1
|
Gaviraghi Mussoi J, Stanley MC, Cain KE. Importance of sleep for avian vocal communication. Biol Lett 2022; 18:20220223. [PMID: 35975628 PMCID: PMC9382451 DOI: 10.1098/rsbl.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sleep is one of the few truly ubiquitous animal behaviours, and though many animals spend enormous periods of time asleep, we have only begun to understand the consequences of sleep disturbances. In humans, sleep is crucial for effective communication. Birds are classic models for understanding the evolution and mechanisms of human language and speech. Bird vocalizations are remarkably diverse, critical, fitness-related behaviours, and the way sleep affects vocalizations is likely similarly varied. However, research on the effects of sleep disturbances on avian vocalizations is shockingly scarce. Consequently, there is a critical gap in our understanding of the extent to which sleep disturbances disrupt communication. Here, we argue that sleep disturbances are likely to affect all birds' vocal performance by interfering with motivation, memory consolidation and vocal maintenance. Further, we suggest that quality sleep is likely essential when learning new vocalizations and that sleep disturbances will have especially strong effects on learned vocalizations. Finally, we advocate for future research to address gaps in our understanding of how sleep influences vocal learning and performance in birds.
Collapse
Affiliation(s)
| | - Margaret C Stanley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Omond SET, Hale MW, Lesku JA. Neurotransmitters of sleep and wakefulness in flatworms. Sleep 2022; 45:zsac053. [PMID: 35554581 PMCID: PMC9216492 DOI: 10.1093/sleep/zsac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
STUDY OBJECTIVES Sleep is a prominent behavioral and biochemical state observed in all animals studied, including platyhelminth flatworms. Investigations into the biochemical mechanisms associated with sleep-and wakefulness-are important for understanding how these states are regulated and how that regulation changed with the evolution of new types of animals. Unfortunately, beyond a handful of vertebrates, such studies on invertebrates are rare. METHODS We investigated the effect of seven neurotransmitters, and one pharmacological compound, that modulate either sleep or wakefulness in mammals, on flatworms (Girardia tigrina). Flatworms were exposed via ingestion and diffusion to four neurotransmitters that promote wakefulness in vertebrates (acetylcholine, dopamine, glutamate, histamine), and three that induce sleep (adenosine, GABA, serotonin) along with the H1 histamine receptor antagonist pyrilamine. Compounds were administered over concentrations spanning three to five orders of magnitude. Flatworms were then transferred to fresh water and video recorded for analysis. RESULTS Dopamine and histamine decreased the time spent inactive and increased distance traveled, consistent with their wake-promoting effect in vertebrates and fruit flies; pyrilamine increased restfulness and GABA showed a nonsignificant trend towards promoting restfulness in a dose-dependent manner, in agreement with their sleep-inducing effect in vertebrates, fruit flies, and Hydra. Similar to Hydra, acetylcholine, glutamate, and serotonin, but also adenosine, had no apparent effect on flatworm behavior. CONCLUSIONS These data demonstrate the potential of neurotransmitters to regulate sleep and wakefulness in flatworms and highlight the conserved action of some neurotransmitters across species.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| |
Collapse
|
3
|
Discovery of a body-wide photosensory array that matures in an adult-like animal and mediates eye-brain-independent movement and arousal. Proc Natl Acad Sci U S A 2021; 118:2021426118. [PMID: 33941643 DOI: 10.1073/pnas.2021426118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye-brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin-expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in "adult-like animals." Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.
