR for psychosis, the present study used a passive viewing task to elicit the LPP in response to emotionally engaging and neutral stimuli in 28 CHR and 32 control participants (60% female). Relative to controls, CHR participants showed reduced LPP amplitude when viewing unpleasant images (d = 0.75, p = .005) but similar LPP amplitude in response to both neutral (d = 0.35, p = .19) and pleasant images (d = 0.31, p = .24). This pattern suggests that individuals at CHR for psychosis exhibit a deficit in sustained engagement with unpleasant stimuli. Clinical and trait questionnaires were administered to examine potential exploratory explanations for group differences in LPP amplitude. Consistent with evidence suggesting LPP amplitude reflects engagement of approach/avoidance motivational systems, greater LPP amplitude was associated with greater trait-level behavioral avoidance in control participants (r = .42, p = .032) but not CHR participants (r = -.21, p = .40). Together, the present research is consistent with LPP studies in psychosis and implicates reduced sustained engagement with emotional content in the high-risk period. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Wendy Zhang
- San Diego State University, Department of Psychology, San Diego, CA, USA
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Tina Gupta
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Jaclyn Farrens
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - McKena Geiger
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - Brian Kraus
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Chloe Krugel
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Robin Nusslock
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Emily S. Kappenman
- San Diego State University, Department of Psychology, San Diego, CA, USA
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
15
|
Suk JW, Blair RJR, Vaughan B, Lerdahl A, Garvey WF, Edwards R, Leibenluft E, Hwang S. Mediating effect of amygdala activity on response to fear vs. happiness in youth with significant levels of irritability and disruptive mood and behavior disorders. Front Behav Neurosci 2023; 17:1204574. [PMID: 37901308 PMCID: PMC10602729 DOI: 10.3389/fnbeh.2023.1204574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Irritability, characterized by a tendency to exhibit increased anger, is a common clinical problem in youth. Irritability is a significant clinical issue in youth with various psychiatric diagnoses, especially disruptive behavior, and mood disorders (Attention-Deficit/Hyperactivity Disorder, Oppositional Defiant Disorder, Conduct Disorder, and Disruptive Mood Dysregulation Disorder). Although there have been previous studies focusing on functional alteration in the amygdala related to irritability, there is no comprehensive model between emotional, neuronal, and behavioral characteristics. Methods Using an functional magnetic resonance imaging (fMRI) procedure, we investigated the relationships between behavioral irritability, selective impairments in processing facial emotions and the amygdala neural response in youth with increased irritability. Fifty-nine youth with disruptive mood and behavior disorder completed a facial expression processing task with an event-related fMRI paradigm. The severity of irritability was evaluated using the Affective Reactivity Index. Results In the result of behavioral data, irritability, and reaction time (RT) differences between interpreting negative (fear) and positive (happiness) facial expressions were positively correlated. In the fMRI result, youth showed higher activation in the right cingulate gyrus, bilateral cerebellum, right amygdala, right precuneus, right superior frontal gyrus, right middle occipital gyrus, and middle temporal gyrus, during the happiness condition vs. fear condition. No brain region exhibited greater activation in the fear than in the happiness conditions. In the result of the mediator analysis, increased irritability was associated with a longer RT toward positive vs. negative facial expressions. Irritability was also positively associated with the difference in amygdala blood oxygen level-dependent responses between the two emotional conditions (happiness > fear). This difference in amygdala activity mediated the interaction between irritability and the RT difference between negative and positive facial expressions. Discussion We suggest that impairment in the implicit processing of facial emotional expressions with different valences causes distinct patterns of amygdala response, which correlate with the level of irritability. These results broaden our understanding of the biological mechanism of irritability at the neural level and provide information for the future direction of the study.
Collapse
Affiliation(s)
- Ji-Woo Suk
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Robert J. R. Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Emotion and Development Branch, Copenhagen, Denmark
| | - Brigette Vaughan
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arica Lerdahl
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - William F. Garvey
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ryan Edwards
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ellen Leibenluft
- National Institute of Mental Health, Bethesda, MD, United States
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
Fulford D, Holt DJ. Social Withdrawal, Loneliness, and Health in Schizophrenia: Psychological and Neural Mechanisms. Schizophr Bull 2023; 49:1138-1149. [PMID: 37419082 PMCID: PMC10483452 DOI: 10.1093/schbul/sbad099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
BACKGROUND AND HYPOTHESIS Some of the most debilitating aspects of schizophrenia and other serious mental illnesses (SMI) are the impairments in social perception, motivation, and behavior that frequently accompany these conditions. These impairments may ultimately lead to chronic social disconnection (ie, social withdrawal, objective isolation, and perceived social isolation or loneliness), which may contribute to the poor cardiometabolic health and early mortality commonly observed in SMI. However, the psychological and neurobiological mechanisms underlying relationships between impairments in social perception and motivation and social isolation and loneliness in SMI remain incompletely understood. STUDY DESIGN A narrative, selective review of studies on social withdrawal, isolation, loneliness, and health in SMI. STUDY RESULTS We describe some of what is known and hypothesized about the psychological and neurobiological mechanisms of social disconnection in the general population, and how these mechanisms may contribute to social isolation and loneliness, and their consequences, in individuals with SMI. CONCLUSIONS A synthesis of evolutionary and cognitive theories with the "social homeostasis" model of social isolation and loneliness represents one testable framework for understanding the dynamic cognitive and biological correlates, as well as the health consequences, of social disconnection in SMI. The development of such an understanding may provide the basis for novel approaches for preventing or treating both functional disability and poor physical health that diminish the quality and length of life for many individuals with these conditions.
Collapse
Affiliation(s)
- Daniel Fulford
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Quarto T, Lella A, Di Carlo P, Rampino A, Paladini V, Papalino M, Romano R, Fazio L, Marvulli D, Popolizio T, Blasi G, Pergola G, Bertolino A. Heritability of amygdala reactivity to angry faces and its replicable association with the schizophrenia risk locus of miR-137. J Psychiatry Neurosci 2023; 48:E357-E366. [PMID: 37751917 PMCID: PMC10521919 DOI: 10.1503/jpn.230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Among healthy participants, the interindividual variability of brain response to facial emotions is associated with genetic variation, including common risk variants for schizophrenia, a heritable brain disorder characterized by anomalies in emotion processing. We aimed to identify genetic variants associated with heritable brain activity during processing of facial emotions among healthy participants and to explore the impact of these identified variants among patients with schizophrenia. METHODS We conducted a data-driven stepwise study including samples of healthy twins, unrelated healthy participants and patients with schizophrenia. Participants approached or avoided pictures of faces with negative emotional valence during functional magnetic resonance imaging (fMRI). RESULTS We investigated 3 samples of healthy participants - including 28 healthy twin pairs, 289 unrelated healthy participants (genome-wide association study [GWAS] discovery sample) and 90 unrelated healthy participants (replication sample) - and 1 sample of 48 patients with schizophrenia. Among healthy twins, we identified the amygdala as the brain region with the highest heritability during processing of angry faces (heritability estimate 0.54, p < 0.001). Subsequent GWAS in both discovery and replication samples of healthy non-twins indicated that amygdala activity was associated with a polymorphism in the miR-137 locus (rs1198575), a micro-RNA strongly involved in risk for schizophrenia. A significant effect in the same direction was found among patients with schizophrenia (p = 0.03). LIMITATIONS The limited sample size available for GWAS analyses may require further replication of results. CONCLUSION Our data-driven approach shows preliminary evidence that amygdala activity, as evaluated with our task, is heritable. Our genetic associations preliminarily suggest a role for miR-137 in brain activity during explicit processing of facial emotions among healthy participants and patients with schizophrenia, pointing to the amygdala as a brain region whose activity is related to miR-137.
Collapse
Affiliation(s)
- Tiziana Quarto
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Annalisa Lella
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Pasquale Di Carlo
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Antonio Rampino
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Vittoria Paladini
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Marco Papalino
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Raffaella Romano
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Leonardo Fazio
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Daniela Marvulli
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Teresa Popolizio
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Giuseppe Blasi
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Giulio Pergola
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| | - Alessandro Bertolino
- From the Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy (Quarto, Lella, Di Carlo, Rampino, Paladini, Papalino, Romano, Fazio, Marvulli, Blasi, Pergola, Bertolino); the Department of Humanities, University of Foggia, Foggia, Italy (Quarto); the Psychiatry Unit, Bari University Hospital, Bari, Italy (Rampino, Blasi, Bertolino); the LUM (Fazio); the IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy (Popolizio); the Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD (Pergola)
| |
Collapse
|
18
|
Mahadevan AS, Cornblath EJ, Lydon-Staley DM, Zhou D, Parkes L, Larsen B, Adebimpe A, Kahn AE, Gur RC, Gur RE, Satterthwaite TD, Wolf DH, Bassett DS. Alprazolam modulates persistence energy during emotion processing in first-degree relatives of individuals with schizophrenia: a network control study. Mol Psychiatry 2023; 28:3314-3323. [PMID: 37353585 PMCID: PMC10618098 DOI: 10.1038/s41380-023-02121-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network control theory to model persistence energy - the control energy required to maintain brain activation states - during emotion identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing. Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and abnormal GABAergic effects on persistence energy during threat processing.
