1
|
Celentano M, DeWitt WS, Prillo S, Song YS. Exact and efficient phylodynamic simulation from arbitrarily large populations. Proc Natl Acad Sci U S A 2025; 122:e2412978122. [PMID: 40366686 PMCID: PMC12107099 DOI: 10.1073/pnas.2412978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Many biological studies involve inferring the evolutionary history of a sample of individuals from a large population and interpreting the reconstructed tree. Such an ascertained tree typically represents only a small part of a comprehensive population tree and is distorted by survivorship and sampling biases. Inferring evolutionary parameters from ascertained trees requires modeling both the underlying population dynamics and the ascertainment process. A crucial component of this phylodynamic modeling involves tree simulation, which is used to benchmark probabilistic inference methods. To simulate an ascertained tree, one must first simulate the full population tree and then prune unobserved lineages. Consequently, the computational cost is determined not by the size of the final simulated tree, but by the size of the population tree in which it is embedded. In most biological scenarios, simulations of the entire population are prohibitively expensive due to computational demands placed on lineages without sampled descendants. Here, we address this challenge by proving that, for any partially ascertained process from a general multitype birth-death-mutation-sampling model, there exists an equivalent process with complete sampling and no death, a property which we leverage to develop a highly efficient algorithm for simulating trees. Our algorithm scales linearly with the size of the final simulated tree and is independent of the population size, enabling simulations from extremely large populations beyond the reach of current methods but essential for various biological applications. We anticipate that this massive speedup will significantly advance the development of novel inference methods that require extensive training data.
Collapse
Affiliation(s)
- Michael Celentano
- Department of Statistics, University of California, Berkeley, CA94720
| | - William S. DeWitt
- Computer Science Division, University of California, Berkeley, CA94720
| | - Sebastian Prillo
- Computer Science Division, University of California, Berkeley, CA94720
| | - Yun S. Song
- Department of Statistics, University of California, Berkeley, CA94720
- Computer Science Division, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Egan JP, Simons AM, Alavi-Yeganeh MS, Hammer MP, Tongnunui P, Arcila D, Betancur-R R, Bloom DD. Phylogenomics, Lineage Diversification Rates, and the Evolution of Diadromy in Clupeiformes (Anchovies, Herrings, Sardines, and Relatives). Syst Biol 2024; 73:683-703. [PMID: 38756097 DOI: 10.1093/sysbio/syae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
Migration independently evolved numerous times in animals, with a myriad of ecological and evolutionary implications. In fishes, perhaps the most extreme form of migration is diadromy, the migration between marine and freshwater environments. Key and long-standing questions are: how many times has diadromy evolved in fishes, how frequently do diadromous clades give rise to non-diadromous species, and does diadromy influence lineage diversification rates? Many diadromous fishes have large geographic ranges with constituent populations that use isolated freshwater habitats. This may limit gene flow between some populations, increasing the likelihood of speciation in diadromous lineages relative to nondiadromous lineages. Alternatively, diadromy may reduce lineage diversification rates if migration is associated with enhanced dispersal capacity that facilitates gene flow within and between populations. Clupeiformes (herrings, sardines, shads, and anchovies) is a model clade for testing hypotheses about the evolution of diadromy because it includes an exceptionally high proportion of diadromous species and several independent evolutionary origins of diadromy. However, relationships among major clupeiform lineages remain unresolved, and existing phylogenies sparsely sampled diadromous species, limiting the resolution of phylogenetically informed statistical analyses. We assembled a phylogenomic dataset and used multi-species coalescent and concatenation-based approaches to generate the most comprehensive, highly resolved clupeiform phylogeny to date, clarifying associations among several major clades and identifying recalcitrant relationships needing further examination. We determined that variation in rates of sequence evolution (heterotachy) and base-composition (nonstationarity) had little impact on our results. Using this phylogeny, we characterized evolutionary patterns of diadromy and tested for differences in lineage diversification rates between diadromous, marine, and freshwater lineages. We identified 13 transitions to diadromy, all during the Cenozoic Era (10 origins of anadromy, 2 origins of catadromy, and 1 origin of amphidromy), and 7 losses of diadromy. Two diadromous lineages rapidly generated nondiadromous species, demonstrating that diadromy is not an evolutionary dead end. We discovered considerably faster transition rates out of diadromy than to diadromy. The largest lineage diversification rate increase in Clupeiformes was associated with a transition to diadromy, but we uncovered little statistical support for categorically faster lineage diversification rates in diadromous versus nondiadromous fishes. We propose that diadromy may increase the potential for accelerated lineage diversification, particularly in species that migrate long distances. However, this potential may only be realized in certain biogeographic contexts, such as when diadromy allows access to ecosystems in which there is limited competition from incumbent species.