Collapse
|
4
|
Abstract
General anesthesia serves a critically important function in the clinical care of human patients. However, the anesthetized state has foundational implications for biology because anesthetic drugs are effective in organisms ranging from paramecia, to plants, to primates. Although unconsciousness is typically considered the cardinal feature of general anesthesia, this endpoint is only strictly applicable to a select subset of organisms that are susceptible to being anesthetized. We review the behavioral endpoints of general anesthetics across species and propose the isolation of an organism from its environment - both in terms of the afferent arm of sensation and the efferent arm of action - as a generalizable definition. We also consider the various targets and putative mechanisms of general anesthetics across biology and identify key substrates that are conserved, including cytoskeletal elements, ion channels, mitochondria, and functionally coupled electrical or neural activity. We conclude with a unifying framework related to network function and suggest that general anesthetics - from single cells to complex brains - create inefficiency and enhance modularity, leading to the dissociation of functions both within an organism and between the organism and its surroundings. Collectively, we demonstrate that general anesthesia is not restricted to the domain of modern medicine but has broad biological relevance with wide-ranging implications for a diverse array of species.
Collapse
Affiliation(s)
- Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Translational Research Laboratories, 125 S. 31st St., Philadelphia, PA 19104-3403, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Abstract
For many decades, sleep researchers have sought to determine which species 'have' rapid eye movement (REM) sleep. In doing so, they relied predominantly on a template derived from the expression of REM sleep in the adults of a small number of mammalian species. Here, we argue for a different approach that focuses less on a binary decision about haves and have nots, and more on the diverse expression of REM sleep components over development and across species. By focusing on the components of REM sleep and discouraging continued reliance on a restricted template, we aim to promote a richer and more biologically grounded developmental-comparative approach that spans behavioral, physiological, neural, and ecological domains.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| | - Paul-Antoine Libourel
- Neurosciences Research Center of Lyon, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1 Neurocampus, 95 Boulevard Pinel, 69675 BRON, France
| | - Markus H Schmidt
- Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; Ohio Sleep Medicine Institute, 4975 Bradenton Avenue, Dublin, OH 43017, USA
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Haus 5, Seewiesen 82319, Germany.
| |
Collapse
|
6
|
Kelly M, Collin S, Hemmi J, Lesku J. Evidence for Sleep in Sharks and Rays: Behavioural, Physiological, and Evolutionary Considerations. BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:37-50. [DOI: 10.1159/000504123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Abstract
Sleep is widespread across the animal kingdom. However, most comparative sleep data exist for terrestrial vertebrates, with much less known about sleep in amphibians, bony fishes, and invertebrates. There is an absence of knowledge on sleep in cartilaginous fishes. Sharks and rays are amongst the earliest vertebrates, and may hold clues to the evolutionary history of sleep and sleep states found in more derived animals, such as mammals and birds. Here, we review the literature concerning activity patterns, sleep behaviour, and electrophysiological evidence for sleep in cartilaginous (and bony) fishes following an exhaustive literature search that found more than 80 relevant studies in laboratory and field environments. Evidence for sleep in sharks and rays that respire without swimming is preliminary; evidence for sleep in continuously swimming fishes is currently absent. We discuss ways in which the latter group might sleep concurrent with sustained movement, and conclude with suggestions for future studies in order to provide more comprehensive data on when, how, and why sharks and rays sleep.
Collapse
|
7
|
Abstract
What is the 'simplest' animal that sleeps? When did sleep first evolve? Do all animals sleep? Tantalizing hints to answers come from new research showing that jellyfish, one of the earliest evolving groups of animals, have a sleep-like restful state.
Collapse
Affiliation(s)
- John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Australia.