Collapse
Affiliation(s)
- Arun S Mahadevan
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eli J Cornblath
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - David M Lydon-Staley
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dale Zhou
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Linden Parkes
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Azeez Adebimpe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ari E Kahn
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA.
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Abel DB, Rand KL, Salyers MP, Myers EJ, Mickens JL, Minor KS. Do People With Schizophrenia Enjoy Social Activities as Much as Everyone Else? A Meta-analysis of Consummatory Social Pleasure. Schizophr Bull 2023; 49:809-822. [PMID: 36820515 PMCID: PMC10154728 DOI: 10.1093/schbul/sbac199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND The "emotion paradox" of schizophrenia suggests people with schizophrenia demonstrate deficits when reporting anticipated and retrospective pleasure; yet, in-the-moment, consummatory pleasure is largely intact. It is uncertain how these findings extend to social situations. This meta-analysis aimed to (1) determine the mean difference in consummatory social pleasure between people with schizophrenia and healthy controls, and (2) examine moderators of this effect, including study design and clinical characteristics of participants. DESIGN A literature search using PsycINFO, Web of Science, Pubmed, and EMBASE databases was conducted. Studies measuring consummatory social pleasure using experience sampling methods and laboratory social simulations were included. Random effects meta-analyses were conducted using Hedge's g. RESULTS Meta-analysis of 26 studies suggests people with schizophrenia exhibited a small, significant deficit in consummatory social pleasure (g = -0.38, 90% CI [-0.53, -0.22]). There was significant heterogeneity in effect sizes; magnitude was moderated by study design and type of measure used to assess social pleasure. CONCLUSIONS Overall, people with schizophrenia seem to exhibit less consummatory social pleasure than controls. However, this deficit is smaller than in studies of anticipated and retrospective pleasure. Thus, consummatory social pleasure may not be quite as impaired in people with schizophrenia as traditional anhedonia research suggests. Moreover, pleasure deficits observed in people with schizophrenia may result from differences in the quality of their daily social experiences rather than differences in their capacity for social pleasure. Results have important implications for clinical interventions that address barriers to social engagement, low-pleasure beliefs, and cognitive remediation to treat schizophrenia.
Collapse
Affiliation(s)
- Danielle B Abel
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Kevin L Rand
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Michelle P Salyers
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Evan J Myers
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Jessica L Mickens
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Kyle S Minor
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, USA
| |
Collapse
|
20
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Fiorito AM, Aleman A, Blasi G, Bourque J, Cao H, Chan RCK, Chowdury A, Conrod P, Diwadkar VA, Goghari VM, Guinjoan S, Gur RE, Gur RC, Kwon JS, Lieslehto J, Lukow PB, Meyer-Lindenberg A, Modinos G, Quarto T, Spilka MJ, Shivakumar V, Venkatasubramanian G, Villarreal M, Wang Y, Wolf DH, Yun JY, Fakra E, Sescousse G. Are Brain Responses to Emotion a Reliable Endophenotype of Schizophrenia? An Image-Based Functional Magnetic Resonance Imaging Meta-analysis. Biol Psychiatry 2023; 93:167-177. [PMID: 36085080 DOI: 10.1016/j.biopsych.2022.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France.
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Groningen, The Netherlands
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Josiane Bourque
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Patricia Conrod
- CHU Sainte-Justine Research Center, Department of Psychiatry and Addiction, University of Montréal, Montreal, Quebec, Canada
| | - Vaibhav A Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Vina M Goghari
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Johannes Lieslehto
- University of Eastern Finland, Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland
| | - Paulina B Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | | | - Michael J Spilka
- Department of Psychology, University of Georgia, Athens, Georgia
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | | - Mirta Villarreal
- Instituto de Neurociencias FLENI-CONICET, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Centre Hospitalier Le Vinatier, Bron, France
| |
Collapse
|
22
|
Kandilarova S, Stoyanov D, Aryutova K, Paunova R, Mantarkov M, Mitrev I, Todeva-Radneva A, Specht K. Effective Connectivity Between the Orbitofrontal Cortex and the Precuneus Differentiates Major Psychiatric Disorders: Results from a Transdiagnostic Spectral DCM Study. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:180-190. [PMID: 34533450 DOI: 10.2174/1871527320666210917142815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE We have previously identified aberrant connectivity of the left precuneus, ventrolateral prefrontal cortex, anterior cingulate cortex, and anterior insula in patients with either a paranoid (schizophrenia), or a depressive syndrome (both unipolar and bipolar). In the current study, we attempted to replicate and expand these findings by including a healthy control sample and separating the patients in a depressive episode into two groups: unipolar and bipolar depression. We hypothesized that the connections between those major nodes of the resting state networks would demonstrate different patterns in the three patient groups compared to the healthy subjects. METHODS Resting-state functional MRI was performed on a sample of 101 participants, of which 26 patients with schizophrenia (current psychotic episodes), 24 subjects with Bipolar Disorder (BD), 33 with Major Depressive Disorder (MDD) (both BD and MDD patients were in a current depressive episode), and 21 healthy controls. Spectral Dynamic Causal Modeling was used to calculate the coupling values between eight regions of interest, including the anterior precuneus (PRC), anterior hippocampus, anterior insula, angular gyrus, lateral Orbitofrontal Cortex (OFC), middle frontal gyrus, planum temporale, and anterior thalamus. RESULTS & CONCLUSION We identified disturbed effective connectivity from the left lateral orbitofrontal cortex to the left anterior precuneus that differed significantly between unipolar depression, where the influence was inhibitory, and bipolar depression, where the effect was excitatory. A logistic regression analysis correctly classified 75% of patients with unipolar and bipolar depression based solely on the coupling values of this connection. In addition, patients with schizophrenia demonstrated negative effective connectivity from the anterior PRC to the lateral OFC, which distinguished them from healthy controls and patients with major depression. Future studies with unmedicated patients will be needed to establish the replicability of our findings.
Collapse
Affiliation(s)
- Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Katrin Aryutova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Rossitsa Paunova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Mladen Mantarkov
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Ivo Mitrev
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Sabatinelli D, Winker C, Farkas AH, Rehbein MA, Junghoefer M. A 5-min paradigm to evoke robust emotional reactivity in neuroimaging studies. Front Neurosci 2023; 17:1102213. [PMID: 36960173 PMCID: PMC10027927 DOI: 10.3389/fnins.2023.1102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
The advent of the Research Domain Criteria (RDoC) approach to funding translational neuroscience has highlighted a need for research that includes measures across multiple task types. However, the duration of any given experiment is quite limited, particularly in neuroimaging contexts, and therefore robust estimates of multiple behavioral domains are often difficult to achieve. Here we offer a "turn-key" emotion-evoking paradigm suitable for neuroimaging experiments that demonstrates strong effect sizes across widespread cortical and subcortical structures. This short series could be easily added to existing fMRI protocols, and yield a reliable estimate of emotional reactivity to complement research in other behavioral domains. This experimental adjunct could be used to enable an initial comparison of emotional modulation with the primary behavioral focus of an investigator's work, and potentially identify new relationships between domains of behavior that have not previously been recognized.
