1
|
Chen PH, Kao YH, Chen YJ. Pathophysiological Mechanisms of Psychosis-Induced Atrial Fibrillation: The Links between Mental Disorder and Arrhythmia. Rev Cardiovasc Med 2024; 25:343. [PMID: 39355592 PMCID: PMC11440412 DOI: 10.31083/j.rcm2509343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 10/03/2024] Open
Abstract
Atrial fibrillation (AF) is a common phenomenon of sustained arrhythmia leading to heart failure or stroke. Patients with mental disorders (MD), particularly schizophrenia and bipolar disorder, are at a high risk of AF triggered by the dysregulation of the autonomic nervous system, atrial stretch, oxidative stress, inflammation, and electrical or structural remodeling. Moreover, pathophysiological mechanisms underlying MD may also contribute to the genesis of AF. An overactivated hypothalamic-pituitary-adrenal axis, aberrant renin-angiotensin-aldosterone system, abnormal serotonin signaling, disturbed sleep, and genetic/epigenetic factors can adversely alter atrial electrophysiology and structural substrates, leading to the development of AF. In this review, we provide an update of our collective knowledge of the pathophysiological and molecular mechanisms that link MD and AF. Targeting the pathogenic mechanisms of MD-specific AF may facilitate the development of therapeutics that mitigate AF and cardiovascular mortality in this patient population.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, 11031 Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| |
Collapse
|
2
|
Wang F, Yang X, Ren Z, Chen C, Liu C. Alternative splicing in mouse brains affected by psychological stress is enriched in the signaling, neural transmission and blood-brain barrier pathways. Mol Psychiatry 2023; 28:4707-4718. [PMID: 37217679 DOI: 10.1038/s41380-023-02103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Psychological stress increases the risk of major psychiatric disorders. Psychological stress on mice was reported to induce differential gene expression (DEG) in mice brain regions. Alternative splicing is a fundamental aspect of gene expression and has been associated with psychiatric disorders but has not been investigated in the stressed brain yet. This study investigated changes in gene expression and splicing under psychological stress, the related pathways, and possible relationship with psychiatric disorders. RNA-seq raw data of 164 mouse brain samples from 3 independent datasets with stressors including chronic social defeat stress (CSDS), early life stress (ELS), and two-hit stress of combined CSDS and ELS were collected. There were more changes in splicing than in gene expression in the ventral hippocampus and medial prefrontal cortex, but stress-induced changes of individual genes by differential splicing and differential expression could not be replicated. In contrast, pathway analyses produced robust findings: stress-induced differentially spliced genes (DSGs) were reproducibly enriched in neural transmission and blood-brain barrier systems, and DEGs were reproducibly enriched in stress response-related functions. The hub genes of DSG-related PPI networks were enriched in synaptic functions. The corresponding human homologs of stress-induced DSGs were robustly enriched in AD-related DSGs as well as BD and SCZ in GWAS. These results suggested that stress-induced DSGs from different datasets belong to the same biological system throughout the stress response process, resulting in consistent stress response effects.
Collapse
Affiliation(s)
- Feiran Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiuju Yang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zongyao Ren
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
3
|
Lago SG, Tomasik J, van Rees GF, Rustogi N, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B, Bahn S. Peripheral lymphocyte signaling pathway deficiencies predict treatment response in first-onset drug-naïve schizophrenia. Brain Behav Immun 2022; 103:37-49. [PMID: 35381347 DOI: 10.1016/j.bbi.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
Despite being a major cause of disability worldwide, the pathophysiology of schizophrenia and molecular basis of treatment response heterogeneity continue to be unresolved. Recent evidence suggests that multiple aspects of pathophysiology, including genetic risk factors, converge on key cell signaling pathways and that exploration of peripheral blood cells might represent a practical window into cell signaling alterations in the disease state. We employed multiplexed phospho-specific flow cytometry to examine cell signaling epitope expression in peripheral blood mononuclear cell (PBMC) subtypes in drug-naïve schizophrenia patients (n = 49) relative to controls (n = 61) and relate these changes to serum immune response proteins, schizophrenia polygenic risk scores and clinical effects of treatment, including drug response and side effects, over the longitudinal course of antipsychotic treatment. This revealed both previously characterized (Akt1) and novel cell signaling epitopes (IRF-7 (pS477/pS479), CrkL (pY207), Stat3 (pS727), Stat3 (pY705) and Stat5 (pY694)) across PBMC subtypes which were associated with schizophrenia at disease onset, and correlated with type I interferon-related serum molecules CD40 and CXCL11. Alterations in Akt1 and IRF-7 (pS477/pS479) were additionally associated with polygenic risk of schizophrenia. Finally, changes in Akt1, IRF-7 (pS477/pS479) and Stat3 (pS727) predicted development of metabolic and cardiovascular side effects following antipsychotic treatment, while IRF-7 (pS477/pS479) and Stat3 (pS727) predicted early improvements in general psychopathology scores measured using the Brief Psychiatric Rating Scale (BPRS). These findings suggest that peripheral blood cells can provide an accessible surrogate model for intracellular signaling alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic and cardiovascular side effects following antipsychotic therapy.