| | - Linh M T Ly
- School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| |
Collapse
|
8
|
Ding K, Zhang L, Zhang T, Yang H, Brinkman R. The Effect of Melatonin on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Front Physiol 2019; 10:221. [PMID: 30941049 PMCID: PMC6433841 DOI: 10.3389/fphys.2019.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Melatonin is a highly conserved hormone in evolutionary history. It occurs in numerous organisms and plays a role in the endocrine and immune systems. Locomotor behavior is a basic behavior in animals and is an important indicator of circadian rhythms, which are coordinated by the nervous and endocrine systems. To date, the effect of melatonin on locomotor behavior has been studied in vertebrates, including syrian hamsters, sparrows, rats, zebrafish, goldfish, and flatworms. However, there have been few studies of the effects of melatonin on locomotor behavior in marine invertebrates. The goals of present study were to show the existence of melatonin in the sea cucumber Apostichopus japonicus and to evaluate its effect on locomotor activity. In addition, muscle tissues from control and melatonin-treated sea cucumbers were tested using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to determine the changes of metabolic activity in muscle. Melatonin was present in the coelomic fluid of A. japonicus at a concentration of ∼135.0 ng/L. The total distance traveled and number steps taken over 9 h after melatonin administration decreased with increasing concentration of the melatonin dose. Mean and maximum velocity of movement and stride length and stride frequency also decreased, but their differences were not statistically significant. Overall, these results suggest that melatonin administration had a sedative effect on A. japonicus. The levels of 22 different metabolites were altered in the muscle tissues of melatonin-treated sea cucumbers. Serotonin, 9-cis retinoic acid, all-trans retinoic acid, flavin mononucleotide in muscles were downregulated after melatonin administration. Moreover, a high free fatty acid (FFA) concentration and a decrease in the adenosine 5′-triphosphate (ATP) concentration in the muscle tissues of the melatonin-treated group were detected as well. These results suggest that the sedative effect of melatonin involves some other metabolic pathways, and the reduced locomotor modulator—serotonin, inhibited fatty acid oxidation and disturbed oxidative phosphorylation are potential physiological mechanisms that result in the inhibitory effect of melatonin on locomotion in sea cucumbers.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Richard Brinkman
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
9
|
Allocca G, Ma S, Martelli D, Cerri M, Del Vecchio F, Bastianini S, Zoccoli G, Amici R, Morairty SR, Aulsebrook AE, Blackburn S, Lesku JA, Rattenborg NC, Vyssotski AL, Wams E, Porcheret K, Wulff K, Foster R, Chan JKM, Nicholas CL, Freestone DR, Johnston LA, Gundlach AL. Validation of 'Somnivore', a Machine Learning Algorithm for Automated Scoring and Analysis of Polysomnography Data. Front Neurosci 2019; 13:207. [PMID: 30936820 PMCID: PMC6431640 DOI: 10.3389/fnins.2019.00207] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Manual scoring of polysomnography data is labor-intensive and time-consuming, and most existing software does not account for subjective differences and user variability. Therefore, we evaluated a supervised machine learning algorithm, SomnivoreTM, for automated wake–sleep stage classification. We designed an algorithm that extracts features from various input channels, following a brief session of manual scoring, and provides automated wake-sleep stage classification for each recording. For algorithm validation, polysomnography data was obtained from independent laboratories, and include normal, cognitively-impaired, and alcohol-treated human subjects (total n = 52), narcoleptic mice and drug-treated rats (total n = 56), and pigeons (n = 5). Training and testing sets for validation were previously scored manually by 1–2 trained sleep technologists from each laboratory. F-measure was used to assess precision and sensitivity for statistical analysis of classifier output and human scorer agreement. The algorithm gave high concordance with manual visual scoring across all human data (wake 0.91 ± 0.01; N1 0.57 ± 0.01; N2 0.81 ± 0.01; N3 0.86 ± 0.01; REM 0.87 ± 0.01), which was comparable to manual inter-scorer agreement on all stages. Similarly, high concordance was observed across all rodent (wake 0.95 ± 0.01; NREM 0.94 ± 0.01; REM 0.91 ± 0.01) and pigeon (wake 0.96 ± 0.006; NREM 0.97 ± 0.01; REM 0.86 ± 0.02) data. Effects of classifier learning from single signal inputs, simple stage reclassification, automated removal of transition epochs, and training set size were also examined. In summary, we have developed a polysomnography analysis program for automated sleep-stage classification of data from diverse species. Somnivore enables flexible, accurate, and high-throughput analysis of experimental and clinical sleep studies.