Collapse
Affiliation(s)
- Dean Sabatinelli
- Department of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, United States
- *Correspondence: Dean Sabatinelli,
| | - Constantin Winker
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Andrew H. Farkas
- Department of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, United States
| | - Maimu A. Rehbein
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Markus Junghoefer
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR, Yousem DM. Neuroimaging in schizophrenia: A review article. Front Neurosci 2022; 16:1042814. [PMID: 36458043 PMCID: PMC9706110 DOI: 10.3389/fnins.2022.1042814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this review article we have consolidated the imaging literature of patients with schizophrenia across the full spectrum of modalities in radiology including computed tomography (CT), morphologic magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and magnetoencephalography (MEG). We look at the impact of various subtypes of schizophrenia on imaging findings and the changes that occur with medical and transcranial magnetic stimulation (TMS) therapy. Our goal was a comprehensive multimodality summary of the findings of state-of-the-art imaging in untreated and treated patients with schizophrenia. Clinical imaging in schizophrenia is used to exclude structural lesions which may produce symptoms that may mimic those of patients with schizophrenia. Nonetheless one finds global volume loss in the brains of patients with schizophrenia with associated increased cerebrospinal fluid (CSF) volume and decreased gray matter volume. These features may be influenced by the duration of disease and or medication use. For functional studies, be they fluorodeoxyglucose positron emission tomography (FDG PET), rs-fMRI, task-based fMRI, diffusion tensor imaging (DTI) or MEG there generally is hypoactivation and disconnection between brain regions. However, these findings may vary depending upon the negative or positive symptomatology manifested in the patients. MR spectroscopy generally shows low N-acetylaspartate from neuronal loss and low glutamine (a neuroexcitatory marker) but glutathione may be elevated, particularly in non-treatment responders. The literature in schizophrenia is difficult to evaluate because age, gender, symptomatology, comorbidities, therapy use, disease duration, substance abuse, and coexisting other psychiatric disorders have not been adequately controlled for, even in large studies and meta-analyses.
Collapse
Affiliation(s)
- Mona Dabiri
- Department of Radiology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kun Yang
- Department of Psychiatry, Molecular Psychiatry Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| | - Roland R. Lee
- Department of Radiology, UCSD/VA Medical Center, San Diego, CA, United States
| | - David M. Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| |
Collapse
|
25
|
Zhao X, Yao J, Lv Y, Zhang X, Han C, Chen L, Ren F, Zhou Q, Jin Z, Li Y, Du Y, Sui Y. Facial emotion perception abilities are related to grey matter volume in the culmen of cerebellum anterior lobe in drug-naïve patients with first-episode schizophrenia. Brain Imaging Behav 2022; 16:2072-2085. [PMID: 35751735 DOI: 10.1007/s11682-022-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
Impaired capability for understanding and interpreting the expressions on other people's faces manifests itself as a core feature of schizophrenia, contributing to social dysfunction. With the purpose of better understanding of the neurobiological basis of facial emotion perception deficits in schizophrenia, we investigated facial emotion perception abilities and regional structural brain abnormalities in drug-naïve patients with first-episode schizophrenia, and then examined the correlation between them. Fifty-two drug-naive patients with first-episode schizophrenia and 29 group-matched healthy controls were examined for facial emotion perception abilities assessed with the Facial Emotion Categorization and performed magnetic resonance imaging. The Facial Emotion Categorization data were inserted into a logistic function model so as to calculate shift point and slope as outcome measurements. Voxel-based morphometry was applied to investigate regional grey matter volume (GMV) alterations. The relationship between facial emotion perception and GMV was explored in patients using voxel-wise correlation analysis within brain regions that showed a significant GMV alterations in patients compared with controls. The schizophrenic patients performed differently on Facial Emotion Categorization tasks from the controls and presented a higher shift point and a steeper slope. Relative to the controls, patients showed GMV reductions in the superior temporal gyrus, middle occipital gyrus, parahippocampa gyrus, posterior cingulate, the culmen of cerebellum anterior lobe, cerebellar tonsil, and the declive of cerebellum posterior lobe. Importantly, abnormal performance on Facial Emotion Categorization was found correlated with GMV alterations in the culmen of cerebellum anterior lobe in schizophrenia. This study suggests that reduced GMV in the culmen of cerebellum anterior lobe occurs in first-episode schizophrenia, constituting a potential neuropathological basis for the impaired facial emotion perception in schizophrenia.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | | | - Yiding Lv
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | | | - Chongyang Han
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Lijun Chen
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Fangfang Ren
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Qun Zhou
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zhuma Jin
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Li
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yuxiu Sui
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
26
|
Larsen EM, Donaldson KR, Jonas KG, Lian W, Bromet EJ, Kotov R, Mohanty A. Pleasant and unpleasant odor identification ability is associated with distinct dimensions of negative symptoms transdiagnostically in psychotic disorders. Schizophr Res 2022; 248:183-193. [PMID: 36084492 PMCID: PMC10774004 DOI: 10.1016/j.schres.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2022] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
Negative symptoms are among the greatest sources of functional impairment for individuals with schizophrenia, yet their mechanisms remain poorly understood. Olfactory impairment is associated with negative symptoms. The processing of pleasant olfactory stimuli is subserved by reward-related neural circuitry while unpleasant olfactory processing is subserved by emotion-related neural circuitry, suggesting that these two odor dimensions may offer a window into differential mechanisms of negative symptoms. We examined whether pleasant and unpleasant odor identification bears differential relationships with avolition and inexpressivity dimensions of negative symptoms, whether these relationships are transdiagnostic, and whether pleasant and unpleasant odor processing also relate differently to other domains of functioning in a sample of individuals diagnosed with schizophrenia (N = 54), other psychotic disorders (N = 65), and never-psychotic adults (N = 160). Hierarchical regressions showed that pleasant odor identification was uniquely associated with avolition, while unpleasant odor identification was uniquely associated with inexpressivity. These relationships were largely transdiagnostic across groups. Additionally, pleasant and unpleasant odor identification displayed signs of specificity with other functional and cognitive measures. These results align with past work suggesting dissociable pathomechanisms of negative symptoms and provide a potential avenue for future work using valence-specific olfactory dysfunction as a semi-objective and low-cost marker for understanding and predicting the severity of specific negative symptom profiles.
Collapse
Affiliation(s)
- Emmett M. Larsen
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | | | - Katherine G. Jonas
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Wenxuan Lian
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | - Evelyn J. Bromet
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Aprajita Mohanty
- Department of Psychology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
27
|
Pugliese V, de Filippis R, Aloi M, Rotella P, Carbone EA, Gaetano R, De Fazio P. Aberrant salience correlates with psychotic dimensions in outpatients with schizophrenia spectrum disorders. Ann Gen Psychiatry 2022; 21:25. [PMID: 35786401 PMCID: PMC9250738 DOI: 10.1186/s12991-022-00402-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Aberrant salience is a well-known construct associated with the development and maintenance of psychotic symptoms in schizophrenia. However, only a few studies have investigated aberrance salience as a trait, with no study investigating the association between the five aberrant salience domains and psychotic symptoms. We aimed to explore the role of aberrant salience and its domains on psychotic dimensions in both clinically remitted and non-remitted patients. METHODS A sample of 102 patients diagnosed with schizophrenia spectrum disorders was divided according to the Positive and Negative Syndrome Scale (PANSS) remission criteria into two groups: remitted and non-remitted. Differences regarding psychotic symptomatology assessed by the PANSS and aberrant salience measured by the Aberrant Salience Inventory (ASI) were explored. Finally, a correlation analysis between the PANSS and the ASI was run. RESULTS Significantly higher ASI scores were evident among non-remitted patients. Positive symptoms (i.e. delusions, conceptual disorganization, and hallucinatory behaviour) and general psychopathology (i.e. postural mannerisms, unusual thought content) were correlated to the aberrant salience subscales 'sharpening of senses', 'heightened emotionality' and 'heightened cognition' and with the ASI total score. Significant correlations emerged between negative symptoms (blunted affect and social withdrawal) and 'heightened cognition'. Finally, lack of spontaneity of conversation was related to the subscales 'heightened emotionality' and 'heightened cognition', as well as to the ASI total score. CONCLUSIONS These preliminary results support the hypothesis of an association between aberrant salience and psychotic symptoms in schizophrenia. Further research is needed, especially into the mechanisms underlying salience processing, in addition to social and environmental factors and cognitive variables.