Collapse
Affiliation(s)
- Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Geertje F van Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Paula Suarez-Pinilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain; Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio, IBiS, Sevilla, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sevilla, Spain
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Genetic Predisposition to Schizophrenia and Depressive Disorder Comorbidity. Genes (Basel) 2022; 13:genes13030457. [PMID: 35328011 PMCID: PMC8950769 DOI: 10.3390/genes13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Patients with schizophrenia have an increased risk of depressive disorders compared to the general population. The comorbidity between schizophrenia and depression suggests a potential coincidence of the pathophysiology and/or genetic predictors of these mental disorders. The aim of this study was to review the potential genetic predictors of schizophrenia and depression comorbidity. Materials and Methods: We carried out research and analysis of publications in the databases PubMed, Springer, Wiley Online Library, Taylor & Francis Online, Science Direct, and eLIBRARY.RU using keywords and their combinations. The search depth was the last 10 years (2010–2020). Full-text original articles, reviews, meta-analyses, and clinical observations were analyzed. A total of 459 articles were found, of which 45 articles corresponding to the purpose of this study were analyzed in this topic review. Results: Overlap in the symptoms and genetic predictors between these disorders suggests that a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. The molecular mechanisms linking schizophrenia and depression are polygenic. The most studied candidate genes are GRIN1, GPM6A, SEPTIN4, TPH1, TPH2, CACNA1C, CACNB2, and BCL9.Conclusion: Planning and conducting genome-wide and associative genetic studies of the comorbid conditions under consideration in psychiatry is important for the development of biological and clinical predictors and a personalized therapy strategy for schizophrenia. However, it should be recognized that the problems of predictive and personalized psychiatry in the diagnosis and treatment of schizophrenia and comorbid disorders are far from being resolved.
Collapse
|
5
|
Cheng P, Zhang R, Shan S, Yuan B, Chen J, Qiu Z, Du Y. Novel IL1RAP mutation associated with schizophrenia interferes with neuronal growth and related NF-κB signal pathways. Neurosci Lett 2022; 775:136533. [PMID: 35181481 DOI: 10.1016/j.neulet.2022.136533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a complex, severe psychiatric disorder with a high heritability that affects approximately 1% of the world's population. Numerous schizophrenia-related risk genes have been reported in large-scale studies, but the role of most genetic abnormalities in the pathogenesis of the disease is still obscure. In this study, using whole-exome sequencing, we identified a novel nonsense mutation c.1324C>T in the Interleukin 1 receptor accessory protein (IL1RAP) gene in four affected individuals with schizophrenia of a Chinese family.IL1RAP was found involved in initiating the immune responses and regulating synaptic formation. Considering that schizophrenia has been hypothesized to be neurodevelopment disorder for decades, we further explored the influence of altered expression of IL1RAP gene on neuronal growth, and assessed whether this mutation affects the function of IL1RAP protein in IL-1 signaling pathway. We used lentivirus-mediated shRNA to knockdown the IL1RAP gene expression, which suppressed the axon and dendrites growth of cultured mouse cortical neurons. These defects can be recovered by human IL1RAP wild type construct, but not the R442* mutant construct. Furthermore, this mutant even inhibited neuronal growth and IL-1β-induced JNK phosphorylation when overexpressed in cortical neurons. Although overexpression of this mutant in HePG2 cells did not change IL1RAP protein expression, it partially prohibited the IL-1β-induced nuclear translocation of transcript factor NF-κB, indicating that IL1RAP c.1324C>T is a loss-of-function mutation. Our findings show that IL1RAP plays an important role in early stages of neurodevelopment, and the mutation c.1324C>T may contribute to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ran Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shifang Shan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031,China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031,China
| | - Jinlong Chen
- Institute of Pediatrics, Children's Hospital, Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031,China.
