1
|
Wang HR, Liu ZQ, Nakua H, Hegarty CE, Thies MB, Patel PK, Schleifer CH, Boeck TP, McKinney RA, Currin D, Leathem L, DeRosse P, Bearden CE, Misic B, Karlsgodt KH. Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated With Psychopathology Across Independent Cohorts. Biol Psychiatry 2025; 97:167-177. [PMID: 38908657 DOI: 10.1016/j.biopsych.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Patients with early psychosis (EP) (within 3 years after psychosis onset) show significant variability, which makes predicting outcomes challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, which limits the development of early interventions. METHODS A data-driven approach, partial least squares correlation, was used across 2 independent datasets to examine multivariate relationships between white matter properties and symptomatology and to identify stable and generalizable signatures in EP. The primary cohort included patients with EP from the Human Connectome Project for Early Psychosis (n = 124). The replication cohort included patients with EP from the Feinstein Institute for Medical Research (n = 78) as part of the MEND (Multimodal Evaluation of Neural Disorders) Project. Both samples included individuals with schizophrenia, schizoaffective disorder, and psychotic mood disorders. RESULTS In both cohorts, a significant latent component corresponded to a symptom profile that combined negative symptoms, primarily diminished expression, with specific somatic symptoms. Both latent components captured comprehensive features of white matter disruption, primarily a combination of subcortical and frontal association fibers. Strikingly, the partial least squares model trained on the primary cohort accurately predicted microstructural features and symptoms in the replication cohort. Findings were not driven by diagnosis, medication, or substance use. CONCLUSIONS This data-driven transdiagnostic approach revealed a stable and replicable neurobiological signature of microstructural white matter alterations in EP across diagnoses and datasets, showing strong covariance of these alterations with a unique profile of negative and somatic symptoms. These findings suggest the clinical utility of applying data-driven approaches to reveal symptom domains that share neurobiological underpinnings.
Collapse
Affiliation(s)
- Haley R Wang
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Catherine E Hegarty
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Melanie Blair Thies
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pooja K Patel
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Desert Pacific Mental Illness Research, Education, and Clinical Center Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Thomas P Boeck
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Rachel A McKinney
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Danielle Currin
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Logan Leathem
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Pamela DeRosse
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Katherine H Karlsgodt
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
2
|
Hua JPY, Abram SV, Loewy RL, Stuart B, Fryer SL, Vinogradov S, Mathalon DH. Brain Age Gap in Early Illness Schizophrenia and the Clinical High-Risk Syndrome: Associations With Experiential Negative Symptoms and Conversion to Psychosis. Schizophr Bull 2024; 50:1159-1170. [PMID: 38815987 PMCID: PMC11349027 DOI: 10.1093/schbul/sbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Brain development/aging is not uniform across individuals, spawning efforts to characterize brain age from a biological perspective to model the effects of disease and maladaptive life processes on the brain. The brain age gap represents the discrepancy between estimated brain biological age and chronological age (in this case, based on structural magnetic resonance imaging, MRI). Structural MRI studies report an increased brain age gap (biological age > chronological age) in schizophrenia, with a greater brain age gap related to greater negative symptom severity. Less is known regarding the nature of this gap early in schizophrenia (ESZ), if this gap represents a psychosis conversion biomarker in clinical high-risk (CHR-P) individuals, and how altered brain development and/or aging map onto specific symptom facets. STUDY DESIGN Using structural MRI, we compared the brain age gap among CHR-P (n = 51), ESZ (n = 78), and unaffected comparison participants (UCP; n = 90), and examined associations with CHR-P psychosis conversion (CHR-P converters n = 10; CHR-P non-converters; n = 23) and positive and negative symptoms. STUDY RESULTS ESZ showed a greater brain age gap relative to UCP and CHR-P (Ps < .010). CHR-P individuals who converted to psychosis showed a greater brain age gap (P = .043) relative to CHR-P non-converters. A larger brain age gap in ESZ was associated with increased experiential (P = .008), but not expressive negative symptom severity. CONCLUSIONS Consistent with schizophrenia pathophysiological models positing abnormal brain maturation, results suggest abnormal brain development is present early in psychosis. An increased brain age gap may be especially relevant to motivational and functional deficits in schizophrenia.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Samantha V Abram