Collapse
Affiliation(s)
- Joshua P Egan
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Andrew M Simons
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Saint Paul, MN 55108, USA
| | | | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT 0801, Australia
| | - Prasert Tongnunui
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Sikao, Trang 92150, Thailand
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Ricardo Betancur-R
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Devin D Bloom
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- School of the Environment, Geography, and Sustainability, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008, USA
| |
Collapse
|
3
|
Celentano M, DeWitt WS, Prillo S, Song YS. Exact and efficient phylodynamic simulation from arbitrarily large populations. ARXIV 2024:arXiv:2402.17153v2. [PMID: 38463501 PMCID: PMC10925381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Many biological studies involve inferring the evolutionary history of a sample of individuals from a large population and interpreting the reconstructed tree. Such an ascertained tree typically represents only a small part of a comprehensive population tree and is distorted by survivorship and sampling biases. Inferring evolutionary parameters from ascertained trees requires modeling both the underlying population dynamics and the ascertainment process. A crucial component of this phylodynamic modeling involves tree simulation, which is used to benchmark probabilistic inference methods. To simulate an ascertained tree, one must first simulate the full population tree and then prune unobserved lineages. Consequently, the computational cost is determined not by the size of the final simulated tree, but by the size of the population tree in which it is embedded. In most biological scenarios, simulations of the entire population are prohibitively expensive due to computational demands placed on lineages without sampled descendants. Here, we address this challenge by proving that, for any partially ascertained process from a general multi-type birth-death-mutation-sampling model, there exists an equivalent process with complete sampling and no death, a property which we leverage to develop a highly efficient algorithm for simulating trees. Our algorithm scales linearly with the size of the final simulated tree and is independent of the population size, enabling simulations from extremely large populations beyond the reach of current methods but essential for various biological applications. We anticipate that this unprecedented speedup will significantly advance the development of novel inference methods that require extensive training data.
Collapse
Affiliation(s)
| | | | | | - Yun S Song
- Department of Statistics, University of California, Berkeley
- Computer Science Division, University of California, Berkeley
| |
Collapse
|
4
|
Nicolaï MPJ, Van Hecke B, Rogalla S, Debruyn G, Bowie RCK, Matzke NJ, Hackett SJ, D'Alba L, Shawkey MD. The Evolution of Multiple Color Mechanisms Is Correlated with Diversification in Sunbirds (Nectariniidae). Syst Biol 2024; 73:343-354. [PMID: 38289860 DOI: 10.1093/sysbio/syae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bert Van Hecke
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Svana Rogalla
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena, 48940 Leioa, Spain
| | - Gerben Debruyn
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
5
|
Wicke K, Haque MR, Kubatko L. Implications of gene tree heterogeneity on downstream phylogenetic analyses: A case study employing the Fair Proportion index. PLoS One 2024; 19:e0300900. [PMID: 38662751 PMCID: PMC11045071 DOI: 10.1371/journal.pone.0300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
Many questions in evolutionary biology require the specification of a phylogeny for downstream phylogenetic analyses. However, with the increasingly widespread availability of genomic data, phylogenetic studies are often confronted with conflicting signal in the form of genomic heterogeneity and incongruence between gene trees and the species tree. This raises the question of determining what data and phylogeny should be used in downstream analyses, and to what extent the choice of phylogeny (e.g., gene trees versus species trees) impacts the analyses and their outcomes. In this paper, we study this question in the realm of phylogenetic diversity indices, which provide ways to prioritize species for conservation based on their relative evolutionary isolation on a phylogeny, and are thus one example of downstream phylogenetic analyses. We use the Fair Proportion (FP) index, also known as the evolutionary distinctiveness score, and explore the variability in species rankings based on gene trees as compared to the species tree for several empirical data sets. Our results indicate that prioritization rankings among species vary greatly depending on the underlying phylogeny, suggesting that the choice of phylogeny is a major influence in assessing phylogenetic diversity in a conservation setting. While we use phylogenetic diversity conservation as an example, we suspect that other types of downstream phylogenetic analyses such as ancestral state reconstruction are similarly affected by genomic heterogeneity and incongruence. Our aim is thus to raise awareness of this issue and inspire new research on which evolutionary information (species trees, gene trees, or a combination of both) should form the basis for analyses in these settings.