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
6
|
Meng X, Li W, Peng X, Li Y, Li M. Protein interaction networks: centrality, modularity, dynamics, and applications. FRONTIERS OF COMPUTER SCIENCE 2021; 15:156902. [DOI: 10.1007/s11704-020-8179-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/12/2020] [Indexed: 01/03/2025]
|
7
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
8
|
Mizuki Y, Sakamoto S, Okahisa Y, Yada Y, Hashimoto N, Takaki M, Yamada N. Mechanisms Underlying the Comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. Int J Neuropsychopharmacol 2021; 24:367-382. [PMID: 33315097 PMCID: PMC8130204 DOI: 10.1093/ijnp/pyaa097] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The mortality rate of patients with schizophrenia is high, and life expectancy is shorter by 10 to 20 years. Metabolic abnormalities including type 2 diabetes mellitus (T2DM) are among the main reasons. The prevalence of T2DM in patients with schizophrenia may be epidemiologically frequent because antipsychotics induce weight gain as a side effect and the cognitive dysfunction of patients with schizophrenia relates to a disordered lifestyle, poor diet, and low socioeconomic status. Apart from these common risk factors and risk factors unique to schizophrenia, accumulating evidence suggests the existence of common susceptibility genes between schizophrenia and T2DM. Functional proteins translated from common genetic susceptibility genes are known to regulate neuronal development in the brain and insulin in the pancreas through several common cascades. In this review, we discuss common susceptibility genes, functional cascades, and the relationship between schizophrenia and T2DM. Many genetic and epidemiological studies have reliably associated the comorbidity of schizophrenia and T2DM, and it is probably safe to think that common cascades and mechanisms suspected from common genes' functions are related to the onset of both schizophrenia and T2DM. On the other hand, even when genetic analyses are performed on a relatively large number of comorbid patients, the results are sometimes inconsistent, and susceptibility genes may carry only a low or moderate risk. We anticipate future directions in this field.
Collapse
Affiliation(s)
- Yutaka Mizuki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Shimonoseki Hospital
| | - Shinji Sakamoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuji Yada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Nozomu Hashimoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
9
|
Dai J, Chen Y, Dai R, Jiang Y, Tian J, Liu S, Xu M, Li M, Zhou J, Liu C, Chen C. Agonal Factors Distort Gene-Expression Patterns in Human Postmortem Brains. Front Neurosci 2021; 15:614142. [PMID: 33841074 PMCID: PMC8027124 DOI: 10.3389/fnins.2021.614142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
Agonal factors, the conditions that occur just prior to death, can impact the molecular quality of postmortem brains, influencing gene expression results. Our study used gene expression data of 262 samples from ROSMAP with the detailed terminal state recorded for each donor, such as fever, infection, and unconsciousness. Fever and infection were the primary contributors to brain gene expression changes, brain cell-type-specific gene expression, and cell proportion changes. Furthermore, we also found that previous studies of gene expression in postmortem brains were confounded by agonal factors. Therefore, correction for agonal factors is important in the step of data preprocessing. Our analyses revealed fever and infection contributing to gene expression changes in postmortem brains and emphasized the necessity of study designs that document and account for agonal factors.
Collapse
Affiliation(s)
- Jiacheng Dai
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rujia Dai
- Upstate Medical University, Syracuse, NY, United States
| | - Yi Jiang
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianghua Tian
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sihan Liu
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Meng Xu
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Zhou
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Liu
- Department of Psychiatry, Upstate Medical University, Syracuse, NY, United States
| | - Chao Chen
- Center for Medical Genetics, Department of Psychiatry, School of Life Sciences, National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Xia Y, Dai R, Wang K, Jiao C, Zhang C, Xu Y, Li H, Jing X, Chen Y, Jiang Y, Kopp RF, Giase G, Chen C, Liu C. Sex-differential DNA methylation and associated regulation networks in human brain implicated in the sex-biased risks of psychiatric disorders. Mol Psychiatry 2021; 26:835-848. [PMID: 30976086 PMCID: PMC6788945 DOI: 10.1038/s41380-019-0416-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/29/2023]
Abstract
Many psychiatric disorders are characterized by a strong sex difference, but the mechanisms behind sex-bias are not fully understood. DNA methylation plays important roles in regulating gene expression, ultimately impacting sexually different characteristics of the human brain. Most previous literature focused on DNA methylation alone without considering the regulatory network and its contribution to sex-bias of psychiatric disorders. Since DNA methylation acts in a complex regulatory network to connect genetic and environmental factors with high-order brain functions, we investigated the regulatory networks associated with different DNA methylation and assessed their contribution to the risks of psychiatric disorders. We compiled data from 1408 postmortem brain samples in 3 collections to identify sex-differentially methylated positions (DMPs) and regions (DMRs). We identified and replicated thousands of DMPs and DMRs. The DMR genes were enriched in neuronal related pathways. We extended the regulatory networks related to sex-differential methylation and psychiatric disorders by integrating methylation quantitative trait loci (meQTLs), gene expression, and protein-protein interaction data. We observed significant enrichment of sex-associated genes in psychiatric disorder-associated gene sets. We prioritized 2080 genes that were sex-biased and associated with psychiatric disorders, such as NRXN1, NRXN2, NRXN3, FDE4A, and SHANK2. These genes are enriched in synapse-related pathways and signaling pathways, suggesting that sex-differential genes of these neuronal pathways may cause the sex-bias of psychiatric disorders.
Collapse
Affiliation(s)
- Yan Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Rujia Dai
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Kangli Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chuan Jiao
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Chunling Zhang
- Department of Neuroscience, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yuchen Xu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Honglei Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xi Jing
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yi Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard F Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Gina Giase
- Department of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Chao Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA.
- National Clinical Research Center for Geriatric Disorders, the Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunyu Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA.
