1
|
Tandon R. Computational psychiatry and the Asian Journal of Psychiatry. Asian J Psychiatr 2024; 95:104055. [PMID: 38679536 DOI: 10.1016/j.ajp.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States.
| |
Collapse
|
2
|
Lin E, Lin CH, Lane HY. Inference of social cognition in schizophrenia patients with neurocognitive domains and neurocognitive tests using automated machine learning. Asian J Psychiatr 2024; 91:103866. [PMID: 38128351 DOI: 10.1016/j.ajp.2023.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
AIM It has been suggested that single neurocognitive domain or neurocognitive test can be used to determine the overall cognitive function in schizophrenia using machine learning algorithms. It is unknown whether social cognition in schizophrenia patients can be estimated with machine learning based on neurocognitive domains or neurocognitive tests. METHODS To predict social cognition in schizophrenia, we applied an automated machine learning (AutoML) framework resulting from the analysis of predictive factors such as six neurocognitive domain scores and nine neurocognitive test scores of 380 schizophrenia patients in the Taiwanese population. Four clinical parameters (i.e., age, gender, subgroup, and education) were also used as predictive factors. We utilized an AutoML framework called Tree-based Pipeline Optimization Tool (TPOT) to generate predictive pipelines automatically. RESULTS The analysis revealed that all neurocognitive domains and tests except the reasoning and problem solving domain/test showed significant associations with social cognition. In addition, a TPOT-generated pipeline can best predict social cognition in schizophrenia using seven predictive factors, including five neurocognitive domains (i.e., speed of processing, sustained attention, working memory, verbal learning and memory, and visual learning and memory) and two clinical parameters (i.e., age and gender). This predictive pipeline consists of machine learning algorithms such as function transformers, an approximate feature map, independent component analysis, and linear regression. CONCLUSION The study indicates that an AutoML framework such as TPOT may provide a promising way to produce truly effective machine learning pipelines for predicting social cognition in schizophrenia using neurocognitive domains and/or neurocognitive tests.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
3
|
Tandon R. Application of computational methods to the study of schizophrenia an exciting but treacherous frontier. Asian J Psychiatr 2023; 87:103752. [PMID: 37643481 DOI: 10.1016/j.ajp.2023.103752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States.
| |
Collapse
|
4
|
Tandon R. Computational psychiatry and the psychopathology of psychosis: Promising leads and blind alleys. Schizophr Res 2023; 254:143-145. [PMID: 36889180 DOI: 10.1016/j.schres.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/10/2023]
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States of America.
| |
Collapse
|
5
|
Tandon R, Keshavan M, Nasrallah H. Reinventing schizophrenia. Updating the construct. Schizophr Res 2022; 242:1-3. [PMID: 35241314 DOI: 10.1016/j.schres.2022.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States of America.
| | - Matcheri Keshavan
- Department of Psychiatry, BIDMC, Harvard Medical School, Boston, MA, United States of America
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati Medical School, Cincinnati, OH, United States of America
| |
Collapse
|
6
|
Tandon R. Agreement on the contours of schizophrenia: The first order of business. Schizophr Res 2022; 242:135-137. [PMID: 35067457 DOI: 10.1016/j.schres.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States of America.
| |
Collapse
|
7
|
Starke G, De Clercq E, Borgwardt S, Elger BS. Computing schizophrenia: ethical challenges for machine learning in psychiatry. Psychol Med 2021; 51:2515-2521. [PMID: 32536358 DOI: 10.1017/s0033291720001683] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in machine learning (ML) promise far-reaching improvements across medical care, not least within psychiatry. While to date no psychiatric application of ML constitutes standard clinical practice, it seems crucial to get ahead of these developments and address their ethical challenges early on. Following a short general introduction concerning ML in psychiatry, we do so by focusing on schizophrenia as a paradigmatic case. Based on recent research employing ML to further the diagnosis, treatment, and prediction of schizophrenia, we discuss three hypothetical case studies of ML applications with view to their ethical dimensions. Throughout this discussion, we follow the principlist framework by Tom Beauchamp and James Childress to analyse potential problems in detail. In particular, we structure our analysis around their principles of beneficence, non-maleficence, respect for autonomy, and justice. We conclude with a call for cautious optimism concerning the implementation of ML in psychiatry if close attention is paid to the particular intricacies of psychiatric disorders and its success evaluated based on tangible clinical benefit for patients.
