1
|
Zhuo C, Li C, Ma X, Li R, Chen X, Li Y, Zhang Q, Yang L, Wang L. Common and unique white matter fractional anisotropy patterns in patients with schizophrenia with medication-resistant auditory verbal hallucinations: a retrospective tract-based spatial statistics study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:46. [PMID: 40113800 PMCID: PMC11926211 DOI: 10.1038/s41537-025-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Auditory verbal hallucinations (AVHs) are experienced by the majority of patients with schizophrenia and are often resistant to treatment with antipsychotic agents. White matter (WM) tract abnormalities are associated with AVH treatment efficacy. Using a retrospective design, 115 patients with schizophrenia with AVHs, 48 with medication-resistant AVHs and 67 with treatable AVHs, and 70 healthy controls (HCs) were selected from the database of our cohort study for 5-year follow-up assessment. WM tract integrity was measured using tract-based spatial statistics (TBSS) at baseline and after 5 years of antipsychotic agent treatment. The fractional anisotropy (FA) value was used to demonstrate WM tract alterations in patients with schizophrenia with medication-resistant AVHs, in patients with schizophrenia with treatable AVHs, and in HCs. Our data demonstrated that medication-resistant patients showed significantly greater FA values in the corpus callosum (CC) fasciculus at baseline and in the corticospinal tract post-treatment compared to HCs, but the baseline difference in the CC fasciculus was no longer significant after 5 years of antipsychotic agent treatment. The medication-resistant AVH group exhibited greater FA values in the superior longitudinal fasciculus after 5 years of antipsychotic agent treatment. Compared to the HC group, the treatable AVH group exhibited significantly greater FA values in the visual radiation and CC after 5 years of antipsychotic agent treatment. In the medication-resistant and treatable groups, common WM tract abnormalities were noted, as greater FA values were observed in the CC group at baseline compared to the HC group. At the same time, distinct abnormalities were noted, as greater FA values were observed in the superior longitudinal fasciculus, which may contribute to medication-resistant AVHs, whereas abnormalities in the CC fasciculus may contribute to both treatable and medication-resistant AVHs. In the HCs, a decrease in FA values in the posterior CC was observed after 5 years of observation compared to baseline. In summary, patients with treatment-resistant AVHs with schizophrenia and patients with treatable AVHs with schizophrenia have common and distinct abnormalities in the WM tract.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China.
| | - Chao Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Xiaoyan Ma
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Ranli Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Ximing Chen
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Yachen Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Qiuyu Zhang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Lei Yang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| | - Lina Wang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
| |
Collapse
|
2
|
Sasaki H, Kubota M, Miyata J, Murai T. Left posterior superior temporal gyrus and its structural connectivity in schizophrenia. Psychiatry Res Neuroimaging 2025; 347:111947. [PMID: 39798501 DOI: 10.1016/j.pscychresns.2025.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
The left posterior superior temporal gyrus (pSTG) is thought to be involved in the pathophysiology and core symptoms of schizophrenia, although its structural connectivity has not yet been systematically investigated. Here, we aimed to evaluate its white matter (WM) connectivity with Broca's area, the thalamus, and the right pSTG. Eighty-three patients with schizophrenia and 141 healthy controls underwent diffusion-weighted imaging and T1-weighted three-dimensional magnetic resonance imaging. Probabilistic tractography was performed from the left pSTG to the Broca area, the left thalamus, and the right pSTG. Group comparison of WM fractional anisotropy (FA) in these pathways, as well as its correlations with the pSTG volume and clinical characteristics in the patient group, were examined. Patients showed significantly lower FA in the left pSTG-Broca and left-right pSTG pathways, but not in the left pSTG-thalamus pathway. Patients also revealed a trend toward a smaller left pSTG volume. Significant negative correlations were found in patients between FA in the left-right pSTG pathway and the left pSTG volume, and between FA in the left pSTG-Broca pathway and positive symptom severity. The present results suggest fiber-specific alterations in structural connectivity linked to the left pSTG, possibly supporting the "inner speech" and "interhemispheric disconnection" hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Sasaki Clinic, Address: #2F Patio-Okamoto 3-3-14 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-0003, Japan
| | - Manabu Kubota
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Jun Miyata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Aichi Medical University, Address: 1-1 Yazakokarimata, Nagakute, Aichi 4801195, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Li YT, Zhang C, Han JC, Shang YX, Chen ZH, Cui GB, Wang W. Neuroimaging features of cognitive impairments in schizophrenia and major depressive disorder. Ther Adv Psychopharmacol 2024; 14:20451253241243290. [PMID: 38708374 PMCID: PMC11070126 DOI: 10.1177/20451253241243290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Cognitive dysfunctions are one of the key symptoms of schizophrenia (SZ) and major depressive disorder (MDD), which exist not only during the onset of diseases but also before the onset, even after the remission of psychiatric symptoms. With the development of neuroimaging techniques, these non-invasive approaches provide valuable insights into the underlying pathogenesis of psychiatric disorders and information of cognitive remediation interventions. This review synthesizes existing neuroimaging studies to examine domains of cognitive impairment, particularly processing speed, memory, attention, and executive function in SZ and MDD patients. First, white matter (WM) abnormalities are observed in processing speed deficits in both SZ and MDD, with distinct neuroimaging findings highlighting WM connectivity abnormalities in SZ and WM hyperintensity caused by small vessel disease in MDD. Additionally, the abnormal functions of prefrontal cortex and medial temporal lobe are found in both SZ and MDD patients during various memory tasks, while aberrant amygdala activity potentially contributes to a preference to negative memories in MDD. Furthermore, impaired large-scale networks including frontoparietal network, dorsal attention network, and ventral attention network are related to attention deficits, both in SZ and MDD patients. Finally, abnormal activity and volume of the dorsolateral prefrontal cortex (DLPFC) and abnormal functional connections between the DLPFC and the cerebellum are associated with executive dysfunction in both SZ and MDD. Despite these insights, longitudinal neuroimaging studies are lacking, impeding a comprehensive understanding of cognitive changes and the development of early intervention strategies for SZ and MDD. Addressing this gap is critical for advancing our knowledge and improving patient prognosis.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jia-Cheng Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| |
Collapse
|
4
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Cetin-Karayumak S, Kubicki M, Coleman MJ, Lewandowski KE, Holt DJ, Keshavan M, Bouix S, Öngür D, Breier A, Shenton ME, O'Donnell LJ. The organization of frontostriatal brain wiring in non-affective early psychosis compared with healthy subjects using a novel diffusion imaging fiber cluster analysis. Mol Psychiatry 2023; 28:2301-2311. [PMID: 37173451 PMCID: PMC11971472 DOI: 10.1038/s41380-023-02031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Alterations in brain connectivity may underlie neuropsychiatric conditions such as schizophrenia. We here assessed the degree of convergence of frontostriatal fiber projections in 56 young adult healthy controls (HCs) and 108 matched Early Psychosis-Non-Affective patients (EP-NAs) using our novel fiber cluster analysis of whole brain diffusion magnetic resonance imaging tractography. METHODS Using whole brain tractography and our fiber clustering methodology on harmonized diffusion magnetic resonance imaging data from the Human Connectome Project for Early Psychosis we identified 17 white matter fiber clusters that connect frontal cortex (FCtx) and caudate (Cd) per hemisphere in each group. To quantify the degree of convergence and, hence, topographical relationship of these fiber clusters, we measured the inter-cluster mean distances between the endpoints of the fiber clusters at the level of the FCtx and of the Cd, respectively. RESULTS We found (1) in both groups, bilaterally, a non-linear relationship, yielding convex curves, between FCtx and Cd distances for FCtx-Cd connecting fiber clusters, driven by a cluster projecting from inferior frontal gyrus; however, in the right hemisphere, the convex curve was more flattened in EP-NAs; (2) that cluster pairs in the right (p = 0.03), but not left (p = 0.13), hemisphere were significantly more convergent in HCs vs EP-NAs; (3) in both groups, bilaterally, similar clusters projected significantly convergently to the Cd; and, (4) a significant group by fiber cluster pair interaction for 2 right hemisphere fiber clusters (numbers 5, 11; p = .00023; p = .00023) originating in selective PFC subregions. CONCLUSIONS In both groups, we found the FCtx-Cd wiring pattern deviated from a strictly topographic relationship and that similar clusters projected significantly more convergently to the Cd. Interestingly, we also found a significantly more convergent pattern of connectivity in HCs in the right hemisphere and that 2 clusters from PFC subregions in the right hemisphere significantly differed in their pattern of connectivity between groups.