Collapse
Affiliation(s)
- Giancarlo Allocca
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Somnivore Pty. Ltd., Parkville, VIC, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Somnivore Pty. Ltd., Parkville, VIC, Australia
| | - Davide Martelli
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Flavia Del Vecchio
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Amici
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stephen R Morairty
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Anne E Aulsebrook
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shaun Blackburn
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - John A Lesku
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia.,Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Emma Wams
- The Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Kate Porcheret
- The Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Katharina Wulff
- The Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Russell Foster
- The Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Julia K M Chan
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.,Institute of Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia
| | - Dean R Freestone
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Leigh A Johnston
- Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Somnivore Pty. Ltd., Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Tisdale RK, Tieri L, Rattenborg NC, Beckers GJL, Lesku JA. Spectral Properties of Brain Activity Under Two Anesthetics and Their Potential for Inducing Natural Sleep in Birds. Front Neurosci 2018; 12:881. [PMID: 30538619 PMCID: PMC6277676 DOI: 10.3389/fnins.2018.00881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Both mammals and birds exhibit two sleep states, slow wave sleep (SWS) and rapid eye movement (REM) sleep. Studying certain aspects of sleep-related electrophysiology in freely behaving animals can present numerous methodological constraints, particularly when even fine body movements interfere with electrophysiological signals. Interestingly, under light general anesthesia, mammals and birds also exhibit slow waves similar to those observed during natural SWS. For these reasons, slow waves occurring under general anesthesia are commonly used in the investigation of sleep-related neurophysiology. However, how spectral properties of slow waves induced by anesthesia correspond to those occurring during natural SWS in birds has yet to be investigated systematically. In this study, we systematically analyzed spectral properties of electroencephalographic (EEG) patterns of pigeons (Columba livia) occurring under two commonly used anesthetics, isoflurane and urethane. These data were compared with EEG patterns during natural sleep. Slow waves occurring during spontaneous SWS, and those induced with isoflurane and urethane all showed greatest absolute power in the slowest frequencies (<3 Hz). Isoflurane and urethane-induced slow waves had near-identical power spectra, and both had higher mean power than that observed during SWS for all frequencies examined (0–25 Hz). Interestingly, burst suppression EEG activity observed under deeper planes of isoflurane anesthesia could occur bihemispherically or unihemispherically. Electrophysiological patterns while under isoflurane and urethane share phenomenological and spectral similarities to those occurring during SWS, notably the generation of high amplitude, slow waves, and peak low-frequency power. These results build upon other studies which suggest that some anesthetics exert their effects by acting on natural sleep pathways. As such, anesthesia-induced slow waves appear to provide an acceptable model for researchers interested in investigating sleep-related slow waves utilizing electrophysiological methods not suitable for use in freely behaving birds.
Collapse
Affiliation(s)
- Ryan K Tisdale
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Laura Tieri
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gabriel J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Rattenborg NC, de la Iglesia HO, Kempenaers B, Lesku JA, Meerlo P, Scriba MF. Sleep research goes wild: new methods and approaches to investigate the ecology, evolution and functions of sleep. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0251. [PMID: 28993495 DOI: 10.1098/rstb.2016.0251] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 11/12/2022] Open
Abstract
Despite being a prominent aspect of animal life, sleep and its functions remain poorly understood. As with any biological process, the functions of sleep can only be fully understood when examined in the ecological context in which they evolved. Owing to technological constraints, until recently, sleep has primarily been examined in the artificial laboratory environment. However, new tools are enabling researchers to study sleep behaviour and neurophysiology in the wild. Here, we summarize the various methods that have enabled sleep researchers to go wild, their strengths and weaknesses, and the discoveries resulting from these first steps outside the laboratory. The initial studies to 'go wild' have revealed a wealth of interindividual variation in sleep, and shown that sleep duration is not even fixed within an individual, but instead varies in response to an assortment of ecological demands. Determining the costs and benefits of this inter- and intraindividual variation in sleep may reveal clues to the functions of sleep. Perhaps the greatest surprise from these initial studies is that the reduction in neurobehavioural performance resulting from sleep loss demonstrated in the laboratory is not an obligatory outcome of reduced sleep in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | | | - Bart Kempenaers
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 Groningen, The Netherlands
| | - Madeleine F Scriba
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|