Collapse
Affiliation(s)
- Valentina Pugliese
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Matteo Aloi
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Paola Rotella
- Department of Mental Health of Catanzaro, Lamezia Terme, Italy
| | - Elvira Anna Carbone
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaele Gaetano
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
28
|
Ohi K, Ishibashi M, Torii K, Hashimoto M, Yano Y, Shioiri T. Differences in subcortical brain volumes among patients with schizophrenia and bipolar disorder and healthy controls. J Psychiatry Neurosci 2022; 47:E77-E85. [PMID: 35232800 PMCID: PMC8896343 DOI: 10.1503/jpn.210144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with schizophrenia and bipolar disorder have an overlapping polygenic architecture and clinical similarities, although the 2 disorders are distinct diagnoses with clinical dissimilarities. It remains unclear whether there are specific differences in subcortical volumes between schizophrenia and bipolar disorder, and whether the subcortical differences are affected by any clinical characteristics. We investigated differences in subcortical volumes bilaterally among patients with schizophrenia, patients with bipolar disorder and healthy controls. We also investigated the influences of clinical characteristics on specific subcortical volumes in these patient groups. METHODS We collected 3 T T 1-weighted MRI brain scans from 413 participants (157 with schizophrenia, 51 with bipolar disorder and 205 controls) with a single scanner at a single institute. We used FreeSurfer version 6.0 for processing the T 1-weighted images to segment the following subcortical brain volumes: thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala and nucleus accumbens. Differences in the 7 subcortical volumes were investigated among the groups. We also evaluated correlations between subcortical volumes and clinical variables in these patient groups. RESULTS Of 7 subcortical regions, patients with schizophrenia had significantly smaller volumes in the left thalamus (Cohen d = -0.29, p = 5.83 × 10-3), bilateral hippocampi (left, d = -0.36, p = 8.85 × 10-4; right, d = -0.41, p = 1.15 × 10-4) and left amygdala (d = -0.31, p = 4.02 × 10-3) than controls. Compared with controls, patients with bipolar disorder had bilateral reductions only in the hippocampal volumes (left, d = -0.52, p = 1.12 × 10-3; right, d = -0.58, p = 0.30 × 10-4). We also found that patients with schizophrenia had significantly smaller volumes in the bilateral amygdalae (left, d = -0.43, p = 4.22 × 10-3; right, d = -0.45, p = 4.56 × 10-3) than patients with bipolar disorder. We did not find any significant volumetric differences in the other 6 subcortical structures between patient groups (p > 0.05). Smaller left amygdalar volumes were significantly correlated with younger onset age only in patients with schizophrenia (r = 0.22, p = 5.78 × 10-3). LIMITATIONS We did not evaluate the differences in subcortical volumes between patients stratified based on clinical bipolar disorder subtype and a history of psychotic episodes because our sample size of patients with bipolar disorder was limited. CONCLUSION Our findings suggest that volumetric differences in the amygdala between patients with schizophrenia and those with bipolar disorder may be a putative biomarker for distinguishing 2 clinically similar diagnoses.
Collapse
Affiliation(s)
- Kazutaka Ohi
- From the Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan (Ohi, Shioiri); the Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan (Ohi); and the School of Medicine, Gifu University, Gifu, Japan (Ishibashi, Torii, Hashimoto, Yano)
| | | | | | | | | | | |
Collapse
|
29
|
Picó-Pérez M, Vieira R, Fernández-Rodríguez M, De Barros MAP, Radua J, Morgado P. Multimodal meta-analysis of structural gray matter, neurocognitive and social cognitive fMRI findings in schizophrenia patients. Psychol Med 2022; 52:614-624. [PMID: 35129109 DOI: 10.1017/s0033291721005523] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging research has shown that patients with schizophrenia (SCZ) present brain structural and functional alterations, but the results across imaging modalities and task paradigms are difficult to reconcile. Specifically, no meta-analyses have tested whether the same brain systems that are structurally different in SCZ patients are also involved in neurocognitive and social cognitive tasks. To answer this, we conducted separate meta-analyses of voxel-based morphometry, neurocognitive functional magnetic resonance imaging (fMRI), and social cognitive fMRI studies. Next, with a multimodal approach, we identified the common alterations across meta-analyses. Further exploratory meta-analyses were performed taking into account several clinical variables (illness duration, medication status, and symptom severity). A cluster covering the dorsomedial prefrontal cortex (dmPFC) and the supplementary motor area (SMA), and the right inferior frontal gyrus (IFG), presented shared structural and neurocognitive-related activation decreases, while the right angular gyrus presented shared decreases between structural and social cognitive-related activation. The exploratory meta-analyses replicated to some extent these findings, while new regions of alterations appeared in patient subgroups with specific clinical features. In conclusion, we found task-specific correlates of brain structure and function in SCZ, which help summarize and integrate a growing literature.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Marcos Fernández-Rodríguez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Antónia Pereira De Barros
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| |
Collapse
|
30
|
Narita Z, Yang K, Kuga H, Piancharoen P, Etyemez S, Faria A, Mihaljevic M, Longo L, Namkung H, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Schaub R, Crawford J, Schretlen DJ, Miyata J, Ishizuka K, Sawa A. Face processing of social cognition in patients with first episode psychosis: Its deficits and association with the right subcallosal anterior cingulate cortex. Schizophr Res 2021; 238:99-107. [PMID: 34649085 DOI: 10.1016/j.schres.2021.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
The clinical importance of social cognition is well acknowledged in patients with psychosis, in particular those with first episode psychosis (FEP). Nevertheless, its brain substrates and circuitries remain elusive, lacking precise analysis between multimodal brain characteristics and behavioral sub-dimensions within social cognition. In the present study, we examined face processing of social cognition in 71 FEP patients and 77 healthy controls (HCs). We looked for a possible correlation between face processing and multimodal MRI characteristics such as resting-state functional connectivity (rsFC) and brain volume. We observed worse recognition accuracy, longer recognition response time, and longer memory response time in FEP patients when compared with HCs. Of these, memory response time was selectively correlated with specific rsFCs, which included the right subcallosal sub-region of BA24 in the ACC (scACC), only in FEP patients. The volume of this region was also correlated with memory response time in FEP patients. The scACC is functionally and structurally important in FEP-associated abnormalities of face processing measures in social cognition.
Collapse
Affiliation(s)
- Zui Narita
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Hironori Kuga
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Peeraya Piancharoen
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Andreia Faria
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marina Mihaljevic
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Luisa Longo
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jennifer M Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Frederik C Nucifora
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Thomas W Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Rebecca Schaub
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jeff Crawford
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David J Schretlen
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| |
Collapse
|
31
|
Zhu Y, Xu L, Wang W, Guo Q, Chen S, Zhang C, Zhang T, Hu X, Enck P, Li C, Sheng J, Wang J. Gender differences in attentive bias during social information processing in schizophrenia: An eye-tracking study. Asian J Psychiatr 2021; 66:102871. [PMID: 34619492 DOI: 10.1016/j.ajp.2021.102871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Interpersonal communication is a specific scenario in which patients with psychiatric symptoms may manifest different behavioral patterns due to psychopathology. This was a pilot study by eye-tracking technology to investigate attentive bias during social information processing in schizophrenia. We enrolled 39 patients with schizophrenia from Shanghai Mental Health Center and 42 age-, gender- and education-matched healthy controls. The experiment was a free-viewing task, in which pictures with three types of degree of interpersonal communication were shown. We used two measures: 1) initial fixation duration, 2) total gaze duration. The Positive and Negative Syndrome Scale (PANSS) was used to determine symptom severity. The ratio of first fixation duration for pictures of communicating vs. non-communicating persons was significantly lower in patients than in controls (Mann-Whitney U = 512, p = 0.004). We found that male patients showed a significantly lower ratio of first fixation duration than male controls (Mann-Whitney U = 190, p = 0.028), while it was marginally lower in female patients than female controls (Mann-Whitney U = 77, p = 0.057). The ratio of first fixation duration for pictures of communicating persons vs. no persons was negatively correlated with PANSS negative symptoms in male patients (rho = -0.458, p = 0.024). In contrast, it was negatively correlated with PANSS positive symptoms in female patients (-0.701, p = 0.004). These findings suggest altered attentive bias during social information processing with a pattern of avoidance at first sight towards pictures of communicating persons in schizophrenia. It is worthwhile to note that social functioning impairment is associated with the severity of symptoms.