Collapse
Affiliation(s)
- J J Levitt
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - F Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - M Vangel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - P G Nestor
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychology, University of Massachusetts, Boston, MA, 02125, USA
| | - Y Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - S Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - M Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - M J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - K E Lewandowski
- McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - D J Holt
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - M Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - S Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC, H3C 1K3, Canada
| | - D Öngür
- McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - A Breier
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - L J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Zorlu N, Bayrakçı A, Karakılıç M, Zalesky A, Seguin C, Tian Y, Gülyüksel F, Yalınçetin B, Oral E, Gelal F, Bora E. Abnormal Structural Network Communication Reflects Cognitive Deficits in Schizophrenia. Brain Topogr 2023; 36:294-304. [PMID: 36971857 DOI: 10.1007/s10548-023-00954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
Schizophrenia has long been thought to be a disconnection syndrome and several previous studies have reported widespread abnormalities in white matter tracts in individuals with schizophrenia. Furthermore, reductions in structural connectivity may also impair communication between anatomically unconnected pairs of brain regions, potentially impacting global signal traffic in the brain. Therefore, we used different communication models to examine direct and indirect structural connections (polysynaptic) communication in large-scale brain networks in schizophrenia. Diffusion-weighted magnetic resonance imaging scans were acquired from 62 patients diagnosed with schizophrenia and 35 controls. In this study, we used five network communication models including, shortest paths, navigation, diffusion, search information and communicability to examine polysynaptic communication in large-scale brain networks in schizophrenia. We showed less efficient communication between spatially widespread brain regions particulary encompassing cortico-subcortical basal ganglia network in schizophrenia group relative to controls. Then, we also examined whether reduced communication efficiency was related to clinical symptoms in schizophrenia group. Among different measures of communication efficiency, only navigation efficiency was associated with global cognitive impairment across multiple cognitive domains including verbal learning, processing speed, executive functions and working memory, in individuals with schizophrenia. We did not find any association between communication efficiency measures and positive or negative symptoms within the schizophrenia group. Our findings are important for improving our mechanistic understanding of neurobiological process underlying cognitive symptoms in schizophrenia.
Collapse
|
7
|
Marcolini S, Rojczyk P, Seitz-Holland J, Koerte IK, Alosco ML, Bouix S, for the Department of Defense Alzheimer’s Disease Neuroimaging Initiative. Posttraumatic Stress and Traumatic Brain Injury: Cognition, Behavior, and Neuroimaging Markers in Vietnam Veterans. J Alzheimers Dis 2023; 95:1427-1448. [PMID: 37694363 PMCID: PMC10578246 DOI: 10.3233/jad-221304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are common in Veterans and linked to behavioral disturbances, increased risk of cognitive decline, and Alzheimer's disease. OBJECTIVE We studied the synergistic effects of PTSD and TBI on behavioral, cognitive, and neuroimaging measures in Vietnam war Veterans. METHODS Data were acquired at baseline and after about one-year from male Veterans categorized into: PTSD, TBI, PTSD+TBI, and Veteran controls without PTSD or TBI. We applied manual tractography to examine white matter microstructure of three fiber tracts: uncinate fasciculus (N = 91), cingulum (N = 87), and inferior longitudinal fasciculus (N = 95). ANCOVAs were used to compare Veterans' baseline behavioral and cognitive functioning (N = 285), white matter microstructure, amyloid-β (N = 230), and tau PET (N = 120). Additional ANCOVAs examined scores' differences from baseline to follow-up. RESULTS Veterans with PTSD and PTSD+TBI, but not Veterans with TBI only, exhibited poorer behavioral and cognitive functioning at baseline than controls. The groups did not differ in baseline white matter, amyloid-β, or tau, nor in behavioral and cognitive functioning, and tau accumulation change. Progression of white matter abnormalities of the uncinate fasciculus in Veterans with PTSD compared to controls was observed; analyses in TBI and PTSD+TBI were not run due to insufficient sample size. CONCLUSIONS PTSD and PTSD+TBI negatively affect behavioral and cognitive functioning, while TBI does not contribute independently. Whether progressive decline in uncinate fasciculus microstructure in Veterans with PTSD might account for cognitive decline should be further studied. Findings did not support an association between PTSD, TBI, and Alzheimer's disease pathology based on amyloid and tau PET.
Collapse
Affiliation(s)
- Sofia Marcolini
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Philine Rojczyk
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Johanna Seitz-Holland
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Michael L. Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de Technologie Supe´rieure, Montre´al, Canada
| | | |
Collapse
|
8
|
Seitz-Holland J, Wojcik JD, Cetin-Karayumak S, Lyall AE, Pasternak O, Rathi Y, Vangel M, Pearlson G, Tamminga C, Sweeney JA, Clementz BA, Schretlen DA, Viher PV, Stegmayer K, Walther S, Lee J, Crow T, James A, Voineskos A, Buchanan RW, Szeszko PR, Malhotra AK, Kelly S, Shenton ME, Keshavan MS, Mesholam-Gately RI, Kubicki M. Cognitive deficits, clinical variables, and white matter microstructure in schizophrenia: a multisite harmonization study. Mol Psychiatry 2022; 27:3719-3730. [PMID: 35982257 PMCID: PMC10538303 DOI: 10.1038/s41380-022-01731-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Cognitive deficits are among the best predictors of real-world functioning in schizophrenia. However, our understanding of how cognitive deficits relate to neuropathology and clinical presentation over the disease lifespan is limited. Here, we combine multi-site, harmonized cognitive, imaging, demographic, and clinical data from over 900 individuals to characterize a) cognitive deficits across the schizophrenia lifespan and b) the association between cognitive deficits, clinical presentation, and white matter (WM) microstructure. Multimodal harmonization was accomplished using T-scores for cognitive data, previously reported standardization methods for demographic and clinical data, and an established harmonization method for imaging data. We applied t-tests and correlation analysis to describe cognitive deficits in individuals with schizophrenia. We then calculated whole-brain WM fractional anisotropy (FA) and utilized regression-mediation analyses to model the association between diagnosis, FA, and cognitive deficits. We observed pronounced cognitive deficits in individuals with schizophrenia (p < 0.006), associated with more positive symptoms and medication dosage. Regression-mediation analyses showed that WM microstructure mediated the association between schizophrenia and language/processing speed/working memory/non-verbal memory. In addition, processing speed mediated the influence of diagnosis and WM microstructure on the other cognitive domains. Our study highlights the critical role of cognitive deficits in schizophrenia. We further show that WM is crucial when trying to understand the role of cognitive deficits, given that it explains the association between schizophrenia and cognitive deficits (directly and via processing speed).
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joanne D Wojcik
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - David A Schretlen
- Department of Psychiatry and Behavioral Sciences, Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Petra Verena Viher
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Tim Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Anthony James
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York, NY, USA
| | - Anil K Malhotra
- The Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Raquelle I Mesholam-Gately
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
White-matter free-water diffusion MRI in schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2022; 47:1413-1420. [PMID: 35034098 PMCID: PMC9117206 DOI: 10.1038/s41386-022-01272-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
White-matter abnormalities, including increases in extracellular free-water, are implicated in the pathophysiology of schizophrenia. Recent advances in diffusion magnetic resonance imaging (MRI) enable free-water levels to be indexed. However, the brain levels in patients with schizophrenia have not yet been systematically investigated. We aimed to meta-analyse white-matter free-water levels in patients with schizophrenia compared to healthy volunteers. We performed a literature search in EMBASE, MEDLINE, and PsycINFO databases. Diffusion MRI studies reporting free-water in patients with schizophrenia compared to healthy controls were included. We investigated the effect of demographic variables, illness duration, chlorpromazine equivalents of antipsychotic medication, type of scanner, and clinical symptoms severity on free-water measures. Ten studies, including five of first episode of psychosis have investigated free-water levels in schizophrenia, with significantly higher levels reported in whole-brain and specific brain regions (including corona radiata, internal capsule, superior and inferior longitudinal fasciculus, cingulum bundle, and corpus callosum). Six studies, including a total of 614 participants met the inclusion criteria for quantitative analysis. Whole-brain free-water levels were significantly higher in patients relative to healthy volunteers (Hedge's g = 0.38, 95% confidence interval (CI) 0.07-0.69, p = 0.02). Sex moderated this effect, such that smaller effects were seen in samples with more females (z = -2.54, p < 0.05), but antipsychotic dose, illness duration and symptom severity did not. Patients with schizophrenia have increased free-water compared to healthy volunteers. Future studies are necessary to determine the pathological sources of increased free-water, and its relationship with illness duration and severity.