- School of Psychology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
11
|
Trifu SC, Kohn B, Vlasie A, Patrichi BE. Genetics of schizophrenia (Review). Exp Ther Med 2020; 20:3462-3468. [PMID: 32905096 PMCID: PMC7465115 DOI: 10.3892/etm.2020.8973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive review of the body of genetic studies on schizophrenia seems even more daunting than the battle a psychiatrist wages daily in the office with her archenemy of a thousand faces. The following article reunites some genetic, epigenetic and environmental factors of schizophrenia from revered and vast studies in a chronological and progressive fashion. Twin studies set the basics of heritability and a particular study by Davis and Phelps considers the widely ignored influence of prenatal environment in the development of schizophrenia. Mostly ignited by linkage studies, candidate gene studies explore further by fine-mapping the hypothesized variants [mostly in the forms single nucleotide polymorphisms (SNPs) and less but with greater impact copy number variations (CNVs)] associated with the disease. Genome-wide association studies (GWAS) increase considerably the sample sizes and thus the validity of the results, while the next-generation sequencing (NGS) attain the highest yet unreplicated level of validity results.
Collapse
Affiliation(s)
- Simona Corina Trifu
- Department of Neurosciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bianca Kohn
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Andrei Vlasie
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Bogdan-Eduard Patrichi
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
12
|
Pong S, Karmacharya R, Sofman M, Bishop JR, Lizano P. The Role of Brain Microvascular Endothelial Cell and Blood-Brain Barrier Dysfunction in Schizophrenia. Complex Psychiatry 2020; 6:30-46. [PMID: 34883503 PMCID: PMC7673590 DOI: 10.1159/000511552] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite decades of research, little clarity exists regarding pathogenic mechanisms related to schizophrenia. Investigations on the disease biology of schizophrenia have primarily focused on neuronal alterations. However, there is substantial evidence pointing to a significant role for the brain's microvasculature in mediating neuroinflammation in schizophrenia. SUMMARY Brain microvascular endothelial cells (BMEC) are a central element of the microvasculature that forms the blood-brain barrier (BBB) and shields the brain against toxins and immune cells via paracellular, transcellular, transporter, and extracellular matrix proteins. While evidence for BBB dysfunction exists in brain disorders, including schizophrenia, it is not known if BMEC themselves are functionally compromised and lead to BBB dysfunction. KEY MESSAGES Genome-wide association studies, postmortem investigations, and gene expression analyses have provided some insights into the role of the BBB in schizophrenia pathophysiology. However, there is a significant gap in our understanding of the role that BMEC play in BBB dysfunction. Recent advances differentiating human BMEC from induced pluripotent stem cells (iPSC) provide new avenues to examine the role of BMEC in BBB dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianna Sofman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jeffrey R. Bishop
- Departments of Clinical and Experimental Pharmacology and Psychiatry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Jiang M, Kang Y, Sewastianik T, Wang J, Tanton H, Alder K, Dennis P, Xin Y, Wang Z, Liu R, Zhang M, Huang Y, Loda M, Srivastava A, Chen R, Liu M, Carrasco RD. BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins. Nat Commun 2020; 11:19. [PMID: 31911584 PMCID: PMC6946813 DOI: 10.1038/s41467-019-13842-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer, which despite recent advances in treatment, remains incurable due to molecular heterogeneity of tumor cells. The B-cell lymphoma 9 (BCL9) oncogene functions as a transcriptional co-activator of the Wnt/β-catenin pathway, which plays critical roles in CRC pathogenesis. Here we have identified a β-catenin-independent function of BCL9 in a poor-prognosis subtype of CRC tumors characterized by expression of stromal and neural associated genes. In response to spontaneous calcium transients or cellular stress, BCL9 is recruited adjacent to the interchromosomal regions, where it stabilizes the mRNA of calcium signaling and neural associated genes by interacting with paraspeckle proteins. BCL9 subsequently promotes tumor progression and remodeling of the tumor microenvironment (TME) by sustaining the calcium transients and neurotransmitter-dependent communication among CRC cells. These data provide additional insights into the role of BCL9 in tumor pathogenesis and point towards additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Yue Kang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, 02776, Poland
| | - Jiao Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Helen Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith Alder
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Xin
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhongqiu Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Depatment of Radiation Oncology and Cyberknife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruiyang Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Mengyun Zhang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Amitabh Srivastava
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Gareeva AE, Khusnutdinova EK. The Role of Intergenic Interactions of Neurotrophic and Neurotransmitter System Genes in the Development of Susceptibility to Paranoid Schizophrenia. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
16
|