Collapse
Affiliation(s)
- Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wenzheng Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shan Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Caidi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaochen Hu
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Paul Enck
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jianhua Sheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
32
|
Underwood R, Mason L, O'Daly O, Dalton J, Simmons A, Barker GJ, Peters E, Kumari V. You read my mind: fMRI markers of threatening appraisals in people with persistent psychotic experiences. NPJ SCHIZOPHRENIA 2021; 7:49. [PMID: 34635671 PMCID: PMC8505497 DOI: 10.1038/s41537-021-00173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Anomalous perceptual experiences are relatively common in the general population. Evidence indicates that the key to distinguishing individuals with persistent psychotic experiences (PEs) with a need for care from those without is how they appraise their anomalous experiences. Here, we aimed to characterise the neural circuits underlying threatening and non-threatening appraisals in people with and without a need for care for PEs, respectively. A total of 48 participants, consisting of patients with psychosis spectrum disorder (clinical group, n = 16), non-need-for-care participants with PEs (non-clinical group, n = 16), and no-PE healthy control participants (n = 16), underwent functional magnetic resonance imaging while completing the Telepath task, designed to induce an anomalous perceptual experience. Appraisals of the anomalous perceptual experiences were examined, as well as functional brain responses during this window, for significant group differences. We also examined whether activation co-varied with the subjective threat appraisals reported in-task by participants. The clinical group reported elevated subjective threat appraisals compared to both the non-clinical and no-PE control groups, with no differences between the two non-clinical groups. This pattern of results was accompanied by reduced activation in the superior and inferior frontal gyri in the clinical group as compared to the non-clinical and control groups. Precuneus activation scaled with threat appraisals reported in-task. Resilience in the context of persistent anomalous experiences may be explained by intact functioning of fronto-parietal regions, and may correspond to the ability to contextualise and flexibly evaluate psychotic experiences.
Collapse
Affiliation(s)
- Raphael Underwood
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychology, London, UK. .,South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, UK.
| | - Liam Mason
- University College London, Max Planck Centre for Computational Psychiatry and Ageing Research, London, UK.,University College London, Research Department of Clinical, Educational and Health Psychology, London, UK
| | - Owen O'Daly
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, London, UK
| | - Jeffrey Dalton
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, London, UK
| | - Andrew Simmons
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, London, UK
| | - Gareth J Barker
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, London, UK
| | - Emmanuelle Peters
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychology, London, UK.,South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, UK
| | - Veena Kumari
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychology, London, UK.,Brunel University London, College of Health, Medicine and Life Sciences, Centre for Cognitive Neuroscience, Uxbridge, UK
| |
Collapse
|
33
|
Feola B, McHugo M, Armstrong K, Noall MP, Flook EA, Woodward ND, Heckers S, Blackford JU. BNST and amygdala connectivity are altered during threat anticipation in schizophrenia. Behav Brain Res 2021; 412:113428. [PMID: 34182009 PMCID: PMC8404399 DOI: 10.1016/j.bbr.2021.113428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
In schizophrenia, impairments in affect are prominent and anxiety disorders are prevalent. Neuroimaging studies of fear and anxiety in schizophrenia have focused on the amygdala and show alterations in connectivity. Emerging evidence suggests that the bed nucleus of the stria terminalis (BNST) also plays a critical role in anxiety, especially during anticipation of an unpredictable threat; however, previous studies have not examined the BNST in schizophrenia. In the present study, we examined BNST function and connectivity in people with schizophrenia (n = 31; n = 15 with comorbid anxiety) and controls (n = 15) during anticipation of unpredictable and predictable threat. A secondary analysis tested for differences in activation and connectivity of the central nucleus of the amygdala (CeA), which has also been implicated in threat anticipation. Analyses tested for group differences in both activation and connectivity during anticipation of unpredictable threat and predictable threat (p < .05). Relative to controls, individuals with schizophrenia showed stronger BNST-middle temporal gyrus (MTG) connectivity during unpredictable threat anticipation and stronger BNST-MTG and BNST-dorsolateral prefrontal connectivity during predictable threat anticipation. Comparing subgroups of individuals with schizophrenia and a comorbid anxiety disorder (SZ+ANX) to those without an anxiety disorder (SZ-ANX) revealed broader patterns of altered connectivity. During unpredictable threat anticipation, the SZ+ANX group had stronger BNST connectivity with regions of the salience network (insula, dorsal anterior cingulate cortex). During predictable threat anticipation, the SZ+ANX group had stronger BNST connectivity with regions associated with fear processing (insula, extended amygdala, prefrontal cortex). A secondary CeA analysis revealed a different pattern; the SZ+ANX group had weaker CeA connectivity across multiple brain regions during threat anticipation compared to the SZ-ANX group. These findings provide novel evidence for altered functional connectivity during threat anticipation in schizophrenia, especially in individuals with comorbid anxiety.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Madison P Noall
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elizabeth A Flook
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
34
|
Niarchou M, Lin GT, Lense MD, Gordon RL, Davis LK. Medical phenome of musicians: an investigation of health records collected on 9803 musically active individuals. Ann N Y Acad Sci 2021; 1505:156-168. [PMID: 34414577 PMCID: PMC8688228 DOI: 10.1111/nyas.14671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
Previous studies suggest that musicians may be at higher risk for a set of medical problems; however, this literature has been limited by relatively small sample sizes, self‐reports, and lack of controls. To address such limitations, we examined trends in the medical care of musicians in an Electronic Health Record database. On the basis of a collection of keywords and regular expressions in the patients’ clinical notes, we identified 9803 “musicians” that we matched for sex, median age (across the medical record), ethnicity, race, the length of record, and the number of visits with 49,015 controls. We fitted 1263 logistic regression models to determine whether the phenotype was correlated with musicianship. Two hundred fifty‐seven phenotypes were more prevalent in musicians than controls after Bonferroni adjustment (P < 7.6 × 10–6), including diseases of the larynx and vocal cords (OR = 2.32 (95% CI: 2.25–2.40)), and hearing loss (OR = 1.36 (95% CI: 1.32–1.39)). Fifteen phenotypes were significantly more prevalent in controls than musicians, including coronary atherosclerosis (OR = 0.91 (95% CI: 0.89–0.94)). Although being a musician was related to many occupational health problems, we identified protective effects of musicianship in which certain disorders were less common in musicians than in controls, indicating that active musical engagement could have health benefits analogous to athletic engagement.
Collapse
Affiliation(s)
- Maria Niarchou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - George T Lin
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Miriam D Lense
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Reyna L Gordon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
35
|
Jaramillo-Jimenez A, Giil LM, Tovar-Rios DA, Borda MG, Ferreira D, Brønnick K, Oppedal K, Aarsland D. Association Between Amygdala Volume and Trajectories of Neuropsychiatric Symptoms in Alzheimer's Disease and Dementia With Lewy Bodies. Front Neurol 2021; 12:679984. [PMID: 34305791 PMCID: PMC8292611 DOI: 10.3389/fneur.2021.679984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: The amygdala is implicated in psychiatric illness. Even as the amygdala undergoes significant atrophy in mild dementia, amygdala volume is underexplored as a risk factor for neuropsychiatric symptoms (NPS). Objective: To analyze the association between baseline amygdala volume and the longitudinal trajectories of NPS and cognitive decline in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) over 5 years. Methods: Eighty-nine patients with mild dementia were included (AD = 55; DLB = 34). Amygdala volume was segmented from structural magnetic resonance images (sMRI) using a semi-automatic method (Freesurfer 6.0) and normalized by intracranial volumes. The intracranial volume-normalized amygdala was used as a predictor of the Neuropsychiatric Inventory (NPI) total score, ordinal NPI item scores (0 = absence of symptoms, 1–3 = mild symptoms, ≥4 = clinically relevant symptoms), and Mini-Mental State Examination (MMSE) as measured annually over 5 years using gamma, ordinal, and linear mixed-effects models, respectively. The models were adjusted for demographic variables, diagnosis, center of sMRI acquisition, and cognitive performance. Multiple testing-corrected p-values (q-values) are reported. Results: Larger intracranial volume-normalized amygdala was associated with less agitation/aggression (odds ratio (OR) = 0.62 [0.43, 0.90], p = 0.011, q = 0.038) and less MMSE decline per year (fixed effect = 0.70, [0.29, 1.03], p = 0.001, q = 0.010) but more depression (OR = 1.49 [1.09, 2.04], p = 0.013, q = 0.040). Conclusions: Greater amygdala volume in mild dementia is associated with lower odds of developing agitation/aggression, but higher odds of developing depression symptoms during the 5-year study period.