Collapse
Affiliation(s)
- Georg Starke
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Eva De Clercq
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Bernice Simone Elger
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- University Center of Legal Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Rebouças DB, Sartori JM, Librenza-Garcia D, Rabelo-da-Ponte FD, Massuda R, Czepielewski LS, Passos IC, Gama CS. Accelerated aging signatures in subjects with schizophrenia and their unaffected siblings. J Psychiatr Res 2021; 139:30-37. [PMID: 34022473 DOI: 10.1016/j.jpsychires.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 01/19/2023]
Abstract
Schizophrenia (SZ) is a chronic debilitating disease. Subjects with SZ have significant shorter life expectancy. Growing evidence suggests that a process of pathological accelerated aging occurs in SZ, leading to early development of severe clinical diseases and worse morbimortality. Furthermore, unaffected relatives can share certain endophenotypes with subjects with SZ. We aim to characterize accelerated aging as a possible endophenotype of schizophrenia by using a machine learning (ML) model of peripheral biomarkers to accurately differentiate subjects with SZ (n = 35), their unaffected siblings (SB, n = 36) and healthy controls (HC, n = 47). We used a random forest algorithm that included biomarkers related to aging: eotaxins CCL-11 and CCL-24; the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), protein carbonyl content (PCC), glutathione peroxidase (GPx); and telomere length (TL). The ML algorithm of biomarkers was able to distinguish individuals with SZ from HC with prediction accuracy of 79.7%, SZ from SB with 62.5% accuracy and SB from HC with 75.5% accuracy. These results support the hypothesis that a pathological accelerated aging might occur in SZ, and this pathological aging could be an endophenotype of the disease, once this profile was also observed in SB, suggesting that SB might suffer from an accelerated aging in some level.
Collapse
Affiliation(s)
- Diego Barreto Rebouças
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Mastella Sartori
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Librenza-Garcia
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Francisco Diego Rabelo-da-Ponte
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raffael Massuda
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Psiquiatria, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leticia Sanguinetti Czepielewski
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós- Graduação em Psicologia, Departamento de Psicologia do Desenvolvimento e da Personalidade, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ives Cavalcante Passos
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clarissa Severino Gama
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Cui LB, Xu X, Cao F. Building the Precision Medicine for Mental Disorders via Radiomics/Machine Learning and Neuroimaging. Front Neurosci 2021; 15:685005. [PMID: 34220441 PMCID: PMC8250851 DOI: 10.3389/fnins.2021.685005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Xian Xu
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- The Second Medical Center, National Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Lai JW, Ang CKE, Acharya UR, Cheong KH. Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6099. [PMID: 34198829 PMCID: PMC8201065 DOI: 10.3390/ijerph18116099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Artificial Intelligence in healthcare employs machine learning algorithms to emulate human cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence taps on the ability of computer algorithms and software with allowable thresholds to make deterministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial intelligence enhances the process of data analysis without the need for human input, producing nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that affects millions worldwide, with impairment in thinking and behaviour that may be significantly disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been utilized to analyze the different components of schizophrenia, such as in prediction of disease, and assessment of current prevention methods. These are carried out in hope of assisting with diagnosis and provision of viable options for individuals affected. In this paper, we review the progress of the use of artificial intelligence in schizophrenia.