Collapse
|
10
|
Seitz-Holland J, Cetin-Karayumak S, Wojcik JD, Lyall A, Levitt J, Shenton ME, Pasternak O, Westin CF, Baxi M, Kelly S, Mesholam-Gately R, Vangel M, Pearlson G, Tamminga CA, Sweeney JA, Clementz BA, Schretlen D, Viher PV, Stegmayer K, Walther S, Lee J, Crow T, James A, Voineskos A, Buchanan RW, Szeszko PR, Malhotra AK, Rathi Y, Keshavan M, Kubicki M. Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia-a multicenter harmonized diffusion tensor imaging study. Mol Psychiatry 2021; 26:5357-5370. [PMID: 33483689 PMCID: PMC8329919 DOI: 10.1038/s41380-021-01018-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joanne D Wojcik
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Amanda Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Levitt
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Madhura Baxi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Graduate Program of Neuroscience, Boston University, Boston, MA, USA
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - David Schretlen
- Department of Psychiatry and Behavioral Sciences, Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Petra Verena Viher
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Tim Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Anthony James
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York, NY, USA
| | - Anil K Malhotra
- The Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Maximo JO, Kraguljac NV, Rountree BG, Lahti AC. Structural and Functional Default Mode Network Connectivity and Antipsychotic Treatment Response in Medication-Naïve First Episode Psychosis Patients. ACTA ACUST UNITED AC 2021; 2:sgab032. [PMID: 34414373 PMCID: PMC8364918 DOI: 10.1093/schizbullopen/sgab032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction Only a few studies have comprehensively characterized default mode network (DMN) pathology on a structural and functional level, and definite conclusions cannot be drawn due to antipsychotic medication exposure and illness chronicity. The objective of this study was to characterize DMN pathology in medication-naïve first episode psychosis (FEP) patients, and determine if DMN structural and functional connectivity (FC) have potential utility as a predictor for subsequent antipsychotic treatment response. Methods Diffusion imaging and resting state FC data from 42 controls and 52 FEP were analyzed. Patients then received 16 weeks of antipsychotic treatment. Using region of interest analyses, we quantified FC of the DMN and structural integrity of the white matter tracts supporting DMN function. We then did linear regressions between DMN structural and FC indices and antipsychotic treatment response. Results We detected reduced DMN fractional anisotropy and axial diffusivity in FEP compared to controls. No DMN FC abnormalities nor correlations between DMN structural and FC were found. Finally, DMN fractional anisotropy and radial diffusivity were associated with response to treatment. Conclusion Our study highlights the critical role of the DMN in the pathophysiology suggesting that axonal damage may already be present in FEP patients. We also demonstrated that DMN pathology is clinically relevant, as greater structural DMN alterations were associated with a less favorable clinical response to antipsychotic medications.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| | - Boone G Rountree
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
12
|
Pawełczyk A, Łojek E, Żurner N, Gawłowska-Sawosz M, Gębski P, Pawełczyk T. The correlation between white matter integrity and pragmatic language processing in first episode schizophrenia. Brain Imaging Behav 2021; 15:1068-1084. [PMID: 32710335 PMCID: PMC8032571 DOI: 10.1007/s11682-020-00314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective: Higher-order language disturbances could be the result of white matter tract abnormalities. The study explores the relationship between white matter and pragmatic skills in first-episode schizophrenia. Methods: Thirty-four first-episode patients with schizophrenia and 32 healthy subjects participated in a pragmatic language and Diffusion Tensor Imaging study, where fractional anisotropy of the arcuate fasciculus, corpus callosum and cingulum was correlated with the Polish version of the Right Hemisphere Language Battery. Results: The patients showed reduced fractional anisotropy in the right arcuate fasciculus, left anterior cingulum bundle and left forceps minor. Among the first episode patients, reduced understanding of written metaphors correlated with reduced fractional anisotropy of left forceps minor, and greater explanation of written and picture metaphors correlated with reduced fractional anisotropy of the left anterior cingulum. Conclusions: The white matter dysfunctions may underlie the pragmatic language impairment in schizophrenia. Our results shed further light on the functional neuroanatomical basis of pragmatic language use by patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland.
| | | | - Natalia Żurner
- Adolescent Ward, Central Clinical Hospital of Medical University of Łódź, Łódź, Poland
| | | | - Piotr Gębski
- Scanlab Diagnostyka Medyczna Księży Młyn, Medical Examination Centre, Medical University of Łódź, Łódź, Poland
| | - Tomasz Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
13
|
Thomas MB, Raghava JM, Pantelis C, Rostrup E, Nielsen MØ, Jensen MH, Glenthøj BY, Mandl RCW, Ebdrup BH, Fagerlund B. Associations between cognition and white matter microstructure in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls: A multivariate pattern analysis. Cortex 2021; 139:282-297. [PMID: 33933719 DOI: 10.1016/j.cortex.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cognitive functions have been associated with white matter (WM) microstructure in schizophrenia, but most studies are limited by examining only select cognitive measures and single WM tracts in chronic, medicated patients. It is unclear if the cognition-WM relationship differs between antipsychotic-naïve patients with schizophrenia and healthy controls, as differential associations have not been directly examined. Here we examine if there are differential patterns of associations between cognition and WM microstructure in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls, and we characterize reliable contributors to the pattern of associations across multiple cognitive domains and WM regions, in order to elucidate white matter contribution to the neural underpinnings of cognitive deficits. METHODS Thirty-six first-episode antipsychotic-naïve patients with schizophrenia and 52 matched healthy controls underwent cognitive tests and diffusion-weighted imaging on a 3T Magnetic Resonance Imaging scanner. Using a multivariate partial least squares correlation analysis, we included 14 cognitive variables and mean fractional anisotropy values of 48 WM regions. RESULTS Initial analyses showed significant group differences in both measures of WM and cognition. There was no group interaction effect in the pattern of associations between cognition and WM microstructure. The combined analysis of patients and controls lead to a significant pattern of associations (omnibus test p = .015). Thirty-four regions and seven cognitive functions contributed reliably to the associations. CONCLUSIONS The lack of an interaction effect suggests similar associations in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls. This, together with the differences in both WM and cognitive measurements, supports the involvement of WM in cognitive deficits in schizophrenia. Our findings add to the field by showing a coherent picture of the overall pattern of association between cognition and WM. These findings increase our understanding of the impact of WM on cognition, contributing to the search for neuromarkers of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Marie B Thomas
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Jayachandra M Raghava
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Christos Pantelis
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia.
| | - Egill Rostrup
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Mette Ø Nielsen
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Maria H Jensen
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Birte Y Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - René C W Mandl
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; UMC Brain Center, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Birgitte Fagerlund
- Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Schoonover KE, Roberts RC. Markers of copper transport in the cingulum bundle in schizophrenia. Schizophr Res 2021; 228:124-133. [PMID: 33434726 PMCID: PMC7988290 DOI: 10.1016/j.schres.2020.11.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
Abstract
Imaging and postmortem studies indicate that schizophrenia subjects exhibit abnormal connectivity in several white matter tracts, including the cingulum bundle. Copper chelators given to experimental animals damage myelin and myelin-producing oligodendrocytes, and the substantia nigra of schizophrenia subjects shows lower levels of copper, copper transporters, and copper-utilizing enzymes. This study aimed to elucidate the potential role of copper homeostasis in white matter pathology in schizophrenia. Protein levels of the copper transporters ATP7A and CTR1, and dysbindin-1, an upstream modulator of copper metabolism and schizophrenia susceptibility factor, were measured using Western blot analyses of the postmortem cingulum bundle of schizophrenia subjects (n=16) and matched controls (n=13). Additionally, the patient group was subdivided by treatment status: off- (n=8) or on-medication (n=8). Relationships between proteins from the current study were correlated among themselves and markers of axonal integrity previously measured in the same cohort. Schizophrenia subjects exhibited similar protein levels to controls, with no effect of antipsychotic treatment. The dysbindin-1A/1BC relationship was positive in controls and schizophrenia subjects; however, antipsychotic treatment appeared to reverse this relationship in a statistically different manner from that of controls and unmedicated subjects. The relationships between dysbindin-1A/neurofilament heavy and ATP7A/α-tubulin were positively correlated in the schizophrenia group that was significantly different from the lack of correlation in controls. Copper transporters and dysbindin-1 appear to be more significantly affected in the grey matter of schizophrenia subjects. However, the relationships among proteins in white matter may be more substantial and dependent on treatment status.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|
15
|
Schoonover KE, Farmer CB, Morgan CJ, Sinha V, Odom L, Roberts RC. Abnormalities in the copper transporter CTR1 in postmortem hippocampus in schizophrenia: A subregion and laminar analysis. Schizophr Res 2021; 228:60-73. [PMID: 33434736 PMCID: PMC7987889 DOI: 10.1016/j.schres.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
Dysbindin-1 modulates copper transport, which is crucial for cellular homeostasis. Several brain regions implicated in schizophrenia exhibit decreased levels of dysbindin-1, which may affect copper homeostasis therein. Our recent study showed decreased levels of dysbindin-1, the copper transporter-1 (CTR1) and copper in the substantia nigra in schizophrenia, providing the first evidence of disrupted copper transport in schizophrenia. In the present study, we hypothesized that there would be lower levels of dysbindin-1 and CTR1 in the hippocampus in schizophrenia versus a comparison group. Using semi-quantitative immunohistochemistry for dysbindin1 and CTR1, we measured the optical density in a layer specific fashion in the hippocampus and entorhinal cortex in ten subjects with schizophrenia and ten comparison subjects. Both regions were richly immunolabeled for CTR1 and dysbindin1 in both groups. In the superficial layers of the entorhinal cortex, CTR1 immunolabeled neuropil and cells showed lower optical density values in patients versus the comparison group. In the molecular layer of the dentate gyrus, patients had higher optical density values of CTR1 versus the comparison group. The density and distribution of dysbindin-1 immunolabeling was similar between groups. These laminar specific alterations of CTR1 in schizophrenia suggest abnormal copper transport in those locations.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Charlene B. Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham
| | - Vidushi Sinha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Laura Odom
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
16
|
Brain structural correlates of functional capacity in first-episode psychosis. Sci Rep 2020; 10:17229. [PMID: 33056996 PMCID: PMC7560620 DOI: 10.1038/s41598-020-73553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired functional capacity is a core feature of schizophrenia and presents even in first-episode psychosis (FEP) patients. Impairments in daily functioning tend to persist despite antipsychotic therapy but their neural basis is less clear. Previous studies suggest that volume loss in frontal cortex might be an important contributor, but findings are inconsistent. We aimed to comprehensively investigate the brain structural correlates of functional capacity in FEP using MRI and a reliable objective measure of functioning [University of California, San Diego Performance-Based Skills Assessment (UPSA)]. In a sample of FEP (n = 39) and a well-matched control group (n = 21), we measured cortical thickness, gray matter volume, and white matter tract integrity (fractional anisotropy, FA) within brain regions implicated by previous work. The FEP group had thinner cortex in various frontal regions and fusiform, and reduced FA in inferior longitudinal fasciculus (ILF). In FEP, poorer functional capacity correlated with reduced superior frontal volume and lower FA in left ILF. Importantly, frontal brain volumes and integrity of the ILF were identified as the structural correlates of functional capacity in FEP, controlling for other relevant factors. These findings enhance mechanistic understanding of functional capacity deficits in schizophrenia by specifying the underlying neural correlates. In future, this could help inform intervention strategies.