Lago SG, Tomasik J, van Rees GF, Steeb H, Cox DA, Rustogi N, Ramsey JM, Bishop JA, Petryshen T, Haggarty SJ, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B, van Beveren NJ, Bahn S. Drug discovery for psychiatric disorders using high-content single-cell screening of signaling network responses ex vivo. SCIENCE ADVANCES 2019; 5:eaau9093. [PMID: 31086815 PMCID: PMC6506238 DOI: 10.1126/sciadv.aau9093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 05/07/2023]
Abstract
There is a paucity of efficacious new compounds to treat neuropsychiatric disorders. We present a novel approach to neuropsychiatric drug discovery based on high-content characterization of druggable signaling network responses at the single-cell level in patient-derived lymphocytes ex vivo. Primary T lymphocytes showed functional responses encompassing neuropsychiatric medications and central nervous system ligands at established (e.g., GSK-3β) and emerging (e.g., CrkL) drug targets. Clinical application of the platform to schizophrenia patients over the course of antipsychotic treatment revealed therapeutic targets within the phospholipase Cγ1-calcium signaling pathway. Compound library screening against the target phenotype identified subsets of L-type calcium channel blockers and corticosteroids as novel therapeutically relevant drug classes with corresponding activity in neuronal cells. The screening results were validated by predicting in vivo efficacy in an independent schizophrenia cohort. The approach has the potential to discern new drug targets and accelerate drug discovery and personalized medicine for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Santiago G. Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Geertje F. van Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hannah Steeb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - David A. Cox
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jordan M. Ramsey
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Joshua A. Bishop
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston, MA, USA
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Paula Suarez-Pinilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Nico J. van Beveren
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, Netherlands
- Department of Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands
- Department “Nieuwe Kennis,” Delta Centre for Mental Health Care, Rotterdam, Netherlands
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Corresponding author.
| |
Collapse
|
17
|
Lin SZ, Wu YK, Su YA, Si TM. Prospective memory in non-psychotic first-degree relatives of patients with schizophrenia: a meta-analysis. Neuropsychiatr Dis Treat 2019; 15:1563-1571. [PMID: 31289442 PMCID: PMC6565992 DOI: 10.2147/ndt.s203729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/04/2019] [Indexed: 12/16/2022] Open
Abstract
Prospective memory (PM) could be impaired in the non-psychotic first-degree relatives of patients with schizophrenia. This meta-analysis systematically examined the PM of non-psychotic first-degree relatives of patients with schizophrenia. Both Chinese and English databases were systematically searched for articles from the inception of the databases through November 13, 2018. Case-control studies of PM in non-psychotic first-degree relatives of patients with schizophrenia were included in the analyses. Confidence intervals (CIs) and standardized mean differences (SMDs) were calculated utilizing the random effects model. Four studies (n=268) that compared PM performance between non-psychotic first-degree relatives of patients with schizophrenia (n=136) and healthy controls (n=132) were included. Three studies were rated as "high quality", while the quality of evidence of the three outcomes included in this meta-analysis was moderate. Compared with the healthy controls, the non-psychotic first-degree relatives of patients with schizophrenia showed impairments in overall PM (two studies, n=127; SMD: -0.46; 95% CI=-0.82, -0.11, P=0.01; I=0%), event-based PM (EBPM) (four studies, n=268; SMD: -0.56; 95% CI=-0.80, -0.31, P<0.00001; I=0%), and time-based PM (TBPM) (four studies, n=268; SMD: -0.66; 95% CI=-0.90, -0.41, P<0.00001; I=0%). This meta-analysis demonstrated that the overall PM, EBPM, and TBPM might be impaired in the non-psychotic first-degree relatives of patients with schizophrenia.
Collapse
Affiliation(s)
- Shi-Ze Lin
- Quanzhou Mental Health Center, The Third Hospital of Quanzhou, Quanzhou, Fujian Province, People's Republic of China.,Institute of Mental Health, Peking University Sixth Hospital, Beijing, People's Republic of China
| | - Yan-Kun Wu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, People's Republic of China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, People's Republic of China
| | - Yun-Ai Su
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, People's Republic of China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, People's Republic of China
| | - Tian-Mei Si
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, People's Republic of China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Liu J, Li M, Luo XJ, Su B. Systems-level analysis of risk genes reveals the modular nature of schizophrenia. Schizophr Res 2018; 201:261-269. [PMID: 29789256 DOI: 10.1016/j.schres.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10-31). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10-11), closeness centrality (P = 7.56 × 10-11), betweeness centrality (P = 1.29 × 10-11), clustering coefficient (P = 2.22 × 10-2), and shorter average shortest path length (P = 7.56 × 10-11). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
19
|
Kunisawa K, Shimizu T, Kushima I, Aleksic B, Mori D, Osanai Y, Kobayashi K, Taylor AM, Bhat MA, Hayashi A, Baba H, Ozaki N, Ikenaka K. Dysregulation of schizophrenia-related aquaporin 3 through disruption of paranode influences neuronal viability. J Neurochem 2018; 147:395-408. [PMID: 30025158 PMCID: PMC6205917 DOI: 10.1111/jnc.14553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