Collapse
Affiliation(s)
- Joel Weijia Lai
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| | - Candice Ke En Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
- MOH Holdings Pte Ltd, 1 Maritime Square, Singapore 099253, Singapore
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore;
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Clementi 599491, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Kang Hao Cheong
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| |
Collapse
|
11
|
Pigoni A, Dwyer D, Squarcina L, Borgwardt S, Crespo-Facorro B, Dazzan P, Smesny S, Spaniel F, Spalletta G, Sanfelici R, Antonucci LA, Reuf A, Oeztuerk OF, Schmidt A, Ciufolini S, Schönborn-Harrisberger F, Langbein K, Gussew A, Reichenbach JR, Zaytseva Y, Piras F, Delvecchio G, Bellani M, Ruggeri M, Lasalvia A, Tordesillas-Gutiérrez D, Ortiz V, Murray RM, Reis-Marques T, Di Forti M, Koutsouleris N, Brambilla P. Classification of first-episode psychosis using cortical thickness: A large multicenter MRI study. Eur Neuropsychopharmacol 2021; 47:34-47. [PMID: 33957410 DOI: 10.1016/j.euroneuro.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022]
Abstract
Machine learning classifications of first-episode psychosis (FEP) using neuroimaging have predominantly analyzed brain volumes. Some studies examined cortical thickness, but most of them have used parcellation approaches with data from single sites, which limits claims of generalizability. To address these limitations, we conducted a large-scale, multi-site analysis of cortical thickness comparing parcellations and vertex-wise approaches. By leveraging the multi-site nature of the study, we further investigated how different demographical and site-dependent variables affected predictions. Finally, we assessed relationships between predictions and clinical variables. 428 subjects (147 females, mean age 27.14) with FEP and 448 (230 females, mean age 27.06) healthy controls were enrolled in 8 centers by the ClassiFEP group. All subjects underwent a structural MRI and were clinically assessed. Cortical thickness parcellation (68 areas) and full cortical maps (20,484 vertices) were extracted. Linear Support Vector Machine was used for classification within a repeated nested cross-validation framework. Vertex-wise thickness maps outperformed parcellation-based methods with a balanced accuracy of 66.2% and an Area Under the Curve of 72%. By stratifying our sample for MRI scanner, we increased generalizability across sites. Temporal brain areas resulted as the most influential in the classification. The predictive decision scores significantly correlated with age at onset, duration of treatment, and positive symptoms. In conclusion, although far from the threshold of clinical relevance, temporal cortical thickness proved to classify between FEP subjects and healthy individuals. The assessment of site-dependent variables permitted an increase in the across-site generalizability, thus attempting to address an important machine learning limitation.
Collapse
Affiliation(s)
- A Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - D Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - L Squarcina
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy
| | - S Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland; Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - B Crespo-Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain; University Hospital Virgen del Rocio, Department of Psychiatry, School of Medicine, University of Sevilla-IBiS, CIBERSAM, Sevilla, Spain
| | - P Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - S Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - F Spaniel
- Department of Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany Czechia
| | - G Spalletta
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - R Sanfelici
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany; Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - L A Antonucci
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - A Reuf
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Oe F Oeztuerk
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - A Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - S Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | | | - K Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - A Gussew
- Department of Radiology, University Hospital Halle (Saale), Germany
| | - J R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Y Zaytseva
- Department of Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany Czechia
| | - F Piras
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - G Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - M Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; UOC of Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Italy
| | - M Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; UOC of Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Italy
| | - A Lasalvia
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; UOC of Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Italy
| | - D Tordesillas-Gutiérrez
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Spain
| | - V Ortiz
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - R M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - T Reis-Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - M Di Forti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - N Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - P Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Bracher-Smith M, Crawford K, Escott-Price V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol Psychiatry 2021; 26:70-79. [PMID: 32591634 PMCID: PMC7610853 DOI: 10.1038/s41380-020-0825-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022]
Abstract
Machine learning methods have been employed to make predictions in psychiatry from genotypes, with the potential to bring improved prediction of outcomes in psychiatric genetics; however, their current performance is unclear. We aim to systematically review machine learning methods for predicting psychiatric disorders from genetics alone and evaluate their discrimination, bias and implementation. Medline, PsycInfo, Web of Science and Scopus were searched for terms relating to genetics, psychiatric disorders and machine learning, including neural networks, random forests, support vector machines and boosting, on 10 September 2019. Following PRISMA guidelines, articles were screened for inclusion independently by two authors, extracted, and assessed for risk of bias. Overall, 63 full texts were assessed from a pool of 652 abstracts. Data were extracted for 77 models of schizophrenia, bipolar, autism or anorexia across 13 studies. Performance of machine learning methods was highly varied (0.48-0.95 AUC) and differed between schizophrenia (0.54-0.95 AUC), bipolar (0.48-0.65 AUC), autism (0.52-0.81 AUC) and anorexia (0.62-0.69 AUC). This is likely due to the high risk of bias identified in the study designs and analysis for reported results. Choices for predictor selection, hyperparameter search and validation methodology, and viewing of the test set during training were common causes of high risk of bias in analysis. Key steps in model development and validation were frequently not performed or unreported. Comparison of discrimination across studies was constrained by heterogeneity of predictors, outcome and measurement, in addition to sample overlap within and across studies. Given widespread high risk of bias and the small number of studies identified, it is important to ensure established analysis methods are adopted. We emphasise best practices in methodology and reporting for improving future studies.