Collapse
|
17
|
Tractography-Based Analysis of Morphological and Anatomical Characteristics of the Uncinate Fasciculus in Human Brains. Brain Sci 2020; 10:brainsci10100709. [PMID: 33036125 PMCID: PMC7601025 DOI: 10.3390/brainsci10100709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: The uncinate fasciculus (UF) is a white matter bundle connecting the prefrontal cortex and temporal lobe. The functional role of the uncinate fasciculus is still uncertain. The role of the UF is attributed to the emotional empathy network. The present study aimed to more accurately the describe anatomical variability of the UF by focusing on the volume of fibers and testing for correlations with sex and age. (2) Material and Methods: Magnetic resonance imaging of adult patients with diffusion tensor imaging (DTI) was performed on 34 patients. The total number of fibers, volume of UF, and number of tracts were processed using DSI studio software. The DSI studio allows for mapping of different nerve pathways and visualizing of the obtained results using spatial graphics. (3) Results: The total number of UF tracts was significantly higher in the right hemisphere compared to the left hemisphere (right M ± SD = 52 ± 24; left: 39 ± 25, p < 0.05). A hook-shaped UF was the most common variant (91.7%). The UF volumes were larger in men (1410 ± 150.7 mm3) as compared to women (1325 ± 133.2 mm3) (p < 0.05). The mean fractional anisotropy (FA) values of the UF were significantly larger on the left side 0.597, while the right UF had an average of 0.346 (p < 0.05). Patients older than 50 years old had a significantly higher value of mean diffusivity (MD) (p = 0.034). In 73.5% of patients, a greater number of fibers terminated in the inferior part of the inferior frontal gyrus. (4) Conclusions: The morphological characteristics of the UF, unlike the shape, are associated with sex and are characterized by hemispheric dominance. These findings confirm the results of the previous studies. Future research should examine the potential correlation among the UF volume, number of fibers, and total brain volume in both sexes and patient psychological state.
Collapse
|
18
|
The relationship between cingulum bundle integrity and different aspects of executive functions in chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109955. [PMID: 32360815 DOI: 10.1016/j.pnpbp.2020.109955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/19/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Evidence suggests that disruption in the cingulum bundle (CB) may influence executive dysfunctions in schizophrenia, but findings are still inconsistent. Using diffusion tensor imaging tractography, we investigated the differences in fiber integrity between schizophrenia patients and healthy controls together with the association between fiber integrity and executive functions. METHODS Thirty-two patients with chronic schizophrenia and 24 healthy controls took part in the study. Both groups were matched for age, sex, and years of education. Assessment of cognitive functions was performed using the Berg Card Sorting Test (BCST), the Color Trail Test (CTT), and the Stroop Color-Word Test (SCWT). RESULTS Results showed group differences, bilaterally (left and right) in fractional anisotropy (FA) of the CB, where patients showed less anisotropy than controls. Moreover, normal asymmetry (left FA > right FA) in the CB in schizophrenia was found. There were no group differences in mean diffusivity (MD). Patients had a similar but reduced profile of executive functions compared to healthy controls. However, when premorbid IQ was controlled for, the differences were no longer statistically significant. In schizophrenia patients, a negative correlation was found between FA of the left CB and perseverative errors in the BCST. CONCLUSIONS These findings provide evidence that CB disruption appears in schizophrenia patients and might account for impairments of executive processes, including concept formation.
Collapse
|
19
|
Peng X, Zhang R, Yan W, Zhou M, Lu S, Xie S. Reduced white matter integrity associated with cognitive deficits in patients with drug-naive first-episode schizophrenia revealed by diffusion tensor imaging. Am J Transl Res 2020; 12:4410-4421. [PMID: 32913515 PMCID: PMC7476109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Patients with schizophrenia have shown widespread white matter microstructural abnormalities and cognitive deficits, but the definitive relationship between white matter and cognitive performance remains unclear. In this study, we investigated the possible associations between white matter integrity and cognitive deficits in drug-naive first-episode schizophrenia (dn-FES) using diffusion tensor imaging (DTI). A total of 96 participants, including 46 dn-FES patients and 50 healthy individuals, underwent 3.0 T magnetic resonance diffusion-weighted imaging and cognitive assessments using the Chinese version of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB). Group differences were tested using tract-based spatial statistics (TBSS). Compared with the control group, the dn-FES group exhibited reduced white matter integrity, as indexed using fractional anisotropy (FA) metrics, in the right-hemispheric cluster comprising the posterior thalamic radiation, posterior corona radiata, superior longitudinal fasciculus, retrolenticular part of the internal capsule, tapetum, splenium of the corpus callosum, sagittal stratum, and inferior longitudinal fasciculus. We found that social cognitive deficit is significantly correlated with reduced FA in these white matter regions, except the sagittal stratum and inferior longitudinal fasciculus. Furthermore, we found that speed of processing is positively correlated with reduced FA in the right superior longitudinal fasciculus of dn-FES patients. In summary, white matter deficits were validated in dn-FES patients and could be associated with speed of processing and social cognition, providing clues about a neural basis of schizophrenia and a potential biomarker for clinical studies.
Collapse
Affiliation(s)
- Xiaohui Peng
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University Nanjing 210029, China
| | - Rongrong Zhang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University Nanjing 210029, China
| | - Wei Yan
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University Nanjing 210029, China
| | - Min Zhou
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University Nanjing 210029, China
| | - Shuiping Lu
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University Nanjing 210029, China
| | - Shiping Xie
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University Nanjing 210029, China
| |
Collapse
|
20
|
The Amygdala in Schizophrenia and Bipolar Disorder: A Synthesis of Structural MRI, Diffusion Tensor Imaging, and Resting-State Functional Connectivity Findings. Harv Rev Psychiatry 2020; 27:150-164. [PMID: 31082993 DOI: 10.1097/hrp.0000000000000207] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Frequently implicated in psychotic spectrum disorders, the amygdala serves as an important hub for elucidating the convergent and divergent neural substrates in schizophrenia and bipolar disorder, the two most studied groups of psychotic spectrum conditions. A systematic search of electronic databases through December 2017 was conducted to identify neuroimaging studies of the amygdala in schizophrenia and bipolar disorder, focusing on structural MRI, diffusion tensor imaging (DTI), and resting-state functional connectivity studies, with an emphasis on cross-diagnostic studies. Ninety-four independent studies were selected for the present review (49 structural MRI, 27 DTI, and 18 resting-state functional MRI studies). Also selected, and analyzed in a separate meta-analysis, were 33 volumetric studies with the amygdala as the region-of-interest. Reduced left, right, and total amygdala volumes were found in schizophrenia, relative to both healthy controls and bipolar subjects, even when restricted to cohorts in the early stages of illness. No volume abnormalities were observed in bipolar subjects relative to healthy controls. Shape morphometry studies showed either amygdala deformity or no differences in schizophrenia, and no abnormalities in bipolar disorder. In contrast to the volumetric findings, DTI studies of the uncinate fasciculus tract (connecting the amygdala with the medial- and orbitofrontal cortices) largely showed reduced fractional anisotropy (a marker of white matter microstructure abnormality) in both schizophrenia and bipolar patients, with no cross-diagnostic differences. While decreased amygdalar-orbitofrontal functional connectivity was generally observed in schizophrenia, varying patterns of amygdalar-orbitofrontal connectivity in bipolar disorder were found. Future studies can consider adopting longitudinal approaches with multimodal imaging and more extensive clinical subtyping to probe amygdalar subregional changes and their relationship to the sequelae of psychotic disorders.
Collapse
|
21
|
Rivas-Grajales AM, Savadjiev P, Kubicki M, Nestor PG, Niznikiewicz M, McCarley RW, Westin CF, Shenton ME, Levitt JJ. Striato-nigro-striatal tract dispersion abnormalities in patients with chronic schizophrenia. Brain Imaging Behav 2020; 13:1236-1245. [PMID: 30109597 DOI: 10.1007/s11682-018-9934-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The white matter connections between the midbrain dopamine neurons and the striatum are part of a neural system involved in reward-based learning, a process that is impaired in patients with schizophrenia. The striato-nigro-striatal (SNS) tract, which participates in this process, has not as yet been explored. The present study aimed to use diffusion MRI (dMRI) to delineate the SNS tract, and to compare the application of two dMRI measures, Tract Dispersion (TD), an index of white matter morphology, and Fractional Anisotropy (FA), an index of white matter integrity, to detect group differences between patients with chronic schizophrenia (CSZ) and healthy controls (HC). dMRI scans were acquired in 22 male patients with CSZ and 23 age-matched HC. Two-tensor tractography was used in addition to manually-delineated regions of interest to extract the SNS tract. A mixed-model analysis of variance was used to investigate differences in TD and FA between CSZ patients and HC. The associations between TD and behavioral measures were also explored. Patients and controls differed significantly in TD (P = 0.04), but not in FA (P = 0.69). The group differences in TD were driven by a higher TD in the right hemisphere in the CSZ group. Higher TD correlated significantly with poorer performance in the Iowa Gambling Task (IGT) when combining the scores of both groups. The findings suggest that dysconnectiviy of the SNS tract which is associated with schizophrenia, could arise from abnormalities in white matter morphology. These abnormalities may potentially reflect irregularities in brain development.
