1
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Kanazawa M, Ninomiya I, Otsu Y, Hatakeyama M. Next-generation regenerative therapy for ischemic stroke using peripheral blood mononuclear cells. Neural Regen Res 2024; 19:2341-2342. [PMID: 38526265 PMCID: PMC11090419 DOI: 10.4103/nrr.nrr-d-23-01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
- Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Xu K, Zhao X, He Y, Guo H, Zhang Y. Stem cell-derived exosomes for ischemic stroke: a conventional and network meta-analysis based on animal models. Front Pharmacol 2024; 15:1481617. [PMID: 39508049 PMCID: PMC11537945 DOI: 10.3389/fphar.2024.1481617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Objective We aimed to evaluate the efficacy of stem cell-derived exosomes for treating ischemic stroke and to screen for the optimal administration strategy. Methods We searched PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases for relevant studies published from their inception to 31 December 2023. Conventional and network meta-analyses of the routes of administration, types, and immune compatibility of stem cell-derived exosomes were performed using the cerebral infarct volume (%) and modified neurological severity score (mNSS) as outcome indicators. Results A total of 38 randomized controlled animal experiments were included. Conventional meta-analysis showed that compared with the negative control group: intravenous administration significantly reduced the cerebral infarct volume (%) and mNSS; intranasal administration significantly reduced the cerebral infarct volume (%); and intracerebral administration significantly reduced the mNSS. Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos), bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), dental pulp stem cell-derived exosomes (DPSC-Exos) and neural stem cell-derived exosomes (NSC-Exos) significantly reduced the cerebral infarct volume (%) and mNSS; Endothelial progenitor cell-derived exosomes (EPC-Exos), embryonic stem cell-derived exosomes (ESC-Exos), induced pluripotent stem cell-derived exosomes (iPSC-Exos) and neural progenitor cell-derived exosomes (NPC-Exos) significantly reduced the cerebral infarct volume (%); Umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) significantly reduced the mNSS; and there was no significant difference between urogenital stem cell-derived exosomes (USC-Exos) and negative controls. Engineered modified exosomes had better efficacy than unmodified exosomes. Both allogeneic and xenogeneic stem cell-derived exosomes significantly reduced the cerebral infarct volume (%) and the mNSS. The network meta-analysis showed that intravenous administration was the best route of administration for reducing the cerebral infarct volume (%) and mNSS. Among the 10 types of stem cell-derived exosomes that were administered intravenously, BMSC-Exos were the best type for reducing the cerebral infarct volume (%) and the mNSS. Allogeneic exosomes had the best efficacy in reducing the cerebral infarct volume (%), whereas xenogeneic stem cell-derived exosomes had the best efficacy in reducing the mNSS. Conclusion This meta-analysis, by integrating the available evidence, revealed that intravenous administration is the best route of administration, that BMSC-Exos are the best exosome type, that allogeneic exosomes have the best efficacy in reducing the cerebral infarct volume (%), and that xenogeneic exosomes have the best efficacy in reducing mNSS, which can provide options for preclinical studies. In the future, more high-quality randomized controlled animal experiments, especially direct comparative evidence, are needed to determine the optimal administration strategy for stem cell-derived exosomes for ischemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42024497333, PROSPERO, CRD42024497333.
Collapse
Affiliation(s)
- Kangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuxuan He
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongxin Guo
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
5
|
Zhu K, Wang L, Xiao Y, Zhang X, You G, Chen Y, Wang Q, Zhao L, Zhou H, Chen G. Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives. J Nanobiotechnology 2024; 22:336. [PMID: 38880905 PMCID: PMC11180412 DOI: 10.1186/s12951-024-02606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Kai Zhu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lijun Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
- Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yao Xiao
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyong Zhang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guoxing You
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuzhi Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Quan Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lian Zhao
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Gan Chen
- Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|