Collapse
Affiliation(s)
- Matthew Bracher-Smith
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Karen Crawford
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
13
|
Cui LB, Fu YF, Liu L, Wu XS, Xi YB, Wang HN, Qin W, Yin H. Baseline structural and functional magnetic resonance imaging predicts early treatment response in schizophrenia with radiomics strategy. Eur J Neurosci 2020; 53:1961-1975. [PMID: 33206423 DOI: 10.1111/ejn.15046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Multimodal neuroimaging features provide opportunities for accurate classification and personalized treatment options in the psychiatric domain. This study aimed to investigate whether brain features predict responses to the overall treatment of schizophrenia at the end of the first or a single hospitalization. Structural and functional magnetic resonance imaging (MRI) data from two independent samples (N = 85 and 63, separately) of schizophrenia patients at baseline were included. After treatment, patients were classified as responders and non-responders. Radiomics features of gray matter morphology and functional connectivity were extracted using Least Absolute Shrinkage and Selection Operator. Support vector machine was used to explore the predictive performance. Prediction models were based on structural features (cortical thickness, surface area, gray matter regional volume, mean curvature, metric distortion, and sulcal depth), functional features (functional connectivity), and combined features. There were 12 features after dimensionality reduction. The structural features involved the right precuneus, cuneus, and inferior parietal lobule. The functional features predominately included inter-hemispheric connectivity. We observed a prediction accuracy of 80.38% (sensitivity: 87.28%; specificity 82.47%) for the model using functional features, and 69.68% (sensitivity: 83.96%; specificity: 72.41%) for the one using structural features. Our model combining both structural and functional features achieved a higher accuracy of 85.03%, with 92.04% responder and 80.23% non-responders to the overall treatment to be correctly predicted. These results highlight the power of structural and functional MRI-derived radiomics features to predict early response to treatment in schizophrenia. Prediction models of the very early treatment response in schizophrenia could augment effective therapeutic strategies.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Bickman L. Improving Mental Health Services: A 50-Year Journey from Randomized Experiments to Artificial Intelligence and Precision Mental Health. ADMINISTRATION AND POLICY IN MENTAL HEALTH AND MENTAL HEALTH SERVICES RESEARCH 2020; 47:795-843. [PMID: 32715427 PMCID: PMC7382706 DOI: 10.1007/s10488-020-01065-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This conceptual paper describes the current state of mental health services, identifies critical problems, and suggests how to solve them. I focus on the potential contributions of artificial intelligence and precision mental health to improving mental health services. Toward that end, I draw upon my own research, which has changed over the last half century, to highlight the need to transform the way we conduct mental health services research. I identify exemplars from the emerging literature on artificial intelligence and precision approaches to treatment in which there is an attempt to personalize or fit the treatment to the client in order to produce more effective interventions.
Collapse
Affiliation(s)
- Leonard Bickman
- Center for Children and Families; Psychology, Academic Health Center 1, Florida International University, 11200 Southwest 8th Street, Room 140, Miami, FL, 33199, USA.
| |
Collapse
|
15
|
Tikka SK, Singh BK, Nizamie SH, Garg S, Mandal S, Thakur K, Singh LK. Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study. Indian J Psychiatry 2020; 62:273-282. [PMID: 32773870 PMCID: PMC7368447 DOI: 10.4103/psychiatry.indianjpsychiatry_91_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues. AIMS To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording. SETTINGS AND DESIGN Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute. MATERIALS AND METHODS Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight priori regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification. STATISTICAL ANALYSIS Mann-Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications. RESULTS Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances. CONCLUSIONS SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the "validity" and reducing the "heterogeneity" in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.