Collapse
Affiliation(s)
- Ana María Rivas-Grajales
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Peter Savadjiev
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul G Nestor
- Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Margaret Niznikiewicz
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Robert W McCarley
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - James J Levitt
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, USA.
| |
Collapse
|
22
|
Fitzsimmons J, Rosa P, Sydnor VJ, Reid BE, Makris N, Goldstein JM, Mesholam-Gately RI, Woodberry K, Wojcik J, McCarley RW, Seidman LJ, Shenton ME, Kubicki M. Cingulum bundle abnormalities and risk for schizophrenia. Schizophr Res 2020; 215:385-391. [PMID: 31477373 DOI: 10.1016/j.schres.2019.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/22/2019] [Accepted: 08/15/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND The cingulum bundle (CB) is a major white matter fiber tract of the limbic system that underlies cingulate cortex, passing longitudinally over the corpus callosum. The connectivity of this white matter fiber tract plays a major role in emotional expression, attention, motivation, and working memory, all of which are affected in schizophrenia. Myelin related CB abnormalities have also been implicated in schizophrenia. The purpose of this study is to determine whether or not CB abnormalities are evident in individuals at clinical high risk (CHR) for psychosis, and whether or not cognitive deficits in the domains subserved by CB are related to its structural abnormalities. METHODS Diffusion Tensor Imaging (DTI) was performed on a 3 T magnet. DT tractography was used to evaluate CB in 20 individuals meeting CHR criteria (13 males/7 females) and 23 healthy controls (12 males/11 females) group matched on age, gender, parental socioeconomic status, education, and handedness. Fractional anisotropy (FA), a measure of white matter coherence and integrity, radial diffusivity (RD), thought to reflect myelin integrity, trace, a possible marker of atrophy, and axial diffusivity (AD), thought to reflect axonal integrity, were averaged over the entire tract and used to investigate CB abnormalities in individuals at CHR for psychosis compared with healthy controls. RESULTS Significant group differences were found between individuals at CHR for psychosis and controls for FA (p = 0.028), RD (p = 0.03) and trace (p = 0.031), but not for AD (p = 0.09). We did not find any significant correlations between DTI measures and clinical symptoms. CONCLUSION These findings suggest abnormalities (possibly myelin related) in the CB in individuals at CHR for psychosis.
Collapse
Affiliation(s)
- Jennifer Fitzsimmons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Pedro Rosa
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Laboratory of Psychiatric Neuroimaging (LIM-21), Department & Institute of Psychiatry, Faculty of Medicine, Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin E Reid
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jill M Goldstein
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Raquelle I Mesholam-Gately
- Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America
| | - Kristen Woodberry
- Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America
| | - Joanne Wojcik
- Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America
| | - Robert W McCarley
- Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States of America
| | - Larry J Seidman
- Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Research and Development, VA Boston Healthcare System, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
23
|
Bay HH, Özkan M, Onat F, Çavdar S. Do the Dento-Thalamic Connections of Genetic Absence Epilepsy Rats from Strasbourg Differ from Those of Control Wistar Rats? Brain Connect 2019; 9:703-710. [PMID: 31591912 DOI: 10.1089/brain.2019.0694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The thalamo-cortical circuit is important in the genesis of absence epilepsy. This circuit can be influenced by connecting pathways from various parts of central nervous system. The aim of the present study is to define the dento-thalamic connections in Wistar animals and compare the results with genetic absence epilepsy rats from Strasbourg (GAERS) using the biotinylated dextran amine (BDA) tracer. We injected BDA into the dentate nucleus of 13 (n = 6 Wistar and n = 7 GAERS) animals. The dento-thalamic connections in the Wistar animals were denser and were connected to a wider range of thalamic nuclei compared with GAERS. The dentate nucleus was bilaterally connected to the central (central medial [CM], paracentral [PC]), ventral (ventral medial [VM], ventral lateral [VL], and ventral posterior lateral [VPL]), and posterior (Po) thalamic nuclei in Wistar animals. The majority of these connections were dense contralaterally and scarce ipsilaterally. Contralateral connections were present with the parafascicular (PF), ventral posterior medial, ventral anterior (VA), and central lateral (CL) thalamic nuclei in Wistar animals. Whereas in GAERS, bilateral connections were observed with the VL and CM. Contralateral connections were present with the PC, VM, VA, and PF thalamic nuclei in GAERS. The CL, VPL, and Po thalamic nucleus connections were not observed in GAERS. The present study showed weak/deficit dento-thalamic connections in GAERS compared with control Wistar animals. The scarce information flow from the dentate nucleus to thalamus in GAERS may have a deficient modulatory role on the thalamus and thus may affect modulation of the thalamo-cortical circuit.
Collapse
Affiliation(s)
| | - Mazhar Özkan
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey
| | - Filiz Onat
- Department of Pharmacology and Clinic Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
24
|
Hamoda HM, Makhlouf AT, Fitzsimmons J, Rathi Y, Makris N, Mesholam-Gately RI, Wojcik JD, Goldstein J, McCarley RW, Seidman LJ, Kubicki M, Shenton ME. Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: a two-tensor tractography study. Brain Imaging Behav 2019; 13:472-481. [PMID: 29667043 DOI: 10.1007/s11682-018-9862-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The "cognitive dysmetria" hypothesis suggests that impairments in cognition and behavior in patients with schizophrenia can be explained by disruptions in the cortico-cerebellar-thalamic-cortical circuit. In this study we examine thalamo-cortical connections in patients with first-episode schizophrenia (FESZ). White matter pathways are investigated that connect the thalamus with three frontal cortex regions including the anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), and lateral oribitofrontal cortex (LOFC). We use a novel method of two-tensor tractography in 26 patients with FESZ compared to 31 healthy controls (HC), who did not differ on age, sex, or education. Dependent measures were fractional anisotropy (FA), Axial Diffusivity (AD), and Radial Diffusivity (RD). Subjects were also assessed using clinical functioning measures including the Global Assessment of Functioning (GAF) Scale, the Global Social Functioning Scale (GF: Social), and the Global Role Functioning Scale (GF: Role). FESZ patients showed decreased FA in the right thalamus-right ACC and right-thalamus-right LOFC pathways compared to healthy controls (HCs). In the right thalamus-right VLPFC tract, we found decreased FA and increased RD in the FESZ group compared to HCs. After correcting for multiple comparisons, reductions in FA in the right thalamus- right ACC and the right thalamus- right VLPC tracts remained significant. Moreover, reductions in FA were significantly associated with lower global functioning scores as well as lower social and role functioning scores. We report the first diffusion tensor imaging study of white matter pathways connecting the thalamus to three frontal regions. Findings of white matter alterations and clinical associations in the thalamic-cortical component of the cortico-cerebellar-thalamic-cortical circuit in patients with FESZ support the cognitive dysmetria hypothesis and further suggest the possible involvement of myelin sheath pathology and axonal membrane disruption in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Hesham M Hamoda
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - A T Makhlouf
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - J Fitzsimmons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R I Mesholam-Gately
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J D Wojcik
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Women's Health, Connors Center for Women's Health & Gender Biology; Departments of Psychiatry and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R W McCarley
- Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - L J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
25
|
Palaniyappan L, Al-Radaideh A, Mougin O, Das T, Gowland P, Liddle PF. Aberrant myelination of the cingulum and Schneiderian delusions in schizophrenia: a 7T magnetization transfer study. Psychol Med 2019; 49:1890-1896. [PMID: 30229713 DOI: 10.1017/s0033291718002647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The structural integrity of the anterior cingulum has been repeatedly observed to be abnormal in patients with schizophrenia. More recently, aberrant myelination of frontal fasciculi, especially, cingulum has been proposed to underlie delayed corollary discharges that can affect sense of agency and contribute to delusions of control (Schneiderian delusions). Using the magnetization transfer phenomenon at an ultra-high field 7T MRI, we investigated the putative myelin content of cingulum bundle in patients with schizophrenia. METHODS Seventeen clinically stable patients with schizophrenia and 20 controls were recruited for this 7T MRI study. We used a region-of-interest method and extracted magnetization transfer ratio (MTR) from left and right dorsal cingulum bundles and estimated patients v. controls differences. We also related the cingulum MTR values to the severity of Schneiderian delusions. RESULTS Patients had a significant reduction in the MTR, indicating reduced myelin content, in the cingulum bundle (right cingulum Hedges' g = 0.91; left cingulum g = 0.03). The reduced MTR of left cingulum was associated with higher severity of Schneiderian delusions (τ = -0.45, p = 0.026) but no such relationship was seen for the right cingulum MTR (τ = -0.136, p = 0.50) among patients. The association between the left cingulum MTR and Schneiderian delusions was not explained by the presence of other delusions, hallucinations, disorganization or negative symptoms. CONCLUSIONS Dysmyelination of the cingulum bundle is seen in a subgroup of patients with schizophrenia and may be involved in the mechanism of Schneiderian delusions.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Allied Health Sciences,The Hashemite University,Zarqa,Jordan
| | - Olivier Mougin
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Tushar Das
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Peter F Liddle
- Translational Neuroimaging for Mental Health, Division of Psychiatry and Applied Psychology,University of Nottingham,Nottingham,UK
| |
Collapse
|
26
|
Liang S, Li Y, Zhang Z, Kong X, Wang Q, Deng W, Li X, Zhao L, Li M, Meng Y, Huang F, Ma X, Li XM, Greenshaw AJ, Shao J, Li T. Classification of First-Episode Schizophrenia Using Multimodal Brain Features: A Combined Structural and Diffusion Imaging Study. Schizophr Bull 2019; 45:591-599. [PMID: 29947804 PMCID: PMC6483586 DOI: 10.1093/schbul/sby091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent neuroanatomical pattern recognition studies have shown some promises for developing an objective neuroimaging-based classification related to schizophrenia. This study explored the feasibility of reliably identifying schizophrenia using single and multimodal multivariate neuroimaging features. Multiple brain measures including regional gray matter (GM) volume, cortical thickness, gyrification, fractional anisotropy (FA), and mean diffusivity (MD) were extracted using fully automated procedures. We used Gradient Boosting Decision Tree to identify the most frequently selected features of each set of neuroanatomical metric and fused multimodal measures. The current classification model was trained and validated based on 98 patients with first-episode schizophrenia (FES) and 106 matched healthy controls (HCs). The classification model was trained and tested in an independent dataset of 54 patients with FES and 48 HCs using imaging data acquired on a different magnetic resonance imaging scanner. Using the most frequently selected features from fused structural and diffusion tensor imaging metrics, a classification accuracy of 75.05% was achieved, which was higher than accuracy derived from a single imaging metric. Most prominent discriminative features included cortical thickness of left transverse temporal gyrus and right parahippocampal gyrus, the FA of left corticospinal tract and right external capsule. In the independent cohort, average accuracy was 76.54%, derived from combined features selected from cortical thickness, gyrification, FA, and MD. These features characterized by GM abnormalities and white matter disruptions have discriminative power with respect to the underlying pathological changes in the brain of individuals having schizophrenia. Our results further highlight the potential advantage of multimodal data fusion for identifying schizophrenia.