Collapse
Affiliation(s)
- Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway.,Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín, Colombia.,Grupo Neuropsicología y Conducta, School of Medicine, Universidad de Antioquia, Medellín, Colombia.,Semillero de Investigación SINAPSIS, School of Medicine, Universidad de Antioquia, Medellín, Colombia.,Semillero de Investigación NeuroCo, School of Medicine and Engenieering, Universidad de Antioquia, Medellín, Colombia
| | - Lasse M Giil
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Diego A Tovar-Rios
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Universidad Del Valle, Grupo de Investigación en Estadística Aplicada - INFERIR, Faculty of Engineering, Santiago De Cali, Valle Del Cauca, Colombia.,Universidad Del Valle, Prevención y Control de la Enfermedad Crónica - PRECEC, Faculty of Health, Santiago De Cali, Valle Del Cauca, Colombia
| | - Miguel Germán Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway.,Semillero de Neurociencias y Envejecimiento, Medical School, Ageing Institute, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Kolbjørn Brønnick
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Ketil Oppedal
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Stavanger Medical Imaging Laboratory, Department of Radiology, Stavanger University Hospital, Stavanger, Norway.,Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Rokita KI, Holleran L, Dauvermann MR, Mothersill D, Holland J, Costello L, Kane R, McKernan D, Morris DW, Kelly JP, Corvin A, Hallahan B, McDonald C, Donohoe G. Childhood trauma, brain structure and emotion recognition in patients with schizophrenia and healthy participants. Soc Cogn Affect Neurosci 2021; 15:1336-1350. [PMID: 33245126 PMCID: PMC7759212 DOI: 10.1093/scan/nsaa160] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/25/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
Childhood trauma, and in particular physical neglect, has been repeatedly associated with lower performance on measures of social cognition (e.g. emotion recognition tasks) in both psychiatric and non-clinical populations. The neural mechanisms underpinning this association have remained unclear. Here, we investigated whether volumetric changes in three stress-sensitive regions—the amygdala, hippocampus and anterior cingulate cortex (ACC)—mediate the association between childhood trauma and emotion recognition in a healthy participant sample (N = 112) and a clinical sample of patients with schizophrenia (N = 46). Direct effects of childhood trauma, specifically physical neglect, on Emotion Recognition Task were observed in the whole sample. In healthy participants, reduced total and left ACC volumes were observed to fully mediate the association between both physical neglect and total childhood trauma score, and emotion recognition. No mediating effects of the hippocampus and amygdala volumes were observed for either group. These results suggest that reduced ACC volume may represent part of the mechanism by which early life adversity results in poorer social cognitive function. Confirmation of the causal basis of this association would highlight the importance of resilience-building interventions to mitigate the detrimental effects of childhood trauma on brain structure and function.
Collapse
Affiliation(s)
- Karolina I Rokita
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laurena Holleran
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Maria R Dauvermann
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA 02135, USA
| | - David Mothersill
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,School of Business, National College of Ireland, Dublin, Ireland
| | - Jessica Holland
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laura Costello
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Ruán Kane
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Declan McKernan
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Aiden Corvin
- Department of Psychiatry, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
37
|
Wang G, Lyu H, Wu R, Ou J, Zhu F, Liu Y, Zhao J, Guo W. Resting-state functional hypoconnectivity of amygdala in clinical high risk state and first-episode schizophrenia. Brain Imaging Behav 2021; 14:1840-1849. [PMID: 31134583 DOI: 10.1007/s11682-019-00124-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resting-state functional hypoconnectivity of the amygdala with several brain regions has been identified in patients with schizophrenia. However, little is known about it in individuals at clinical high risk state. Treatment-seeking, drug-naive young adults were recruited for the study. The participants included 33 adults at Clinical High Risk (CHRs), 31 adults with first-episode schizophrenia (FSZs), and 37 age-, gender-, and education-matched healthy controls. All the participants were subjected to resting-state functional magnetic resonance imaging scans. Seed-based voxel-wise amygdala/whole-brain functional connectivity (FC) was calculated and compared. In the CHR group, the right amygdala showed decreased FC with clusters located in the left orbital, right temporal, insular, and bilateral frontal and cingulate areas. In the FSZ group, the right amygdala showed decreased FC with clusters located in the right temporal, insular, cingulate, and frontal areas. Exactly 30% of the voxels showing decreased FC in the FSZ group coincided with those in the CHR group. No difference in FC was identified between the CHR and FSZ groups. Voxel-wise FC values with the left or right amygdala in the bilateral occipital cortex were negatively correlated with the PANSS total score in the FSZ group. Resting-state functional hypoconnectivity of the amygdala is a valuable risk phenotype of schizophrenia, and its distribution, rather than degree, distinguishes CHR state from schizophrenia. This particular hypoconnectivity in CHRs and FSZs is relatively independent of the symptomatology and may reflect a dysfunctional dopamine system.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Hailong Lyu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China. .,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China. .,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| |
Collapse
|
38
|
Lukow PB, Kiemes A, Kempton MJ, Turkheimer FE, McGuire P, Modinos G. Neural correlates of emotional processing in psychosis risk and onset - A systematic review and meta-analysis of fMRI studies. Neurosci Biobehav Rev 2021; 128:780-788. [PMID: 33722617 PMCID: PMC8345001 DOI: 10.1016/j.neubiorev.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
The neural bases of altered emotion processing in psychosis are still unclear. Systematic review indicated widespread activation decreases to emotion in first-episode psychosis. Evidence in people at clinical high-risk for psychosis lacked convergence. These findings were corroborated by image-based meta-analyses.
Aberrant emotion processing is a well-established component of psychotic disorders and is already present at the first episode of psychosis (FEP). However, the role of emotion processing abnormalities in the emergence of psychosis and the underlying neurobiology remain unclear. Here, we systematically reviewed functional magnetic resonance studies that used emotion processing task paradigms in FEP patients, and in people at clinical high-risk for psychosis (CHRp). Image-based meta-analyses with Seed-based d Mapping on available studies (n = 6) were also performed. Compared to controls, FEP patients showed decreased neural responses to emotion, particularly in the amygdala and anterior cingulate cortex. There were no significant differences between CHRp subjects and controls, but a high degree of heterogeneity was identified across studies. The role of altered emotion processing in the early phase of psychosis may be clarified through more homogenous experimental designs, particularly in the CHRp population.
Collapse
Affiliation(s)
- P B Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - A Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - M J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - P McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - G Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, new hunt's House, Guy's Campus, SE1 1UL, London, UK.
| |
Collapse
|
39
|
Brockett AT, Vázquez D, Roesch MR. Prediction errors and valence: From single units to multidimensional encoding in the amygdala. Behav Brain Res 2021; 404:113176. [PMID: 33596433 DOI: 10.1016/j.bbr.2021.113176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022]
Abstract
The amygdala-one of the primary structures of the limbic system-is comprised of interconnected nuclei situated within the temporal lobe. It has a well-established role in the modulation of negative affective states, as well as in fear processing. However, its vast projections with diverse brain regions-ranging from the cortex to the brainstem-are suggestive of its more complex involvement in affective or motivational aspects of cognitive processing. The amygdala can play an invaluable role in context-dependent associative learning, unsigned prediction error learning, influencing outcome selection, and multidimensional encoding. In this review, we delve into the amygdala's role in associative learning and outcome selection, emphasizing its intrinsic involvement in the appropriate context-dependent modulation of motivated behavior.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology, University of Maryland, College Park, MD, 20742, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, United States.
| | - Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, MD, 20742, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, United States
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, MD, 20742, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, United States
| |
Collapse
|
40
|
Barth C, Nerland S, de Lange AMG, Wortinger LA, Hilland E, Andreassen OA, Jørgensen KN, Agartz I. In Vivo Amygdala Nuclei Volumes in Schizophrenia and Bipolar Disorders. Schizophr Bull 2021; 47:1431-1441. [PMID: 33479754 PMCID: PMC8379533 DOI: 10.1093/schbul/sbaa192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abnormalities in amygdala volume are well-established in schizophrenia and commonly reported in bipolar disorders. However, the specificity of volumetric differences in individual amygdala nuclei is largely unknown. Patients with schizophrenia disorders (SCZ, N = 452, mean age 30.7 ± 9.2 [SD] years, females 44.4%), bipolar disorders (BP, N = 316, 33.7 ± 11.4, 58.5%), and healthy controls (N = 753, 34.1 ± 9.1, 40.9%) underwent T1-weighted magnetic resonance imaging. Total amygdala, nuclei, and intracranial volume (ICV) were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple linear regression models, adjusting for age, age2, ICV, and sex, were fitted to examine diagnostic group and subgroup differences in volume, respectively. Bilateral total amygdala and all nuclei volumes, except the medial and central nuclei, were significantly smaller in patients relative to controls. The largest effect sizes were found for the basal nucleus, accessory basal nucleus, and cortico-amygdaloid transition area (partial η2 > 0.02). The diagnostic subgroup analysis showed that reductions in amygdala nuclei volume were most widespread in schizophrenia, with the lateral, cortical, paralaminar, and central nuclei being solely reduced in this disorder. The right accessory basal nucleus was marginally smaller in SCZ relative to BP (t = 2.32, P = .05). Our study is the first to demonstrate distinct patterns of amygdala nuclei volume reductions in a well-powered sample of patients with schizophrenia and bipolar disorders. Volume differences in the basolateral complex (lateral, basal, and accessory basal nuclei), an integral part of the threat processing circuitry, were most prominent in schizophrenia.