Collapse
Affiliation(s)
- Sai Krishna Tikka
- Department of Psychiatry, All India Institute of Medical Sciences , Raipur, Chhattisgarh, India
| | - Bikesh Kumar Singh
- Department of Bio-Medical Engineering, National Institute of Technology , Raipur, Chhattisgarh, India
| | - S Haque Nizamie
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Shobit Garg
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Sunandan Mandal
- School of Studies in Electronics and Photonics, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Kavita Thakur
- School of Studies in Electronics and Photonics, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Lokesh Kumar Singh
- Department of Psychiatry, All India Institute of Medical Sciences , Raipur, Chhattisgarh, India
| |
Collapse
|
16
|
Holmlund TB, Chandler C, Foltz PW, Cohen AS, Cheng J, Bernstein JC, Rosenfeld EP, Elvevåg B. Applying speech technologies to assess verbal memory in patients with serious mental illness. NPJ Digit Med 2020; 3:33. [PMID: 32195368 PMCID: PMC7066153 DOI: 10.1038/s41746-020-0241-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Verbal memory deficits are some of the most profound neurocognitive deficits associated with schizophrenia and serious mental illness in general. As yet, their measurement in clinical settings is limited to traditional tests that allow for limited administrations and require substantial resources to deploy and score. Therefore, we developed a digital ambulatory verbal memory test with automated scoring, and repeated self-administration via smart devices. One hundred and four adults participated, comprising 25 patients with serious mental illness and 79 healthy volunteers. The study design was successful with high quality speech recordings produced to 92% of prompts (Patients: 86%, Healthy: 96%). The story recalls were both transcribed and scored by humans, and scores generated using natural language processing on transcriptions were comparable to human ratings (R = 0.83, within the range of human-to-human correlations of R = 0.73-0.89). A fully automated approach that scored transcripts generated by automatic speech recognition produced comparable and accurate scores (R = 0.82), with very high correlation to scores derived from human transcripts (R = 0.99). This study demonstrates the viability of leveraging speech technologies to facilitate the frequent assessment of verbal memory for clinical monitoring purposes in psychiatry.
Collapse
Affiliation(s)
| | | | - Peter W. Foltz
- University of Colorado Boulder, Boulder, CO USA
- Pearson PLC, London, England
| | | | - Jian Cheng
- Analytic Measures Inc, Palo Alto, CA USA
| | | | | | - Brita Elvevåg
- UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Centre for eHealth Research, Tromsø, Norway
| |
Collapse
|
17
|
Vieira S, Gong QY, Pinaya WHL, Scarpazza C, Tognin S, Crespo-Facorro B, Tordesillas-Gutierrez D, Ortiz-García V, Setien-Suero E, Scheepers FE, Van Haren NEM, Marques TR, Murray RM, David A, Dazzan P, McGuire P, Mechelli A. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull 2020; 46:17-26. [PMID: 30809667 PMCID: PMC6942152 DOI: 10.1093/schbul/sby189] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the high level of interest in the use of machine learning (ML) and neuroimaging to detect psychosis at the individual level, the reliability of the findings is unclear due to potential methodological issues that may have inflated the existing literature. This study aimed to elucidate the extent to which the application of ML to neuroanatomical data allows detection of first episode psychosis (FEP), while putting in place methodological precautions to avoid overoptimistic results. We tested both traditional ML and an emerging approach known as deep learning (DL) using 3 feature sets of interest: (1) surface-based regional volumes and cortical thickness, (2) voxel-based gray matter volume (GMV) and (3) voxel-based cortical thickness (VBCT). To assess the reliability of the findings, we repeated all analyses in 5 independent datasets, totaling 956 participants (514 FEP and 444 within-site matched controls). The performance was assessed via nested cross-validation (CV) and cross-site CV. Accuracies ranged from 50% to 70% for surfaced-based features; from 50% to 63% for GMV; and from 51% to 68% for VBCT. The best accuracies (70%) were achieved when DL was applied to surface-based features; however, these models generalized poorly to other sites. Findings from this study suggest that, when methodological precautions are adopted to avoid overoptimistic results, detection of individuals in the early stages of psychosis is more challenging than originally thought. In light of this, we argue that the current evidence for the diagnostic value of ML and structural neuroimaging should be reconsidered toward a more cautious interpretation.