Collapse
Affiliation(s)
- Kristina Wicke
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Md. Rejuan Haque
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, United States of America
| | - Laura Kubatko
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
- Department of Statistics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
6
|
Lambert S, Voznica J, Morlon H. Deep Learning from Phylogenies for Diversification Analyses. Syst Biol 2023; 72:1262-1279. [PMID: 37556735 DOI: 10.1093/sysbio/syad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Birth-death (BD) models are widely used in combination with species phylogenies to study past diversification dynamics. Current inference approaches typically rely on likelihood-based methods. These methods are not generalizable, as a new likelihood formula must be established each time a new model is proposed; for some models, such a formula is not even tractable. Deep learning can bring solutions in such situations, as deep neural networks can be trained to learn the relation between simulations and parameter values as a regression problem. In this paper, we adapt a recently developed deep learning method from pathogen phylodynamics to the case of diversification inference, and we extend its applicability to the case of the inference of state-dependent diversification models from phylogenies associated with trait data. We demonstrate the accuracy and time efficiency of the approach for the time-constant homogeneous BD model and the Binary-State Speciation and Extinction model. Finally, we illustrate the use of the proposed inference machinery by reanalyzing a phylogeny of primates and their associated ecological role as seed dispersers. Deep learning inference provides at least the same accuracy as likelihood-based inference while being faster by several orders of magnitude, offering a promising new inference approach for the deployment of future models in the field.
Collapse
Affiliation(s)
- Sophia Lambert
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, 46 Rue d'Ulm, 75005 Paris, France
- Institute of Ecology and Evolution, Department of Biology, 5289 University of Oregon, Eugene, OR 97403, USA
| | - Jakub Voznica
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, 25-28 Rue du Dr Roux, 75015 Paris, France
- Unité de Biologie Computationnelle, USR 3756 CNRS, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, 46 Rue d'Ulm, 75005 Paris, France
| |
Collapse
|
7
|
Villaverde T, Larridon I, Shah T, Fowler RM, Chau JH, Olmstead RG, Sanmartín I. Phylogenomics sheds new light on the drivers behind a long-lasting systematic riddle: the figwort family Scrophulariaceae. THE NEW PHYTOLOGIST 2023; 240:1601-1615. [PMID: 36869601 DOI: 10.1111/nph.18845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The figwort family, Scrophulariaceae, comprises c. 2000 species whose evolutionary relationships at the tribal level have proven difficult to resolve, hindering our ability to understand their origin and diversification. We designed a specific probe kit for Scrophulariaceae, targeting 849 nuclear loci and obtaining plastid regions as by-products. We sampled c. 87% of the genera described in the family and use the nuclear dataset to estimate evolutionary relationships, timing of diversification, and biogeographic patterns. Ten tribes, including two new tribes, Androyeae and Camptolomeae, are supported, and the phylogenetic positions of Androya, Camptoloma, and Phygelius are unveiled. Our study reveals a major diversification at c. 60 million yr ago in some Gondwanan landmasses, where two different lineages diversified, one of which gave rise to nearly 81% of extant species. A Southern African origin is estimated for most modern-day tribes, with two exceptions, the American Leucophylleae, and the mainly Australian Myoporeae. The rapid mid-Eocene diversification is aligned with geographic expansion within southern Africa in most tribes, followed by range expansion to tropical Africa and multiple dispersals out of Africa. Our robust phylogeny provides a framework for future studies aimed at understanding the role of macroevolutionary patterns and processes that generated Scrophulariaceae diversity.