Collapse
Affiliation(s)
- Sugai Liang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinfei Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Zhang
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangzhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Qiang Wang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yajing Meng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Huang
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohong Ma
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin-min Li
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Greenshaw
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Junming Shao
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China,To whom correspondence should be addressed; West China Mental Health Centre, West China Hospital, Sichuan University, No. 28th Dianxin Nan Str., Chengdu, Sichuan 610041, China; tel.: 86-28-85423561, fax: 86-28-85422632, e-mail:
| |
Collapse
|
27
|
Schoonover KE, Farmer CB, Cash AE, Roberts RC. Pathology of white matter integrity in three major white matter fasciculi: A post-mortem study of schizophrenia and treatment status. Br J Pharmacol 2019; 176:1143-1155. [PMID: 30735241 DOI: 10.1111/bph.14612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Imaging studies have shown that people with schizophrenia exhibit abnormal connectivity termed "dysconnectivity" in several white matter tracts, including the cingulum bundle (CB), corpus callosum (CC), and arcuate fasciculus (AF). This study aimed to elucidate potential contributors to schizophrenia "dysconnectivity." EXPERIMENTAL APPROACH Western blot analysis was used to compare protein levels of myelin basic protein, neurofilament heavy, autophagosome marker LC3, and microtubule marker α-tubulin in post-mortem human CB, CC, and AF in schizophrenia subjects (SZ) and matched normal controls (NC). Additionally, SZ cases were subdivided by treatment status: off-medication (OFF) or on-medication (ON). KEY RESULTS In the CC, the combined SZ group exhibited less neurofilament heavy protein than the NCs. In the CB, the combined SZ group had similar levels of α-tubulin protein versus NC, but OFF subjects had increased α-tubulin protein versus ON and NCs. There were significant correlations between α-tubulin and all other proteins but only in the CB. The strong negative relationship between α-tubulin versus myelin basic protein and α-tubulin versus LC3 in NCs was absent in SZs; coefficients comparison showed significant differences. Preliminary race analyses revealed that African American SZ had less AF α-tubulin than Caucasian SZ and African American normal controls. CONCLUSIONS AND IMPLICATIONS The results show a relationship between tract- and protein-specific abnormalities and diagnosis, treatment, and race. These data suggest there is a dysregulation of the relationship between α-tubulin and the other markers of white matter integrity observed in the CB in schizophrenia.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew E Cash
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Discoidin domain receptor 1 gene variants are associated with decreased white matter fractional anisotropy and decreased processing speed in schizophrenia. J Psychiatr Res 2019; 110:74-82. [PMID: 30597424 DOI: 10.1016/j.jpsychires.2018.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
DDR1 has been linked to schizophrenia (SZ) and myelination. Here, we tested whether DDR1 variants in people at risk for SZ influence white matter (WM) structural variations and cognitive processing speed (PS). First, following a case-control design (Study 1), SZ patients (N = 1193) and controls (N = 1839) were genotyped for rs1264323 and rs2267641 at DDR1, and the frequencies were compared. We replicated the association between DDR1 and SZ (rs1264323, adjusted P = 0.015). Carriers of the rs1264323AA combined with the rs2267641AC or CC genotype are at risk to develop SZ compared to the other genotype combinations. Second, SZ patients (Study 2, N = 194) underwent an evaluation of PS using the Trail Making Test (TMT) and DDR1 genotyping. To compare PS between DDR1 genotype groups, we conducted an analysis of covariance (including rs1264323 as a covariate) and found that SZ patients with the rs2267641CC genotype had decreased PS compared to patients with the AA and AC genotypes. Third, 54 patients (Study 3) from Study 2 were selected based on rs1264323 genotype to undergo reevaluation, including a DTI-MRI brain scan. To test for associations between PS, WM microstructure and DDR1 genotype, we first localized those WM regions where fractional anisotropy (FA) was correlated with PS and tested whether FA showed differences between the rs1264323 genotypes. SZ patients with the rs1264323AA genotype showed decreased FA in WM regions associated with decreased PS. We conclude that DDR1 variants may confer a risk of SZ through WM microstructural alterations leading to cognitive dysfunction.
Collapse
|
29
|
Konishi J, Del Re EC, Bouix S, Blokland GAM, Mesholam-Gately R, Woodberry K, Niznikiewicz M, Goldstein J, Hirayasu Y, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW. Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study. Brain Imaging Behav 2019; 12:974-988. [PMID: 28815390 DOI: 10.1007/s11682-017-9758-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether abnormal volumes of several brain regions as well as their mutual associations that have been observed in patients with schizophrenia, are also present in individuals at clinical high-risk (CHR) for developing psychosis. 3T magnetic resonance imaging was acquired in 19 CHR and 20 age- and handedness-matched controls. Volumes were measured for the body and temporal horns of the lateral ventricles, hippocampus and amygdala as well as total brain, cortical gray matter, white matter, and subcortical gray matter volumes. Relationships between volumes as well as correlations between volumes and cognitive and clinical measures were explored. Ratios of lateral ventricular volume to total brain volume and temporal horn volume to total brain volume were calculated. Volumetric abnormalities were lateralized to the left hemisphere. Volumes of the left temporal horn, and marginally, of the body of the left lateral ventricle were larger, while left amygdala but not hippocampal volume was significantly smaller in CHR participants compared to controls. Total brain volume was also significantly smaller and the ratio of the temporal horn/total brain volume was significantly higher in CHR than in controls. White matter volume correlated positively with higher verbal fluency score while temporal horn volume correlated positively with a greater number of perseverative errors. Together with the finding of larger temporal horns and smaller amygdala volumes in the left hemisphere, these results indicate that the ratio of temporal horns volume to brain volume is abnormal in CHR compared to controls. These abnormalities present in CHR individuals may constitute the biological basis for at least some of the CHR syndrome.
Collapse
Affiliation(s)
- Jun Konishi
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Elisabetta C Del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Gabriëlla A M Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Kristen Woodberry
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| | - Jill Goldstein
- Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, Boston, MA, USA.,Health and Gender Biology, Boston, MA, USA.,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Research and Development, VA Boston Healthcare System, Boston, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Sex difference in association of symptoms and white matter deficits in first-episode and drug-naive schizophrenia. Transl Psychiatry 2018; 8:281. [PMID: 30563964 PMCID: PMC6298972 DOI: 10.1038/s41398-018-0346-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/10/2018] [Accepted: 11/25/2018] [Indexed: 11/10/2022] Open
Abstract
Accumulating evidence shows that disruption of white matter (WM) may be involved in the pathophysiology of schizophrenia, even at the onset of psychosis. However, very few studies have explored sex difference in its association with psychopathology in schizophrenia. This study aims to compare sex differences in clinical features and WM abnormalities in first-episode and drug-naive (FEDN) schizophrenia among Han Chinese inpatients. The WM fractional anisotropy (FA) values of the whole-brain were determined using voxel-based diffusion tensor imaging (DTI) in 39 (16 males and 23 females) FEDN patients with schizophrenia and 30 healthy controls (13 males and 17 females) matched for gender, age, and education. Patient psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS).Our results showed that compared with the controls, the patients showed widespread areas of lower FA, including corpus callosum, brainstem, internal capsule, cingulate, and cerebellum (all adjusted p < 0.01). Further, male patients showed lower FA values in left cingulate (F = 4.92, p = 0.033), but higher scores on the PANSS total, positive, and general psychopathology subscale scores (all p < 0.01) than female patients. Multivariate regression analysis showed that for male patients, FA values in right corpus callosum were positively associated with the PANSS total (beta = 0.785, t = 3.76, p = 0.002) and the negative symptom scores (beta = 0.494, t = 2.20, p = 0.044), while for female patients, FA values in left cingulate were negatively associated with the PANSS positive symptom score (beta = -0.717, t = -2.25, p = 0.041). Our findings indicate sex difference in white matter disconnectivity and its association with psychopathological symptoms in an early course of schizophrenia onset.