Abstract
Myelinated axons segregate the axonal membrane into four defined regions: the node of Ranvier, paranode, juxtaparanode, and internode. The paranodal junction consists of specific component proteins, such as neurofascin155 (NF155) on the glial side, and Caspr and Contactin on the axonal side. Although paranodal junctions are thought to play crucial roles in rapid saltatory conduction and nodal assembly, the role of their interaction with neurons is not fully understood. In a previous study, conditional NF155 knockout in oligodendrocytes led to disorganization of the paranodal junctions. To examine if disruption of paranodal junctions affects neuronal gene expression, we prepared total RNA from the retina of NF155 conditional knockout, and performed expression analysis. We found that the expression level of 433 genes changed in response to paranodal junction ablation. Interestingly, expression of aquaporin 3 (AQP3) was significantly reduced in NF155 conditional knockout mice, but not in cerebroside sulfotransferase knockout (CST-KO) mice, whose paranodes are not originally formed during development. Copy number variations have an important role in the etiology of schizophrenia (SCZ). We observed rare duplications of AQP3 in SCZ patients, suggesting a correlation between abnormal AQP3 expression and SCZ. To determine if AQP3 over-expression in NF155 conditional knockout mice influences neuronal function, we performed adeno-associated virus (AAV)-mediated over-expression of AQP3 in the motor cortex of mice and found a significant increase in caspase 3-dependent neuronal apoptosis in AQP3-transduced cells. This study may provide new insights into therapeutic approaches for SCZ by regulating AQP3 expression, which is associated with paranodal disruption.
Collapse
Affiliation(s)
- Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuyuki Osanai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Anna M. Taylor
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio 78229-3900, USA
| | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio 78229-3900, USA
| | - Akiko Hayashi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| |
Collapse
|
20
|
Chang X, Lima LDA, Liu Y, Li J, Li Q, Sleiman PMA, Hakonarson H. Common and Rare Genetic Risk Factors Converge in Protein Interaction Networks Underlying Schizophrenia. Front Genet 2018; 9:434. [PMID: 30323833 PMCID: PMC6172705 DOI: 10.3389/fgene.2018.00434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022] Open
Abstract
Hundreds of genomic loci have been identified with the recent advances of schizophrenia in genome-wide association studies (GWAS) and sequencing studies. However, the functional interactions among those genes remain largely unknown. We developed a network-based approach to integrate multiple genetic risk factors, which lead to the discovery of new susceptibility genes and causal sub-networks, or pathways in schizophrenia. We identified significantly and consistently over-represented pathways in the largest schizophrenia GWA studies, which are highly relevant to synaptic plasticity, neural development and signaling transduction, such as long-term potentiation, neurotrophin signaling pathway, and the ERBB signaling pathway. We also demonstrated that genes targeted by common SNPs are more likely to interact with genes harboring de novo mutations (DNMs) in the protein-protein interaction (PPI) network, suggesting a mutual interplay of both common and rare variants in schizophrenia. We further developed an edge-based search algorithm to identify the top-ranked gene modules associated with schizophrenia risk. Our results suggest that the N-methyl-D-aspartate receptor (NMDAR) interactome may play a leading role in the pathology of schizophrenia, as it is highly targeted by multiple types of genetic risk factors.
Collapse
Affiliation(s)
- Xiao Chang
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Leandro de Araujo Lima
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yichuan Liu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Qingqin Li
- Janssen Research & Development, LLC, Titusville, NJ, United States
| | - Patrick M A Sleiman
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
21
|
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018; 265:25-38. [PMID: 29680514 DOI: 10.1016/j.psychres.2018.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, finding a reliable biomarker for the early detection of schizophrenia (Scz) has been a topic of interest. The main goal of the current review is to provide a comprehensive view of the brain, blood, cerebrospinal fluid (CSF), and serum biomarkers of Scz disease. Imaging studies have demonstrated that the volumes of the corpus callosum, thalamus, hippocampal formation, subiculum, parahippocampal gyrus, superior temporal gyrus, prefrontal and orbitofrontal cortices, and amygdala-hippocampal complex were reduced in patients diagnosed with Scz. It has been revealed that the levels of interleukin 1β (IL-1β), IL-6, IL-8, and TNF-α were increased in patients with Scz. Decreased mRNA levels of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), neurotrophin-3 (NT-3), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) genes have also been reported in Scz patients. Genes with known strong relationships with this disease include BDNF, catechol-O-methyltransferase (COMT), regulator of G-protein signaling 4 (RGS4), dystrobrevin-binding protein 1 (DTNBP1), neuregulin 1 (NRG1), Reelin (RELN), Selenium-binding protein 1 (SELENBP1), glutamic acid decarboxylase 67 (GAD 67), and disrupted in schizophrenia 1 (DISC1). The levels of dopamine, tyrosine hydroxylase (TH), serotonin or 5-hydroxytryptamine (5-HT) receptor 1A and B (5-HTR1A and 5-HTR1B), and 5-HT1B were significantly increased in Scz patients, while the levels of gamma-aminobutyric acid (GABA), 5-HT transporter (5-HTT), and 5-HT receptor 2A (5-HTR2A) were decreased. The increased levels of SELENBP1 and Glycogen synthase kinase 3 subunit α (GSK3α) genes in contrast with reduced levels of B-cell translocation gene 1 (BTG1), human leukocyte antigen DRB1 (HLA-DRB1), heterogeneous nuclear ribonucleoprotein A3 (HNRPA3), and serine/arginine-rich splicing factor 1 (SFRS1) genes have also been reported. This review covers various dysregulation of neurotransmitters and also highlights the strengths and weaknesses of studies attempting to identify candidate biomarkers.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ehsan Rashidi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghasem Amooeian