Collapse
Affiliation(s)
- Tamara Villaverde
- Real Jardín Botánico (CSIC), Plaza de Murillo, 2, Madrid, 28014, Spain
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Toral Shah
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - John H Chau
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Richard G Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98155, USA
| | - Isabel Sanmartín
- Real Jardín Botánico (CSIC), Plaza de Murillo, 2, Madrid, 28014, Spain
| |
Collapse
|
8
|
González-Miguéns R, Soler-Zamora C, Useros F, Nogal-Prata S, Berney C, Blanco-Rotea A, Carrasco-Braganza MI, de Salvador-Velasco D, Guillén-Oterino A, Tenorio-Rodríguez D, Velázquez D, Heger TJ, Sanmartín I, Lara E. Cyphoderia ampulla (Cyphoderiidae: Rhizaria), a tale of freshwater sailors. The causes and consequences of ecological transitions through the salinity barrier in a family of benthic protists. Mol Ecol 2022; 31:2644-2663. [PMID: 35262986 PMCID: PMC9311665 DOI: 10.1111/mec.16424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The salinity barrier that separates marine and freshwater biomes is probably the most important division in biodiversity on Earth. Those organisms that successfully performed this transition had access to new ecosystems while undergoing changes in selective pressure, which often led to major shifts in diversification rates. While these transitions have been extensively investigated in animals, the tempo, mode, and outcome of crossing the salinity barrier have been scarcely studied in other eukaryotes. Here, we reconstructed the evolutionary history of the species complex Cyphoderia ampulla (Euglyphida: Cercozoa: Rhizaria) based on DNA sequences from the nuclear SSU rRNA gene and the mitochondrial cytochrome oxidase subunit I gene, obtained from publicly available environmental DNA data (GeneBank, EukBank) and isolated organisms. A tree calibrated with euglyphid fossils showed that four independent transitions towards freshwater systems occurred from the Mid Miocene onwards, coincident with important fluctuations in sea level. Ancestral trait reconstructions indicated that the whole family Cyphoderiidae had a marine origin and suggest that ancestors of the freshwater forms were euryhaline and lived in environments with fluctuating salinity. Diversification rates did not show any obvious increase concomitant with ecological transitions, but morphometric analyses indicated that species increased in size and homogenized their morphology after colonizing the new environments. This suggests adaptation to changes in selective pressure exerted by life in freshwater sediments.
Collapse
Affiliation(s)
| | - Carmen Soler-Zamora
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Fernando Useros
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Sandra Nogal-Prata
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Cédric Berney
- Université de la Sorbonne CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 10, Paris, France
| | - Andrés Blanco-Rotea
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - María Isabel Carrasco-Braganza
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - David de Salvador-Velasco
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - Antonio Guillén-Oterino
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - Daniel Tenorio-Rodríguez
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - David Velázquez
- Dpt. of Biology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Thierry J Heger
- Soil Science and Environment Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260, Nyon, Switzerland
| | - Isabel Sanmartín
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Enrique Lara
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
9
|
St Laurent RA, Carvalho APS, Earl C, Kawahara AY. Food Plant Shifts Drive the Diversification of Sack-Bearer Moths. Am Nat 2021; 198:E170-E184. [PMID: 34648399 DOI: 10.1086/716661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractLepidoptera are a highly diverse group of herbivorous insects; however, some superfamilies have relatively few species. Two alternative hypotheses for drivers of Lepidoptera diversity are shifts in food plant use or shifts from concealed to external feeding as larvae. Many studies address the former hypothesis but with bias toward externally feeding taxa. One of the most striking examples of species disparity between sister lineages in Lepidoptera is between the concealed-feeding sack-bearer moths (Mimallonoidea), which contain about 300 species, and externally feeding Macroheterocera, which have over 74,000 species. We provide the first dated tree of Mimallonidae to understand the diversification dynamics of these moths in order to fill a knowledge gap pertaining to drivers of diversity within an important concealed-feeding clade. We find that Mimallonidae is an ancient Lepidoptera lineage that originated in the Cretaceous ∼105 million years ago and has had a close association with the plant order Myrtales for the past 40 million years. Diversification dynamics are tightly linked with food plant usage in this group. Reliance on Myrtales may have influenced diversification of Mimallonidae because clades that shifted away from the ancestral condition of feeding on Myrtales have the highest speciation rates in the family.
Collapse
|
10
|
Aduse-Poku K, van Bergen E, Sáfián S, Collins SC, Etienne RS, Herrera-Alsina L, Brakefield PM, Brattström O, Lohman DJ, Wahlberg N. Miocene Climate and Habitat Change Drove Diversification in Bicyclus, Africa's Largest Radiation of Satyrine Butterflies. Syst Biol 2021; 71:570-588. [PMID: 34363477 PMCID: PMC9016770 DOI: 10.1093/sysbio/syab066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Compared to other regions, the drivers of diversification in Africa are poorly understood. We studied a radiation of insects with over 100 species occurring in a wide range of habitats across the Afrotropics to investigate the fundamental evolutionary processes and geological events that generate and maintain patterns of species richness on the continent. By investigating the evolutionary history of Bicyclus butterflies within a phylogenetic framework, we inferred the group's origin at the Oligo-Miocene boundary from ancestors in the Congolian rainforests of central Africa. Abrupt climatic fluctuations during the Miocene (ca. 19-17 Ma) likely fragmented ancestral populations, resulting in at least eight early-divergent lineages. Only one of these lineages appears to have diversified during the drastic climate and biome changes of the early Miocene, radiating into the largest group of extant species. The other seven lineages diversified in forest ecosystems during the late Miocene and Pleistocene when climatic conditions were more favourable-warmer and wetter. Our results suggest changing Neogene climate, uplift of eastern African orogens, and biotic interactions might have had different effects on the various subclades of Bicyclus, producing one of the most spectacular butterfly radiations in Africa.
