1
|
Du T, Liu S, Yu H, Hu T, Huang L, Gao L, Jia L, Hu J, Yu Y, Sun Q. Chronic sleep deprivation disturbs energy balance modulated by suprachiasmatic nucleus efferents in mice. BMC Biol 2024; 22:296. [PMID: 39710657 DOI: 10.1186/s12915-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN). RESULTS We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN. The potential mechanism may be related to the disruptions of SCN efferent mediated by BMAL1. CONCLUSIONS Chronic SD impairs energy balance through directly dampening BMAL1 expression, probably in the transcription level, in the SCN, which in turn affects the neuron projections to ARC and PVN. Remarkably, we provide evidence that may explain the causal mechanisms associated with sleep curtailment and obesity in adolescents.
Collapse
Affiliation(s)
- Tingting Du
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Shuailing Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Honghong Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Tian Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lina Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lanyue Gao
- Experimental Center, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lihong Jia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qi Sun
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
2
|
Duraccio KM, Kamhout S, Baron KG, Reutrakul S, Depner CM. Sleep extension and cardiometabolic health: what it is, possible mechanisms and real-world applications. J Physiol 2024; 602:6571-6586. [PMID: 38268197 PMCID: PMC11266528 DOI: 10.1113/jp284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Short sleep duration is associated with heightened cardiometabolic disease risk and has reached epidemic proportions among children, adolescents and adults. Potential mechanisms underlying this association are complex and multifaceted, including disturbances in circadian timing, food intake and appetitive hormones, brain regions linked to control of hedonic eating, physical activity, an altered microbiome and impaired insulin sensitivity. Sleep extension, or increasing total sleep duration, is an emerging and ecologically relevant intervention with significant potential to advance our understanding of the mechanisms underlying the association between short sleep duration and the risk of cardiometabolic disease. If effective, sleep extension interventions have potential to improve cardiometabolic health across the lifespan. Existing data show that sleep extension is feasible and might have potential cardiometabolic health benefits, although there are limitations that the field must overcome. Notably, most existing studies are short term (2-8 weeks), use different sleep extension strategies, analyse a wide array of cardiometabolic health outcomes in different populations and, frequently, lack adequate statistical power, thus limiting robust scientific conclusions. Overcoming these limitations will require fully powered, randomized studies conducted in people with habitual short sleep duration and existing cardiometabolic risk factors. Additionally, randomized controlled trials comparing different sleep extension strategies are essential to determine the most effective interventions. Ongoing and future research should focus on elucidating the potential cardiometabolic health benefits of sleep extension. Such studies have high potential to generate crucial knowledge with potential to improve health and quality of life for those struggling with short sleep duration.
Collapse
Affiliation(s)
| | - Sarah Kamhout
- Department of PsychologyBrigham Young UniversityProvoUTUSA
| | - Kelly G. Baron
- Division of Public HealthDepartment of Family and Preventative MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes and MetabolismDepartment of MedicineUniversity of Illinois ChicagoChicagoILUSA
- Department of Biobehavioral Nursing ScienceCollege of NursingUniversity of Illinois ChicagoChicagoILUSA
| | | |
Collapse
|
3
|
Li XY, Yoncheva Y, Yan CG, Castellanos FX, St-Onge MP. Chronic Mild Sleep Restriction Does Not Lead to Marked Neuronal Alterations Compared With Maintained Adequate Sleep in Adults. J Nutr 2024; 154:446-454. [PMID: 38104943 PMCID: PMC10900194 DOI: 10.1016/j.tjnut.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Sleep restriction (SR) has been shown to upregulate neuronal reward networks in response to food stimuli, but prior studies were short-term and employed severe SR paradigms. OBJECTIVE Our goal was to determine whether mild SR, achieved by delaying bedtimes by 1.5 h, influences neuronal networks responsive to food stimuli compared with maintained adequate sleep (AS) >7 h/night. METHODS A randomized controlled crossover study with 2 6-wk phases, AS (≥7 h sleep/night) and SR (-1.5 h/night relative to screening), was conducted. Adults with AS duration, measured using wrist actigraphy over a 2-wk screening period, and self-reported good sleep quality were enrolled. Resting-state and food-stimulated functional neuroimaging (fMRI) was performed at the endpoint of each phase. Resting-state fMRI data analyses included a priori region-of-interest seed-based functional connectivity, whole-brain voxel-wise analyses, and network analyses. Food task-fMRI analyses compared brain activity patterns in response to food cues between conditions. Paired-sample t tests tested differences between conditions. RESULTS Twenty-six participants (16 males; age 29.6 ± 5.3 y, body mass index 26.9 ± 4.0 kg/m2) contributed complete data. Total sleep time was 7 h 30 ± 28 min/night during AS compared with 6 h 12 ± 26 min/night during SR. We employed different statistical approaches to replicate prior studies in the field and to apply more robust approaches that are currently advocated in the field. Using uncorrected P value of <0.01, cluster ≥10-voxel thresholds, we replicated prior findings of increased activation in response to foods in reward networks after SR compared with AS (right insula, right inferior frontal gyrus, and right supramarginal gyrus). These findings did not survive more rigorous analytical approaches (Gaussian Random Field theory correction at 2-tailed voxel P < 0.001, cluster P < 0.05). CONCLUSIONS The results suggest that mild SR leads to increased reward responsivity to foods but with low confidence given the failure to meet significance from rigorous statistical analyses. Further research is necessary to inform the mechanisms underlying the role of sleep on food intake regulation. This trial was registered at clinicaltrials.gov as NCT02960776.
Collapse
Affiliation(s)
- Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliya Yoncheva
- New York University Grossman School of Medicine, New York, NY, United States
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, China
| | - Francisco Xavier Castellanos
- New York University Grossman School of Medicine, New York, NY, United States; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|