Collapse
|
31
|
Whitford TJ, Oestreich LKL, Ford JM, Roach BJ, Loewy RL, Stuart BK, Mathalon DH. Deficits in Cortical Suppression During Vocalization are Associated With Structural Abnormalities in the Arcuate Fasciculus in Early Illness Schizophrenia and Clinical High Risk for Psychosis. Schizophr Bull 2018; 44:1312-1322. [PMID: 29194516 PMCID: PMC6192501 DOI: 10.1093/schbul/sbx144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Self-generated speech produces a smaller N1 amplitude in the auditory-evoked potential than externally generated speech; this phenomenon is known as N1-suppression. Schizophrenia patients show less N1-suppression than healthy controls. This failure to self-suppress may underlie patients' characteristic tendency to misattribute self-generated thoughts and actions to external sources. While the cause of N1-suppression deficits to speech in schizophrenia remains unclear, structural damage to the arcuate fasciculus is a candidate, due to its ostensible role in transmitting the efference copy of the motor plan to speak. Fifty-one patients with early illness schizophrenia (ESZ), 40 individuals at clinical high-risk for psychosis (CHR), and 59 healthy control (HC) participants underwent an electroencephalogram while they spoke and then listened to a recording of their speech. N1-suppression to the spoken sounds was calculated. Participants also underwent a diffusion-tensor imaging (DTI) scan, from which the arcuate fasciculus and pyramidal tract were extracted with deterministic tractography. ESZ patients exhibited significantly less N1-suppression to self-generated speech than HC participants, with CHR participants exhibiting intermediate levels. ESZ patients also exhibited structural abnormalities in the arcuate fasciculus-specifically, reduced fractional anisotropy and increased radial diffusivity-relative to both HC and CHR. There were no between-group differences in the structural integrity of the pyramidal tract. Finally, level of N1-suppression was linearly related to the structural integrity of the arcuate fasciculus, but not the pyramidal tract, across groups. These results suggest that the self-suppression deficits to willed speech consistently observed in schizophrenia patients may be caused, at least in part, by structural damage to the arcuate fasciculus.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, The University of New South Wales, Sydney, Australia
| | - Lena K L Oestreich
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Judith M Ford
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA,San Francisco Veterans Affairs Healthcare System, San Francisco, CA
| | - Brian J Roach
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA
| | - Rachel L Loewy
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA
| | - Barbara K Stuart
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA,San Francisco Veterans Affairs Healthcare System, San Francisco, CA,To whom correspondence should be addressed; Department of Psychiatry, School of Medicine, University of California—San Francisco (UCSF), 4150 Clement Street, San Francisco, CA 94121, US; tel: +1-415-221-4810, fax: +1-415-750-6622, e-mail:
| |
Collapse
|
32
|
Herbet G, Zemmoura I, Duffau H. Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Front Neuroanat 2018; 12:77. [PMID: 30283306 PMCID: PMC6156142 DOI: 10.3389/fnana.2018.00077] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The inferior longitudinal fasciculus (ILF) is a long-range, associative white matter pathway that connects the occipital and temporal-occipital areas of the brain to the anterior temporal areas. In view of the ILF's anatomic connections, it has been suggested that this pathway has a major role in a relatively large array of brain functions. Until recently, however, the literature data on these potential functions were scarce. Here, we review the key findings of recent anatomic, neuromodulation, and neuropsychological studies. We also summarize reports on how this tract is disrupted in a wide range of brain disorders, including psychopathologic, neurodevelopmental, and neurologic diseases. Our review reveals that the ILF is a multilayered, bidirectional tract involved in processing and modulating visual cues and thus in visually guided decisions and behaviors. Accordingly, sudden disruption of the ILF by neurologic insult is mainly associated with neuropsychological impairments of visual cognition (e.g., visual agnosia, prosopagnosia, and alexia). Furthermore, disruption of the ILF may constitute the pathophysiologic basis for visual hallucinations and socio-emotional impairments in schizophrenia, as well as emotional difficulties in autism spectrum disorder. Degeneration of the ILF in neurodegenerative diseases affecting the temporal lobe may explain (at least in part) the gradual onset of semantic and lexical access difficulties. Although some of the functions mediated by the ILF appear to be relatively lateralized, observations from neurosurgery suggest that disruption of the tract's anterior portion can be dynamically compensated for by the contralateral portion. This might explain why bilateral disruption of the ILF in either acute or progressive disease is highly detrimental in neuropsychological terms.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Ilyess Zemmoura
- Department of Neurosurgery, Tours University Medical Center, Tours, France
- UMR 1253, iBrain, INSERM, University of Tours, Tours, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| |
Collapse
|
33
|
Sydnor VJ, Rivas-Grajales AM, Lyall AE, Zhang F, Bouix S, Karmacharya S, Shenton ME, Westin CF, Makris N, Wassermann D, O'Donnell LJ, Kubicki M. A comparison of three fiber tract delineation methods and their impact on white matter analysis. Neuroimage 2018; 178:318-331. [PMID: 29787865 DOI: 10.1016/j.neuroimage.2018.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana María Rivas-Grajales
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Fan Zhang
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarina Karmacharya
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Carl-Fredrik Westin
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Demian Wassermann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Athena, Université Cote d'Azur, Inria, France; Parietal, CEA, Université Paris-Saclay, INRIA Saclay Île-de-France, France
| | - Lauren J O'Donnell
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Abstract
OBJECTIVES Cognitive dysfunction is a core symptom dimension that cuts across the psychoses. Recent findings support classification of patients along the cognitive dimension using cluster analysis; however, data-derived groupings may be highly determined by sampling characteristics and the measures used to derive the clusters, and so their interpretability must be established. We examined cognitive clusters in a cross-diagnostic sample of patients with psychosis and associations with clinical and functional outcomes. We then compared our findings to a previous report of cognitive clusters in a separate sample using a different cognitive battery. METHODS Participants with affective or non-affective psychosis (n=120) and healthy controls (n=31) were administered the MATRICS Consensus Cognitive Battery, and clinical and community functioning assessments. Cluster analyses were performed on cognitive variables, and clusters were compared on demographic, cognitive, and clinical measures. Results were compared to findings from our previous report. RESULTS A four-cluster solution provided a good fit to the data; profiles included a neuropsychologically normal cluster, a globally impaired cluster, and two clusters of mixed profiles. Cognitive burden was associated with symptom severity and poorer community functioning. The patterns of cognitive performance by cluster were highly consistent with our previous findings. CONCLUSIONS We found evidence of four cognitive subgroups of patients with psychosis, with cognitive profiles that map closely to those produced in our previous work. Clusters were associated with clinical and community variables and a measure of premorbid functioning, suggesting that they reflect meaningful groupings: replicable, and related to clinical presentation and functional outcomes. (JINS, 2018, 24, 382-390).
Collapse
|
35
|
Jackson J, Bianco G, Rosa AO, Cowan K, Bond P, Anichtchik O, Fern R. White matter tauopathy: Transient functional loss and novel myelin remodeling. Glia 2018; 66:813-827. [PMID: 29315804 DOI: 10.1002/glia.23286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/03/2023]
Abstract
Early white matter (WM) changes are common in dementia and may contribute to functional decline. We here examine this phenomenon in an induced dementia model for the first time. We report a novel and selective form of myelin injury as the first manifestation of tauopathy in the adult central nervous system. Myelin pathology rapidly followed the induction of a P301 tau mutation associated with fronto-temporal dementia in humans (rTG4510 line). Damage involved focal disruption of the ad-axonal myelin lamella and internal oligodendrocyte tongue process, followed by myelin remodeling with features of re-myelination that included myelin thinning and internodal shortening. The evolution of the re-myelinated phenotype was complete in the molecular layer of the dentate gyrus after 1 month and in the optic nerve (ON) after 9 months of transgene induction and proceeded in the absence of actual demyelination, reactive glial changes or inflammatory response. The initial rapid myelin pathology was associated with loss of WM function and performance decline in a novel recognition test and both these effects largely reversed during the myelin re-modeling phase. The initial phase of myelin injury was accompanied by disruption of the vesicle population present in the axoplasm of hippocampal and ON axons. Axoplasmic vesicle release is significant for the regulation of myelin plasticity and disruption of this pathway may underlie the myelin damage and remodeling evoked by tauopathy. WM dysfunction early in tauopathy will disorder neural circuits, the current findings suggest this event may make a significant contribution to early clinical deficit in dementia.
Collapse
Affiliation(s)
| | | | - Angelo O Rosa
- Plymouth Electron Microscopy Centre, University of Plymouth, Plymouth, United Kingdom
| | - Katrina Cowan
- Peninsula School of Medicine and Dentistry, University of Plymouth, PUPSMD, Plymouth, United Kingdom
| | - Peter Bond
- Plymouth Electron Microscopy Centre, University of Plymouth, Plymouth, United Kingdom
| | - Oleg Anichtchik
- Peninsula School of Medicine and Dentistry, University of Plymouth, PUPSMD, Plymouth, United Kingdom
| | - Robert Fern
- Peninsula School of Medicine and Dentistry, University of Plymouth, PUPSMD, Plymouth, United Kingdom
| |
Collapse
|
36
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
37
|
Gibson EM, Geraghty AC, Monje M. Bad wrap: Myelin and myelin plasticity in health and disease. Dev Neurobiol 2017; 78:123-135. [PMID: 28986960 DOI: 10.1002/dneu.22541] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 123-135, 2018.