Collapse
Affiliation(s)
- Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Qi-yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Walter H L Pinaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
- Centre of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Paulo, Brazil
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
- Department of General Psychology, University of Padova, Padova, Italy
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Benedicto Crespo-Facorro
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Diana Tordesillas-Gutierrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Victor Ortiz-García
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Esther Setien-Suero
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Floortje E Scheepers
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Neeltje E M Van Haren
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tiago R Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Anthony David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| |
Collapse
|
18
|
Chandler C, Foltz PW, Elvevåg B. Using Machine Learning in Psychiatry: The Need to Establish a Framework That Nurtures Trustworthiness. Schizophr Bull 2020; 46:11-14. [PMID: 31901100 PMCID: PMC7145638 DOI: 10.1093/schbul/sbz105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rapid embracing of artificial intelligence in psychiatry has a flavor of being the current "wild west"; a multidisciplinary approach that is very technical and complex, yet seems to produce findings that resonate. These studies are hard to review as the methods are often opaque and it is tricky to find the suitable combination of reviewers. This issue will only get more complex in the absence of a rigorous framework to evaluate such studies and thus nurture trustworthiness. Therefore, our paper discusses the urgency of the field to develop a framework with which to evaluate the complex methodology such that the process is done honestly, fairly, scientifically, and accurately. However, evaluation is a complicated process and so we focus on three issues, namely explainability, transparency, and generalizability, that are critical for establishing the viability of using artificial intelligence in psychiatry. We discuss how defining these three issues helps towards building a framework to ensure trustworthiness, but show how difficult definition can be, as the terms have different meanings in medicine, computer science, and law. We conclude that it is important to start the discussion such that there can be a call for policy on this and that the community takes extra care when reviewing clinical applications of such models..
Collapse
Affiliation(s)
- Chelsea Chandler
- Department of Computer Science, University of Colorado Boulder, Boulder, CO,To whom correspondence should be addressed; tel: 703-895-4764, fax: 303-492-7177, e-mail:
| | - Peter W Foltz
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO,Pearson PLC, London, UK
| | - Brita Elvevåg
- Department of Clinical Medicine, University of Tromsø, Tromsø, Norway,Norwegian Centre for eHealth Research, Tromsø, Norway
| |
Collapse
|
19
|
Bias, noise, and interpretability in machine learning. Mach Learn 2020. [DOI: 10.1016/b978-0-12-815739-8.00017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
|
21
|
Xi YB, Cui LB, Gong J, Fu YF, Wu XS, Guo F, Yang X, Li C, Wang XR, Li P, Qin W, Yin H. Neuroanatomical Features That Predict Response to Electroconvulsive Therapy Combined With Antipsychotics in Schizophrenia: A Magnetic Resonance Imaging Study Using Radiomics Strategy. Front Psychiatry 2020; 11:456. [PMID: 32528327 PMCID: PMC7253706 DOI: 10.3389/fpsyt.2020.00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Neuroimaging-based brain signatures may be informative in identifying patients with psychosis who will respond to antipsychotics. However, signatures that inform the electroconvulsive therapy (ECT) health care professional about the response likelihood remain unclear in psychosis with radiomics strategy. This study investigated whether brain structure-based signature in the prediction of ECT response in a sample of schizophrenia patients using radiomics approach. METHODS This high-resolution structural magnetic resonance imaging study included 57 patients at baseline. After ECT combined with antipsychotics, 28 and 29 patients were classified as responders and non-responders. Features of gray matter were extracted and compared. The logistic regression model/support vector machine (LRM/SVM) analysis was used to explore the predictive performance. RESULTS The regularized multivariate LRM accurately discriminated responders from non-responders, with an accuracy of 90.91%. The structural features were further confirmed in the validating data set, resulting in an accuracy of 87.59%. The accuracy of the SVM in the training set was 90.91%, and the accuracy in the validation set was 91.78%. CONCLUSION Our results support the possible use of structural brain feature-based radiomics as a potential tool for predicting ECT response in patients with schizophrenia undergoing antipsychotics, paving the way for utilization of markers in psychosis.