Collapse
Affiliation(s)
- Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway,To whom correspondence should be addressed; tel: +47 22 02 99 67, fax: +47 22 02 99 01, e-mail:
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatry, University of Oxford, Oxford, UK,Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Eva Hilland
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil N Jørgensen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
41
|
He Y, Steines M, Sammer G, Nagels A, Kircher T, Straube B. Modality-specific dysfunctional neural processing of social-abstract and non-social-concrete information in schizophrenia. Neuroimage Clin 2021; 29:102568. [PMID: 33524805 PMCID: PMC7851842 DOI: 10.1016/j.nicl.2021.102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/09/2022]
Abstract
Schizophrenia is characterized by marked communication dysfunctions encompassing potential impairments in the processing of social-abstract and non-social-concrete information, especially in everyday situations where multiple modalities are present in the form of speech and gesture. To date, the neurobiological basis of these deficits remains elusive. In a functional magnetic resonance imaging (fMRI) study, 17 patients with schizophrenia or schizoaffective disorder, and 18 matched controls watched videos of an actor speaking, gesturing (unimodal), and both speaking and gesturing (bimodal) about social or non-social events in a naturalistic way. Participants were asked to judge whether each video contains person-related (social) or object-related (non-social) information. When processing social-abstract content, patients showed reduced activation in the medial prefrontal cortex (mPFC) only in the gesture but not in the speech condition. For non-social-concrete content, remarkably, reduced neural activation for patients in the left postcentral gyrus and the right insula was observed only in the speech condition. Moreover, in the bimodal conditions, patients displayed improved task performance and comparable activation to controls in both social and non-social content. To conclude, patients with schizophrenia displayed modality-specific aberrant neural processing of social and non-social information, which is not present for the bimodal conditions. This finding provides novel insights into dysfunctional multimodal communication in schizophrenia, and may have potential therapeutic implications.
Collapse
Affiliation(s)
- Yifei He
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany.
| | - Miriam Steines
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Gebhard Sammer
- Cognitive Neuroscience at Centre for Psychiatry, Justus-Liebig University Giessen, Giessen, Germany
| | - Arne Nagels
- Department of General Linguistics, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| |
Collapse
|
42
|
Gillespie SM, Kongerslev MT, Bo S, Abu-Akel AM. Schizotypy and psychopathic tendencies interactively improve misattribution of affect in boys with conduct problems. Eur Child Adolesc Psychiatry 2021; 30:885-897. [PMID: 32476073 PMCID: PMC8140966 DOI: 10.1007/s00787-020-01567-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/25/2020] [Indexed: 11/26/2022]
Abstract
Psychopathic tendencies are associated with difficulties in affective theory of mind (ToM), that is, in recognizing others affective mental states. In clinical and non-clinical adult samples, it has been shown that where psychopathic tendencies co-occur with schizophrenia spectrum disorders, the impairing effects of psychopathic tendencies on ToM are attenuated. These effects are yet to be examined in adolescents. We examined if the impairing effect of psychopathic tendencies on affective ToM was attenuated with increasing severity of schizotypal personality disorder (PD) in a sample of 80 incarcerated adolescent boys. We showed that the impairing effect of psychopathic tendencies on the recognition of neutral mental states, but not positive or negative mental states, was evident when the relative severity of schizotypal PD was low. However, with higher scores on both measures, we observed better performance in judging neutral mental states. The preservation of affective ToM in adolescents who show elevations in psychopathic tendencies and schizotypal PD may enable them to manipulate and extort their victims for personal gain. Our results emphasize the need to consider comorbidity in clinical case formulation when working with adolescents with conduct problems and psychopathic tendencies. More broadly, our results also suggest that the pattern of social cognitive abilities associated with co-occurring psychopathology does not always conform to an often-theorized double-dose of deficit hypothesis.
Collapse
Affiliation(s)
- Steven M Gillespie
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 3GB, UK.
| | - Mickey T Kongerslev
- Department of Psychology, University of Southern Denmark, Odense, Denmark
- Psychiatric Research Unit, Region Zealand, Slagelse, Denmark
| | - Sune Bo
- Psychiatric Research Unit, Region Zealand, Slagelse, Denmark
- Department of Child and Adolescent Psychiatry, Region Zealand, Roskilde, Denmark
| | - Ahmad M Abu-Akel
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Haifa, Haifa, Israel
| |
Collapse
|
43
|
Samaey C, Van der Donck S, van Winkel R, Boets B. Facial Expression Processing Across the Autism-Psychosis Spectra: A Review of Neural Findings and Associations With Adverse Childhood Events. Front Psychiatry 2020; 11:592937. [PMID: 33281648 PMCID: PMC7691238 DOI: 10.3389/fpsyt.2020.592937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) and primary psychosis are classified as distinct neurodevelopmental disorders, yet they display overlapping epidemiological, environmental, and genetic components as well as endophenotypic similarities. For instance, both disorders are characterized by impairments in facial expression processing, a crucial skill for effective social communication, and both disorders display an increased prevalence of adverse childhood events (ACE). This narrative review provides a brief summary of findings from neuroimaging studies investigating facial expression processing in ASD and primary psychosis with a focus on the commonalities and differences between these disorders. Individuals with ASD and primary psychosis activate the same brain regions as healthy controls during facial expression processing, albeit to a different extent. Overall, both groups display altered activation in the fusiform gyrus and amygdala as well as altered connectivity among the broader face processing network, probably indicating reduced facial expression processing abilities. Furthermore, delayed or reduced N170 responses have been reported in ASD and primary psychosis, but the significance of these findings is questioned, and alternative frequency-tagging electroencephalography (EEG) measures are currently explored to capture facial expression processing impairments more selectively. Face perception is an innate process, but it is also guided by visual learning and social experiences. Extreme environmental factors, such as adverse childhood events, can disrupt normative development and alter facial expression processing. ACE are hypothesized to induce altered neural facial expression processing, in particular a hyperactive amygdala response toward negative expressions. Future studies should account for the comorbidity among ASD, primary psychosis, and ACE when assessing facial expression processing in these clinical groups, as it may explain some of the inconsistencies and confound reported in the field.
Collapse
Affiliation(s)
- Celine Samaey
- Department of Neurosciences, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium
| | - Stephanie Van der Donck
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Ruud van Winkel
- Department of Neurosciences, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium
- University Psychiatric Center (UPC), KU Leuven, Leuven, Belgium
| | - Bart Boets
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Clark SD, Van Snellenberg JX, Lawson JM, Abi-Dargham A. Opioid antagonists are associated with a reduction in the symptoms of schizophrenia: a meta-analysis of controlled trials. Neuropsychopharmacology 2020; 45:1860-1869. [PMID: 32516800 PMCID: PMC7608351 DOI: 10.1038/s41386-020-0730-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022]
Abstract
Current treatments for the symptoms of schizophrenia are only effective for positive symptoms in some individuals, and have considerable side effects that impact compliance. Thus, there is a need to investigate the efficacy of other compounds in treating both positive and negative symptoms. We conducted a meta-analysis of English language placebo-controlled clinical trials of naloxone, naltrexone, nalmefene, and buprenorphine in patients with schizophrenia to determine whether opioid antagonists have therapeutic efficacy on positive, negative, total, or general symptoms. We searched online databases Ovid Medline and PsychINFO, PubMed, EMBASE, Scopus, Cochrane library/CENTRAL, Web of Science, and Google Scholar from 1970 through February 2019. Following PRISMA guidelines, Hedges g was calculated for each study. Primary study outcomes were the within-subject change on any symptom assessment scale for positive, negative, total, or general symptoms of schizophrenia between active drug and placebo conditions. Thirty studies were included with 434 total patients. We found a significant effect of all drugs on all scales combined with both a standard random effects model: (g = 0.26; P = 0.02; k = 22; CI = 0.03-0.49) and a more inclusive bootstrap model: (g = 0.26; P = 0.0002; k = 30; CI = 0.11-0.51) and a significant effect on total scales with the bootstrap model (g = 0.25288; P = 0.015; k = 19; CI = 0.04-0.35). We also observed a significant effect of all drugs on all positive scales combined with both the random effects (g = 0.33; P = 0.015; k = 17; CI = 0.07-0.60) and bootstrap models (g = 0.32; P < 0.0001; k = 21; CI = 0.13-1.38). This evidence provides support for further testing in randomized clinical trials of a new class of non-D2-receptor drugs, based on opioid mechanisms, for the treatment of positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Samuel D Clark
- Columbia University Medical Center, New York, NY, USA.