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Liu J, Su B. Integrated analysis supports ATXN1 as a schizophrenia risk gene. Schizophr Res 2018; 195:298-305. [PMID: 29055568 DOI: 10.1016/j.schres.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/27/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Protein-protein interaction (PPI) is informative in identifying hidden disease risk genes that tend to interact with known risk genes usually working together in the same disease module. With the use of an integrated approach combining PPI information with pathway and expression analysis as well as genome-wide association study (GWAS), we intended to find new risk genes for schizophrenia (SCZ). We showed that ATXN1 was the only direct PPI partner of the know SCZ risk gene ZNF804A, and it also had direct PPIs with other 18 known SCZ risk genes. ATXN1 serves as one of the hub genes in the PPI network containing many known SCZ risk genes, and this network is significantly enriched for the MAPK signaling pathway. Further gene expression analysis indicated that ATXN1 is highly expressed in prefrontal cortex, and SCZ patients had significantly decreased expression compared with healthy controls. Finally, the published GWAS data supports an association of ATXN1 with SCZ as well as other psychiatric disorders though not reaching genome-wide significance. These convergent evidences support ATXN1 as a promising risk gene for SCZ, and the integrated approach serves as a useful tool for dissecting the genetic basis of psychiatric disorders.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| |
Collapse
|
23
|
Mastrodonato V, Morelli E, Vaccari T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress 2018; 2:72-81. [PMID: 31225470 PMCID: PMC6551745 DOI: 10.15698/cst2018.04.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.
Collapse
Affiliation(s)
| | - Elena Morelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| |
Collapse
|
24
|
Mazzoccoli G, Castellana S, Carella M, Palumbo O, Tiberio C, Fusilli C, Capocefalo D, Biagini T, Mazza T, Lo Muzio L. A primary tumor gene expression signature identifies a crucial role played by tumor stroma myofibroblasts in lymph node involvement in oral squamous cell carcinoma. Oncotarget 2017; 8:104913-104927. [PMID: 29285222 PMCID: PMC5739609 DOI: 10.18632/oncotarget.20645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral and pharyngeal cancer, and is responsible of approximately 3% of cancers in men and 2% in women in the Western World, with increasing incidence rates in developing countries. Early detection by screening is necessary to prevent fatal disease because early, curable lesions are rarely symptomatic. The overall 5-yr survival rate is approximately 50% when surgery, radiation, or both are employed as treatment options, but lymph node involvement greatly influences this estimate, by decreasing the survival rate by about 50%. Here, we aimed at finding genetic signatures associated with lymph node metastasis in OSCC patients. We addressed this issue by whole transcriptome analysis through microarray expression profiling of a set of OSSC specimens of patients without lymph node involvement (10 patients, mean age ± SD 61.2±13.8, male 7, female 3) and with lymph node involvement (11 patients, mean age ± SD 62.1±15.1, male 8, female 3). We evidenced a gene expression signature associated to muscle contraction-related genes in specimens obtained from OSCC patients with lymph node involvement. This gene signature suggests the presence of myofibroblasts in tumor stoma of patients with lymph node involvement and emphasizes the decisive role played by myofibroblasts probably through their secretome in determining OSCC invasiveness.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Medical Genetics, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Orazio Palumbo
- Medical Genetics, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Cristiana Tiberio
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Caterina Fusilli
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Daniele Capocefalo
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Tommaso Biagini
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
25
|
Tang J, Fan Y, Li H, Xiang Q, Zhang DF, Li Z, He Y, Liao Y, Wang Y, He F, Zhang F, Shugart YY, Liu C, Tang Y, Chan RCK, Wang CY, Yao YG, Chen X. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia. J Genet Genomics 2017; 44:295-306. [PMID: 28645778 DOI: 10.1016/j.jgg.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022]
Abstract
Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive. We implemented whole-genome sequencing (WGS) analysis of 8 families with monozygotic (MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations (DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs (including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes (p.V24689I mutation in TTN, p.S2506T mutation in GCN1L1, IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function (LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations (CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size.