Collapse
Affiliation(s)
- Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Anna C Geraghty
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
38
|
Michielse S, Gronenschild E, Domen P, van Os J, Marcelis M. The details of structural disconnectivity in psychotic disorder: A family-based study of non-FA diffusion weighted imaging measures. Brain Res 2017; 1671:121-130. [PMID: 28709907 DOI: 10.1016/j.brainres.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies in psychotic disorder have shown reduced FA, often interpreted as disturbed white matter integrity. The observed 'dysintegrity' may be of multifactorial origin, as changes in FA are thought to reflect a combination of changes in myelination, fiber organization and number of axons. Examining the structural substrate of the diffusion tensor in individuals with (risk for) psychotic disorder may provide better understanding of the underlying structural changes. METHODS DTI scans were acquired from 85 patients with psychotic disorder, 93 siblings of patients with psychotic disorder and 80 controls. Cross-sectional group comparisons were performed using Tract-Based Spatial Statistics (TBSS) on six DTI measures: axial diffusivity (AXD), radial diffusivity (RD), mean diffusivity (MD), and the case linear (CL), case planar (CP) and case spherical (CS) tensor shape measures. RESULTS AXD did not differ between the groups. RD and CS values were significantly increased in patients compared to controls and siblings, with no significant differences between the latter two groups. MD was higher in patients compared to controls (but not siblings), with no difference between siblings and controls. CL was smaller in patients than in siblings and controls, and CP was smaller in both patients and siblings as compared to controls. CONCLUSION The differences between individuals with psychotic disorder and healthy controls, derived from detailed diffusion data analyses, suggest less fiber orientation and increased free water movement in the patients. There was some evidence for association with familial risk expressed by decreased fiber orientation.
Collapse
Affiliation(s)
- Stijn Michielse
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Ed Gronenschild
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Patrick Domen
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands; King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands; Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| | | |
Collapse
|
39
|
Nenadić I, Hoof A, Dietzek M, Langbein K, Reichenbach JR, Sauer H, Güllmar D. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder. Psychiatry Res Neuroimaging 2017; 266:96-100. [PMID: 28644999 DOI: 10.1016/j.pscychresns.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes.
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Philipps University Marburg & Marburg University Hospital / UKGM, Marburg, Germany.
| | - Anna Hoof
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Maren Dietzek
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| |
Collapse
|
40
|
Bopp MHA, Zöllner R, Jansen A, Dietsche B, Krug A, Kircher TTJ. White matter integrity and symptom dimensions of schizophrenia: A diffusion tensor imaging study. Schizophr Res 2017; 184:59-68. [PMID: 28012640 DOI: 10.1016/j.schres.2016.11.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023]
Abstract
Impaired fiber bundle connectivity between brain regions is a key neuropathological finding in schizophrenia. Symptom dimensions in schizophrenia can be clustered into factor models. Single syndromes have been related to grey and white matter brain structure alterations. We associated all core syndromes of schizophrenia in a single patient group with changes in white matter integrity. Diffusion weighted images (3T MRI) and SAPS/SANS scores were measured in 26 male patients and 26 healthy controls. First, group differences in fractional anisotropy (FA) were calculated with TBSS. Second, core symptom dimensions of schizophrenia were correlated with FA within these altered tracts. We found differences between groups in nine white matter tracts. Hallucinations were positively correlated with FA in the left uncinate fasciculus and left corticospinal tract. Ego-disturbances (passivity phenomena) showed a positive correlation with FA in the right anterior thalamic radiation. Positive formal thought disorders (FTD) corresponded negatively with FA in the right cingulum bundle. Negative symptoms were positively associated with the right anterior thalamic radiation and negatively with the right ventral cingulum bundle. For the first time, we analyzed the whole range of psychopathological factors in one schizophrenia patient group. We could validate our novel results for positive FTD and passivity phenomena by replicating findings for hallucinations and negative symptoms. Only those brain circuits which are most vulnerable at a given time during neurodevelopment are affected by a particular pathological impact (genetic, environmental). This scenario could explain the predominance of particular psychopathological syndromes related to specific white matter anomalies.
Collapse
Affiliation(s)
- Miriam H A Bopp
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic.
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Core Facility Brain Imaging, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| |
Collapse
|
41
|
Tylee DS, Kikinis Z, Quinn TP, Antshel KM, Fremont W, Tahir MA, Zhu A, Gong X, Glatt SJ, Coman IL, Shenton ME, Kates WR, Makris N. Machine-learning classification of 22q11.2 deletion syndrome: A diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2017; 15:832-842. [PMID: 28761808 PMCID: PMC5522376 DOI: 10.1016/j.nicl.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a genetic neurodevelopmental syndrome that has been studied intensively in order to understand relationships between the genetic microdeletion, brain development, cognitive function, and the emergence of psychiatric symptoms. White matter microstructural abnormalities identified using diffusion tensor imaging methods have been reported to affect a variety of neuroanatomical tracts in 22q11.2DS. In the present study, we sought to combine two discovery-based approaches: (1) white matter query language was used to parcellate the brain's white matter into tracts connecting pairs of 34, bilateral cortical regions and (2) the diffusion imaging characteristics of the resulting tracts were analyzed using a machine-learning method called support vector machine in order to optimize the selection of a set of imaging features that maximally discriminated 22q11.2DS and comparison subjects. With this unique approach, we both confirmed previously-recognized 22q11.2DS-related abnormalities in the inferior longitudinal fasciculus (ILF), and identified, for the first time, 22q11.2DS-related anomalies in the middle longitudinal fascicle and the extreme capsule, which may have been overlooked in previous, hypothesis-guided studies. We further observed that, in participants with 22q11.2DS, ILF metrics were significantly associated with positive prodromal symptoms of psychosis.
Collapse
Key Words
- (-fp), fronto-parietal aspect
- (-to), temporo-occipital aspect
- (-tp), temporo-parietal aspect
- (22q11.2DS), 22q11.2 deletion syndrome
- (AD), axial diffusivity
- (DTI), diffusion tensor imaging
- (DWI), diffusion weighted image
- (EmC), extreme capsule
- (FA), fractional anisotropy
- (FOV), field of view
- (GDS), Gordon Diagnostic Systems
- (ILF), inferior longitudinal fasciculus
- (MdLF), middle longitudinal fascicle
- (RD), radial diffusivity
- (ROI), region of interest
- (SIPS), Structured Interview for Prodromal Syndromes
- (SRS), Social Responsiveness Scale
- (STG), superior temporal gyrus
- (SVM), support vector machine
- (UKF), Unscented Kalman Filter
- (WAIS-III), Wechsler Adult Intelligence Scale – 3rd edition
- (WMQL), white matter query language
- (dTP), dorsal temporal pole
- 22q11.2 deletion syndrome
- Callosal asymmetry
- Diffusion tensor imaging
- Extreme capsule
- Inferior longitudinal fasciculus
- Machine-learning
- Middle longitudinal fascicle
- Support vector machine
- Velocardiofacial syndrome
- White matter query language
Collapse
Affiliation(s)
- Daniel S Tylee
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Thomas P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, Victoria, Australia
| | | | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Muhammad A Tahir
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anni Zhu
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Gong
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA.
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Nikos Makris
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Fern R. The Leukocentric Theory of Neurological Disorder: A Manifesto. Neurochem Res 2017; 42:2666-2672. [DOI: 10.1007/s11064-017-2279-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023]
|
43
|
Viher PV, Stegmayer K, Giezendanner S, Federspiel A, Bohlhalter S, Vanbellingen T, Wiest R, Strik W, Walther S. Cerebral white matter structure is associated with DSM-5 schizophrenia symptom dimensions. NEUROIMAGE-CLINICAL 2016; 12:93-99. [PMID: 27408794 PMCID: PMC4925890 DOI: 10.1016/j.nicl.2016.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging (DTI) studies have provided evidence of widespread white matter (WM) abnormalities in schizophrenia. Although these abnormalities appear clinically significant, the relationship to specific clinical symptoms is limited and heterogeneous. This study examined the association between WM microstructure and the severity of the five main DSM-5 schizophrenia symptom dimensions. DTI was measured in forty patients with schizophrenia spectrum disorders. Using Tract-Based Spatial Statistics controlling for age, gender and antipsychotic dosage, our analyses revealed significant negative relationships between WM microstructure and two DSM-5 symptom dimensions: Whereas abnormal psychomotor behavior was particularly related to WM of motor tracts, negative symptoms were associated with WM microstructure of the prefrontal and right temporal lobes. However, we found no associations between WM microstructure and delusions, hallucinations or disorganized speech. These data highlight the relevance of characteristic WM disconnectivity patterns as markers for negative symptoms and abnormal psychomotor behavior in schizophrenia and provide evidence for relevant associations between brain structure and aberrant behavior. DTI study of brain-behavior associations of the new DSM-5 schizophrenia dimensions. The severity of the DSM-5 abnormal psychomotor behavior dimension is related to white matter microstructure in motor tracts. Associations of the DSM-5 negative symptom dimension with white matter microstructure are found in prefrontal and temporal clusters. Characteristic patterns of white matter microstructure argue for relevant associations between brain structure and aberrant behavior in schizophrenia.
Collapse
Affiliation(s)
- Petra V Viher
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | | | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, Inselspital, Bern, Switzerland; Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
| | - Tim Vanbellingen
- Department of Clinical Research, Inselspital, Bern, Switzerland; Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|