Collapse
Affiliation(s)
- Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Jie Gong
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuejuan Yang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xing-Rui Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Li
- Department of Radiology, Xi'an Mental Health Center, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Appaji A, Nagendra B, Chako DM, Padmanabha A, Jacob A, Hiremath CV, Varambally S, Kesavan M, Venkatasubramanian G, Rao SV, Webers CAB, Berendschot TTJM, Rao NP. Examination of retinal vascular trajectory in schizophrenia and bipolar disorder. Psychiatry Clin Neurosci 2019; 73:738-744. [PMID: 31400288 DOI: 10.1111/pcn.12921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
AIM Evidence suggests microvascular dysfunction (wider retinal venules and narrower arterioles) in schizophrenia (SCZ) and bipolar disorder (BD). The vascular development is synchronous with neuronal development in the retina and brain. The retinal vessel trajectory is related to retinal nerve fiber layer thinning and cerebrovascular abnormalities in SCZ and BD and has not yet been examined. Hence, in this study we examined the retinal vascular trajectory in SCZ and BD in comparison with healthy volunteers (HV). METHODS Retinal images were acquired from 100 HV, SCZ patients, and BD patients, respectively, with a non-mydriatic fundus camera. Images were quantified to obtain the retinal arterial and venous trajectories using a validated, semiautomated algorithm. Analysis of covariance and regression analyses were conducted to examine group differences. A supervised machine-learning ensemble of bagged-trees method was used for automated classification of trajectory values. RESULTS There was a significant difference among groups in both the retinal venous trajectory (HV: 0.17 ± 0.08; SCZ: 0.25 ± 0.17; BD: 0.27 ± 0.20; P < 0.001) and the arterial trajectory (HV: 0.34 ± 0.15; SCZ: 0.29 ± 0.10; BD: 0.29 ± 0.11; P = 0.003) even after adjusting for age and sex (P < 0.001). On post-hoc analysis, the SCZ and BD groups differed from the HV on retinal venous and arterial trajectories, but there was no difference between SCZ and BD patients. The machine learning showed an accuracy of 86% and 73% for classifying HV versus SCZ and BD, respectively. CONCLUSION Smaller trajectories of retinal arteries indicate wider and flatter curves in SCZ and BD. Considering the relation between retinal/cerebral vasculatures and retinal nerve fiber layer thinness, the retinal vascular trajectory is a potential marker for SCZ and BD. As a relatively affordable investigation, retinal fundus photography should be further explored in SCZ and BD as a potential screening measure.
Collapse
Affiliation(s)
- Abhishek Appaji
- Department of Medical Electronics, B. M. S. College of Engineering, Bangalore, India.,University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Bhargavi Nagendra
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Dona M Chako
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ananth Padmanabha
- Department of Medical Electronics, B. M. S. College of Engineering, Bangalore, India
| | - Arpitha Jacob
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Chaitra V Hiremath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Shyam V Rao
- Department of Medical Electronics, B. M. S. College of Engineering, Bangalore, India.,University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Naren P Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
23
|
Tandon N, Tandon R. Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype. Schizophr Res 2019; 214:70-75. [PMID: 31500998 DOI: 10.1016/j.schres.2019.08.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
Despite extensive research and prodigious advances in neuroscience, our comprehension of the nature of schizophrenia remains rudimentary. Our failure to make progress is attributed to the extreme heterogeneity of this condition, enormous complexity of the human brain, limitations of extant research paradigms, and inadequacy of traditional statistical methods to integrate or interpret increasingly large amounts of multidimensional information relevant to unravelling brain function. Fortunately, the rapidly developing science of machine learning appears to provide tools capable of addressing each of these impediments. Enthusiasm about the potential of machine learning methods to break the current impasse is reflected in the steep increase in the number of scientific publication about the application of machine learning to the study of schizophrenia. Machine learning approaches are, however, poorly understood by schizophrenia researchers and clinicians alike. In this paper, we provide a simple description of the nature and techniques of machine learning and their application to the study of schizophrenia. We then summarize its potential and constraints with illustrations from six studies of machine learning in schizophrenia and address some common misconceptions about machine learning. We suggest some guidelines for researchers, readers, science editors and reviewers of the burgeoning machine learning literature in schizophrenia. In order to realize its enormous promise, we suggest the need for the disciplined application of machine learning methods to the study of schizophrenia with a clear recognition of its capability and challenges accompanied by a concurrent effort to improve machine learning literacy among neuroscientists and mental health professionals.