Collapse
Affiliation(s)
- Jinsong Tang
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Hong Li
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qun Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Zongchang Li
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ying He
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yanhui Liao
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, and CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan He
- Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, and Center of Schizophrenia, Beijing Institute for Brain Disorders and Laboratory of Brain Disorders of the Ministry of Science and Technology, Capital Medical University, Beijing 100088, China
| | - Fengyu Zhang
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Intramural Research Programs, National Institute of Mental Health, NIH, Bethesda 20892, USA
| | - Chunyu Liu
- Institute of Human Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110122, China.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, and CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, and Center of Schizophrenia, Beijing Institute for Brain Disorders and Laboratory of Brain Disorders of the Ministry of Science and Technology, Capital Medical University, Beijing 100088, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiaogang Chen
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
26
|
Abstract
Schizophrenia (SZ) is a debilitating brain disorder with a complex genetic architecture. Genetic studies, especially recent genome-wide association studies (GWAS), have identified multiple variants (loci) conferring risk to SZ. However, how to efficiently extract meaningful biological information from bulk genetic findings of SZ remains a major challenge. There is a pressing need to integrate multiple layers of data from various sources, eg, genetic findings from GWAS, copy number variations (CNVs), association and linkage studies, gene expression, protein-protein interaction (PPI), co-expression, expression quantitative trait loci (eQTL), and Encyclopedia of DNA Elements (ENCODE) data, to provide a comprehensive resource to facilitate the translation of genetic findings into SZ molecular diagnosis and mechanism study. Here we developed the SZDB database (http://www.szdb.org/), a comprehensive resource for SZ research. SZ genetic data, gene expression data, network-based data, brain eQTL data, and SNP function annotation information were systematically extracted, curated and deposited in SZDB. In-depth analyses and systematic integration were performed to identify top prioritized SZ genes and enriched pathways. Multiple types of data from various layers of SZ research were systematically integrated and deposited in SZDB. In-depth data analyses and integration identified top prioritized SZ genes and enriched pathways. We further showed that genes implicated in SZ are highly co-expressed in human brain and proteins encoded by the prioritized SZ risk genes are significantly interacted. The user-friendly SZDB provides high-confidence candidate variants and genes for further functional characterization. More important, SZDB provides convenient online tools for data search and browse, data integration, and customized data analyses.
Collapse
Affiliation(s)
- Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China;,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China;,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China;,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China,YGY and XJL are co-corresponding authors who jointly directed this work
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China;,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China;,YGY and XJL are co-corresponding authors who jointly directed this work
| |
Collapse
|
27
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
28
|
One CNV Discordance in NRXN1 Observed Upon Genome-wide Screening in 38 Pairs of Adult Healthy Monozygotic Twins. Twin Res Hum Genet 2016; 19:97-103. [DOI: 10.1017/thg.2016.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monozygotic (MZ) twins stem from the same single fertilized egg and therefore share all their inherited genetic variation. This is one of the unequivocal facts on which genetic epidemiology and twin studies are based. To what extent this also implies that MZ twins share genotypes in adult tissues is not precisely established, but a common pragmatic assumption is that MZ twins are 100% genetically identical also in adult tissues. During the past decade, this view has been challenged by several reports, with observations of differences in post-zygotic copy number variations (CNVs) between members of the same MZ pair. In this study, we performed a systematic search for differences of CNVs within 38 adult MZ pairs who had been misclassified as dizygotic (DZ) twins by questionnaire-based assessment. Initial scoring by PennCNV suggested a total of 967 CNV discordances. The within-pair correlation in number of CNVs detected was strongly dependent on confidence score filtering and reached a plateau of r = 0.8 when restricting to CNVs detected with confidence score larger than 50. The top-ranked discordances were subsequently selected for validation by quantitative polymerase chain reaction (qPCR), from which one single ~120kb deletion in NRXN1 on chromosome 2 (bp 51017111–51136802) was validated. Despite involving an exon, no sign of cognitive/mental consequences was apparent in the affected twin pair, potentially reflecting limited or lack of expression of the transcripts containing this exon in nerve/brain.
Collapse
|
29
|
New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings. Eur J Med Genet 2015; 58:704-14. [PMID: 26493318 DOI: 10.1016/j.ejmg.2015.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023]
Abstract
Schizophrenia research has undergone a recent transformation. By leveraging large sample sizes, genome-wide association studies of common genetic variants have approximately tripled the number of candidate genetic loci. Rare variant studies have identified copy number variants that are schizophrenia risk loci. Among these, the 3q29 microdeletion is now known to be the single largest schizophrenia risk factor. Next-generation sequencing studies are increasingly used for rare variant association testing, and have already facilitated identification of large effect alleles. Collectively, recent findings implicate voltage-gated calcium channel and cytoskeletal pathways in the pathogenesis of schizophrenia. Taken together, these results suggest the possibility of imminent breakthroughs in the molecular understanding of schizophrenia.
Collapse
|
30
|
Patent Highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|