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Hua JPY, Fryer SL, Stuart B, Loewy RL, Vinogradov S, Mathalon DH. Adjustment of Regional Cortical Thickness Measures for Global Cortical Thickness Obscures Deficits Across the Schizophrenia Spectrum: A Cautionary Note About Normative Modeling of Brain Imaging Data. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00159-9. [PMID: 38908749 DOI: 10.1016/j.bpsc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Recent neuroimaging studies and publicly disseminated analytic tools suggest that regional morphometric analyses covary for global thickness. We empirically demonstrated that this statistical approach severely underestimates regional thickness dysmorphology in psychiatric disorders. Study 1 included 90 healthy control participants, 51 participants at clinical high risk for psychosis, and 78 participants with early-illness schizophrenia. Study 2 included 56 healthy control participants, 83 participants with nonaffective psychosis, and 30 participants with affective psychosis. We examined global and regional thickness correlations, global thickness group differences, and regional thickness group differences with and without global thickness covariation. Global and regional thickness were strongly correlated across groups. Global thickness was lower in the schizophrenia spectrum groups than the other groups. Regional thickness deficits in schizophrenia spectrum groups were attenuated or eliminated with global thickness covariation. Eliminating the variation that regional thickness shares with global thickness eliminated disease-related effects. This statistical approach results in erroneous conclusions that regional thickness is normal in disorders like schizophrenia or clinical high risk syndrome.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Mental Health Service, San Francisco VA Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
4
|
Wang HR, Liu ZQ, Nakua H, Hegarty CE, Thies MB, Patel PK, Schleifer CH, Boeck TP, McKinney RA, Currin D, Leathem L, DeRosse P, Bearden CE, Misic B, Karlsgodt KH. Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated with Psychopathology Across Independent Cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593636. [PMID: 38766080 PMCID: PMC11100779 DOI: 10.1101/2024.05.10.593636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Early Psychosis patients (EP, within 3 years after psychosis onset) show significant variability, making outcome predictions challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, limiting the development of early interventions. Methods A data-driven approach, Partial Least Squares (PLS) correlation, was used across two independent datasets to examine multivariate relationships between white matter (WM) properties and symptomatology, to identify stable and generalizable signatures in EP. The primary cohort included EP patients from the Human Connectome Project-Early Psychosis (n=124). The replication cohort included EP patients from the Feinstein Institute for Medical Research (n=78). Both samples included individuals with schizophrenia, schizoaffective disorder, and psychotic mood disorders. Results In both cohorts, a significant latent component (LC) corresponded to a symptom profile combining negative symptoms, primarily diminished expression, with specific somatic symptoms. Both LCs captured comprehensive features of WM disruption, primarily a combination of subcortical and frontal association fibers. Strikingly, the PLS model trained on the primary cohort accurately predicted microstructural features and symptoms in the replication cohort. Findings were not driven by diagnosis, medication, or substance use. Conclusions This data-driven transdiagnostic approach revealed a stable and replicable neurobiological signature of microstructural WM alterations in EP, across diagnoses and datasets, showing a strong covariance of these alterations with a unique profile of negative and somatic symptoms. This finding suggests the clinical utility of applying data-driven approaches to reveal symptom domains that share neurobiological underpinnings.