Collapse
Affiliation(s)
- Neeraj Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States of America
| | - Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States of America.
| |
Collapse
|
24
|
Affiliation(s)
- Neeraj Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States.
| |
Collapse
|
25
|
Stamate D, Katrinecz A, Stahl D, Verhagen SJW, Delespaul PAEG, van Os J, Guloksuz S. Identifying psychosis spectrum disorder from experience sampling data using machine learning approaches. Schizophr Res 2019; 209:156-163. [PMID: 31104913 DOI: 10.1016/j.schres.2019.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/17/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
The ubiquity of smartphones opened up the possibility of widespread use of the Experience Sampling Method (ESM). The method is used to collect longitudinal data of participants' daily life experiences and is ideal to capture fluctuations in emotions (momentary mental states) as an indicator for later mental ill-health. In this study, ESM data of patients with psychosis spectrum disorder and controls were used to examine daily life emotions and higher order patterns thereof. We attempted to determine whether aggregated ESM data, in which statistical measures represent the distribution and dynamics of the original data, were able to distinguish patients from controls in a predictive modeling framework. Variable importance, recursive feature elimination, and ReliefF methods were used for feature selection. Model training, tuning, and testing were performed in nested cross-validation, based on algorithms such as Random Forests, Support Vector Machines, Gaussian Processes, Logistic Regression, and Neural Networks. ROC analysis was used to post-process these models. Stability of model performance was studied using Monte Carlo simulations. The results provide evidence that patterns in emotion changes can be captured by applying a combination of these techniques. Acceleration in the variables anxious and insecure was particularly successful in adding further predictive power to the models. The best results were achieved by Support Vector Machines with radial kernel (accuracy = 82% and sensitivity = 82%). This proof-of-concept work demonstrates that synergistic machine learning and statistical modeling may be used to harness the power of ESM data in the future.
Collapse
Affiliation(s)
- Daniel Stamate
- Data Science & Soft Computing Lab, and Department of Computing, Goldsmiths, University of London, London, UK; Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| | - Andrea Katrinecz
- Data Science & Soft Computing Lab, and Department of Computing, Goldsmiths, University of London, London, UK
| | - Daniel Stahl
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Simone J W Verhagen
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, the Netherlands
| | - Philippe A E G Delespaul
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, the Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, the Netherlands; Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands; King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, the Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Bauer M, Monteith S, Geddes J, Gitlin MJ, Grof P, Whybrow PC, Glenn T. Automation to optimise physician treatment of individual patients: examples in psychiatry. Lancet Psychiatry 2019; 6:338-349. [PMID: 30904127 DOI: 10.1016/s2215-0366(19)30041-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/12/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
There is widespread agreement by health-care providers, medical associations, industry, and governments that automation using digital technology could improve the delivery and quality of care in psychiatry, and reduce costs. Many benefits from technology have already been realised, along with the identification of many challenges. In this Review, we discuss some of the challenges to developing effective automation for psychiatry to optimise physician treatment of individual patients. Using the perspective of automation experts in other industries, three examples of automation in the delivery of routine care are reviewed: (1) effects of electronic medical records on the patient interview; (2) effects of complex systems integration on e-prescribing; and (3) use of clinical decision support to assist with clinical decision making. An increased understanding of the experience of automation from other sectors might allow for more effective deployment of technology in psychiatry.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - John Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Michael J Gitlin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Paul Grof
- Mood Disorders Center of Ottawa, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| |
Collapse
|