- Terran Biosciences, New York, NY, USA.
| | - Jared X Van Snellenberg
- Department of Psychiatry and Behavioral Health, Stony Brook University Medical Center, New York, NY, USA
- Department of Psychology, Stony Brook University, New York, NY, USA
- Department of Biomedical Engineering, Stony Brook University, New York, NY, USA
| | | | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Stony Brook University Medical Center, New York, NY, USA
- Department of Biomedical Engineering, Stony Brook University, New York, NY, USA
- Department of Radiology, Stony Brook University Medical Center, New York, NY, USA
| |
Collapse
|
45
|
Mow JL, Gandhi A, Fulford D. Imaging the "social brain" in schizophrenia: A systematic review of neuroimaging studies of social reward and punishment. Neurosci Biobehav Rev 2020; 118:704-722. [PMID: 32841653 DOI: 10.1016/j.neubiorev.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Decreased social functioning and high levels of loneliness and social isolation are common in schizophrenia spectrum disorders (SSD), contributing to reduced quality of life. One key contributor to social impairment is low social motivation, which may stem from aberrant neural processing of socially rewarding or punishing stimuli. To summarize research on the neurobiology of social motivation in SSD, we performed a systematic literature review of neuroimaging studies involving the presentation of social stimuli intended to elicit feelings of reward and/or punishment. Across 11 studies meeting criteria, people with SSD demonstrated weaker modulation of brain activity in regions within a proposed social interaction network, including prefrontal, cingulate, and striatal regions, as well as the amygdala and insula. Firm conclusions regarding neural differences in SSD in these regions, as well as connections within networks, are limited due to conceptual and methodological inconsistencies across the available studies. We conclude by making recommendations for the study of social reward and punishment processing in SSD in future research.
Collapse
Affiliation(s)
- Jessica L Mow
- Department of Psychological & Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, United States.
| | - Arti Gandhi
- Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA, 02215, United States
| | - Daniel Fulford
- Department of Psychological & Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, United States; Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA, 02215, United States
| |
Collapse
|
46
|
|
47
|
Dugré JR, Dumais A, Potvin S. Limbic Hyperactivity in Response to Emotionally Neutral Stimuli in Schizophrenia: Response to Rasetti et al. Am J Psychiatry 2020; 177:640-641. [PMID: 32605444 DOI: 10.1176/appi.ajp.2020.19090973r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jules R Dugré
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal (all authors); Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal (all authors); Institut Philippe-Pinel de Montréal, Montreal (Dumais)
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal (all authors); Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal (all authors); Institut Philippe-Pinel de Montréal, Montreal (Dumais)
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal (all authors); Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal (all authors); Institut Philippe-Pinel de Montréal, Montreal (Dumais)
| |
Collapse
|
48
|
Psychobiology of threat appraisal in the context of psychotic experiences: A selective review. Eur Psychiatry 2020; 30:817-29. [DOI: 10.1016/j.eurpsy.2015.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022] Open
Abstract
AbstractA key factor in the transition to psychosis is the appraisal of anomalous experiences as threatening. Cognitive models of psychosis have identified attentional and interpretative biases underlying threat-based appraisals. While much research has been conducted into these biases within the clinical and cognitive literature, little examination has occurred at the neural level. However, neurobiological research in social cognition employing threatening stimuli mirror cognitive accounts of maladaptive appraisal in psychosis. This review attempted to integrate neuroimaging data regarding social cognition in psychosis with the concepts of attentional and interpretative threat biases. Systematic review methodology was used to identify relevant articles from Medline, PsycINFO and EMBASE, and PubMed databases. The selective review showed that attentional and interpretative threat biases relate to abnormal activation of a range of subcortical and prefrontal structures, including the amygdala, insula, hippocampus, anterior cingulate, and prefrontal cortex, as well as disrupted connectivity between these regions, when processing threatening and neutral or ambiguous stimuli. Notably, neural findings regarding the misattribution of threat to neutral or ambiguous stimuli presented a more consistent picture. Overall, however, the findings for any specific emotion were mixed, both in terms of the specific brain areas involved and the direction of effects (increased/decreased activity), possibly owing to confounds including small sample sizes, varying experimental paradigms, medication, and heterogeneous, in some cases poorly characterised, patient groups. Further neuroimaging research examining these biases by employing experimentally induced anomalous perceptual experiences and well-characterised large samples is needed for greater aetiological specificity.
Collapse
|
49
|
Abram SV, De Coster L, Roach BJ, Mueller BA, van Erp TGM, Calhoun VD, Preda A, Lim KO, Turner JA, Ford JM, Mathalon DH, Woolley JD. Oxytocin Enhances an Amygdala Circuit Associated With Negative Symptoms in Schizophrenia: A Single-Dose, Placebo-Controlled, Crossover, Randomized Control Trial. Schizophr Bull 2020; 46:661-669. [PMID: 31595302 PMCID: PMC7147578 DOI: 10.1093/schbul/sbz091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Negative symptoms are core contributors to vocational and social deficits in schizophrenia (SZ). Available antipsychotic medications typically fail to reduce these symptoms. The neurohormone oxytocin (OT) is a promising treatment for negative symptoms, given its role in complex social behaviors mediated by the amygdala. In sample 1, we used a double-blind, placebo-controlled, crossover design to test the effects of a single dose of intranasal OT on amygdala resting-state functional connectivity (rsFC) in SZ (n = 22) and healthy controls (HC, n = 24) using a whole-brain corrected approach: we identified regions for which OT modulated SZ amygdala rsFC, assessed whether OT-modulated circuits were abnormal in SZ relative to HC on placebo, and evaluated whether connectivity on placebo and OT-induced connectivity changes correlated with baseline negative symptoms in SZ. Given our modest sample size, we used a second SZ (n = 183) and HC (n = 178) sample to replicate any symptom correlations. In sample 1, OT increased rsFC between the amygdala and left middle temporal gyrus, superior temporal sulcus, and angular gyrus (MTG/STS/AngG) in SZ compared to HC. Further, SZ had hypo-connectivity in this circuit compared to HC on placebo. More severe negative symptoms correlated with less amygdala-to-left-MTG/STS/AngG connectivity on placebo and with greater OT-induced connectivity increases. In sample 2, we replicated the correlation between amygdala-left-MTG/STS/AngG hypo-connectivity and negative symptoms, finding a specific association with expressive negative symptoms. These data suggest intranasal OT can normalize functional connectivity in an amygdala-to-left-MTG/STS/AngG circuit that contributes to negative symptoms in SZ.
Collapse
Affiliation(s)
- Samantha V Abram
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA,Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Lize De Coster
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM,Department of Psychiatry, University of New Mexico, Albuquerque, NM,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | | | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Joshua D Woolley
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA,To whom correspondence should be addressed; 4150 Clement Street, Box (116C-1 [Joshua Woolley]), San Francisco, CA 94121, US; tel: 415-221-4810-x24117; fax: 415-379-5667, e-mail:
| |
Collapse
|
50
|
Abstract
We report on the ongoing R21 project “Social Reward Learning in Schizophrenia”. Impairments in social cognition are a hallmark of schizophrenia. However, little work has been done on social reward learning deficits in schizophrenia. The overall goal of the project is to assess social reward learning in schizophrenia. A probabilistic reward learning (PRL) task is being used in the MRI scanner to evaluate reward learning to negative and positive social feedback. Monetary reward learning is used as a comparison to assess specificity. Behavioral outcomes and brain areas, included those involved in reward, are assessed in patients with schizophrenia or schizoaffective disorder and controls. It is also critical to determine whether decreased expected value (EV) of social stimuli and/or reward prediction error (RPE) learning underlie social reward learning deficits to inform potential treatment pathways. Our central hypothesis is that the pattern of social learning deficits is an extension of a more general reward learning impairment in schizophrenia and that social reward learning deficits critically contribute to deficits in social motivation and pleasure. We hypothesize that people with schizophrenia will show impaired behavioral social reward learning compared to controls, as well as decreased ventromedial prefrontal cortex (vmPFC) EV signaling at time of choice and decreased striatal RPE signaling at time of outcome, with potentially greater impairment to positive than negative feedback. The grant is in its second year. It is hoped that this innovative approach may lead to novel and more targeted treatment approaches for social cognitive impairments, using cognitive remediation and/or brain stimulation.
Collapse
|