Collapse
|
5
|
Hua JPY, Loewy RL, Stuart B, Fryer SL, Niendam TA, Carter CS, Vinogradov S, Mathalon DH. Cortical and subcortical brain morphometry abnormalities in youth at clinical high-risk for psychosis and individuals with early illness schizophrenia. Psychiatry Res Neuroimaging 2023; 332:111653. [PMID: 37121090 PMCID: PMC10362971 DOI: 10.1016/j.pscychresns.2023.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Neuroimaging studies have documented morphometric brain abnormalities in schizophrenia, but less is known about them in individuals at clinical high-risk for psychosis (CHR-P), including how they compare with those observed in early schizophrenia (ESZ). Accordingly, we implemented multivariate profile analysis of regional morphometric profiles in CHR-P (n = 89), ESZ (n = 93) and healthy controls (HC; n = 122). ESZ profiles differed from HC and CHR-P profiles, including 1) cortical thickness: significant level reduction and regional non-parallelism reflecting widespread thinning, except for entorhinal and pericalcarine cortex, 2) basal ganglia volume: significant level increase and regional non-parallelism reflecting larger caudate and pallidum, and 3) ventricular volume: significant level increase with parallel regional profiles. CHR-P and ESZ cerebellar profiles showed significant non-parallelism with HC profiles. Regional profiles did not significantly differ between groups for cortical surface area or subcortical volume. Compared to CHR-P followed for ≥18 months without psychosis conversion (n = 31), CHR-P converters (n = 17) showed significant non-parallel ventricular volume expansion reflecting specific enlargement of lateral and inferolateral regions. Antipsychotic dosage in ESZ was significantly correlated with frontal cortical thinning. Results suggest that morphometric abnormalities in ESZ are not present in CHR-P, except for ventricular enlargement, which was evident in CHR-P who developed psychosis.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA, United States; Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States; Department of Psychological Sciences, University of Missouri, Columbia, 65211, MO, United States
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, 95616, CA, United States
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, 95616, CA, United States
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55455, MN, United States
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States.
| |
Collapse
|
6
|
Hua JPY, Cummings J, Roach BJ, Fryer SL, Loewy RL, Stuart BK, Ford JM, Vinogradov S, Mathalon DH. Rich-club connectivity and structural connectome organization in youth at clinical high-risk for psychosis and individuals with early illness schizophrenia. Schizophr Res 2023; 255:110-121. [PMID: 36989668 PMCID: PMC10705845 DOI: 10.1016/j.schres.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/07/2022] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
Brain dysconnectivity has been posited as a biological marker of schizophrenia. Emerging schizophrenia connectome research has focused on rich-club organization, a tendency for brain hubs to be highly-interconnected but disproportionately vulnerable to dysconnectivity. However, less is known about rich-club organization in individuals at clinical high-risk for psychosis (CHR-P) and how it compares with abnormalities early in schizophrenia (ESZ). Combining diffusion tensor imaging (DTI) and magnetic resonance imaging (MRI), we examined rich-club and global network organization in CHR-P (n = 41) and ESZ (n = 70) relative to healthy controls (HC; n = 74) after accounting for normal aging. To characterize rich-club regions, we examined rich-club MRI morphometry (thickness, surface area). We also examined connectome metric associations with symptom severity, antipsychotic dosage, and in CHR-P specifically, transition to a full-blown psychotic disorder. ESZ had fewer connections among rich-club regions (ps < .024) relative to HC and CHR-P, with this reduction specific to the rich-club even after accounting for other connections in ESZ relative to HC (ps < .048). There was also cortical thinning of rich-club regions in ESZ (ps < .013). In contrast, there was no strong evidence of global network organization differences among the three groups. Although connectome abnormalities were not present in CHR-P overall, CHR-P converters to psychosis (n = 9) had fewer connections among rich-club regions (ps < .037) and greater modularity (ps < .037) compared to CHR-P non-converters (n = 19). Lastly, symptom severity and antipsychotic dosage were not significantly associated with connectome metrics (ps < .012). Findings suggest that rich-club and connectome organization abnormalities are present early in schizophrenia and in CHR-P individuals who subsequently transition to psychosis.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center and the University of California, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA 94121, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jennifer Cummings
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Brian J Roach
- San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Susanna L Fryer
- San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Barbara K Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Judith M Ford
- San Francisco VA Medical Center, San Francisco, CA 94121, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel H Mathalon
- San Francisco VA Medical Center, San Francisco, CA 94121, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|