Collapse
Affiliation(s)
- Kwaku Aduse-Poku
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.,Biology Department, University of Richmond, Richmond, 138 UR Drive, USA.,Department of Life and Earth Sciences, Perimeter College, Georgia State University, USA
| | - Erik van Bergen
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.,Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest Protection, University of Sopron, Sopron, Hungary
| | - Steve C Collins
- African Butterfly Research Institute, P.O. Box 14308, 0800 Westlands, Nairobi, Kenya
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, 9700 CC Groningen, The Netherlands
| | | | - Paul M Brakefield
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| | - Oskar Brattström
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.,African Butterfly Research Institute, P.O. Box 14308, 0800 Westlands, Nairobi, Kenya.,University of Glasgow, School of Life Sciences, Glasgow, Scotland, UK.,University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, Scotland, UK
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, USA.,Ph.D. Program in Biology, Graduate Center, City University of New York, NY, USA.,Entomology Section, National Museum of Natural History, Manila, 1000, Philippines
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan35, SE-223, 62 Lund, Sweden
| |
Collapse
|
11
|
Agrawal AA, Zhang X. The evolution of coevolution in the study of species interactions. Evolution 2021; 75:1594-1606. [PMID: 34166533 DOI: 10.1111/evo.14293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 01/05/2023]
Abstract
The study of reciprocal adaptation in interacting species has been an active and inspiring area of evolutionary research for nearly 60 years. Perhaps owing to its great natural history and potential consequences spanning population divergence to species diversification, coevolution continues to capture the imagination of biologists. Here we trace developments following Ehrlich and Raven's classic paper, with a particular focus on the modern influence of two studies by Dr. May Berenbaum in the 1980s. This series of classic work presented a compelling example exhibiting the macroevolutionary patterns predicted by Ehrlich and Raven and also formalized a microevolutionary approach to measuring selection, functional traits, and understanding reciprocal adaptation between plants and their herbivores. Following this breakthrough was a wave of research focusing on diversifying macroevolutionary patterns, mechanistic chemical ecology, and natural selection on populations within and across community types. Accordingly, we breakdown coevolutionary theory into specific hypotheses at different scales: reciprocal adaptation between populations within a community, differential coevolution among communities, lineage divergence, and phylogenetic patterns. We highlight progress as well as persistent gaps, especially the link between reciprocal adaptation and diversification.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Xuening Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
12
|
MacPherson A, Louca S, McLaughlin A, Joy JB, Pennell MW. Unifying Phylogenetic Birth-Death Models in Epidemiology and Macroevolution. Syst Biol 2021; 71:172-189. [PMID: 34165577 PMCID: PMC8972974 DOI: 10.1093/sysbio/syab049] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Birth–death stochastic processes are the foundations of many phylogenetic models and are
widely used to make inferences about epidemiological and macroevolutionary dynamics. There
are a large number of birth–death model variants that have been developed; these impose
different assumptions about the temporal dynamics of the parameters and about the sampling
process. As each of these variants was individually derived, it has been difficult to
understand the relationships between them as well as their precise biological and
mathematical assumptions. Without a common mathematical foundation, deriving new models is
nontrivial. Here, we unify these models into a single framework, prove that many
previously developed epidemiological and macroevolutionary models are all special cases of
a more general model, and illustrate the connections between these variants. This
unification includes both models where the process is the same for all lineages and those
in which it varies across types. We also outline a straightforward procedure for deriving
likelihood functions for arbitrarily complex birth–death(-sampling) models that will
hopefully allow researchers to explore a wider array of scenarios than was previously
possible. By rederiving existing single-type birth–death sampling models, we clarify and
synthesize the range of explicit and implicit assumptions made by these models.
[Birth–death processes; epidemiology; macroevolution; phylogenetics; statistical
inference.]
Collapse
Affiliation(s)
- Ailene MacPherson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stilianos Louca
- Department of Biology, University of Oregon, USA.,Institute of Ecology and Evolution, University of Oregon, USA
| | - Angela McLaughlin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Bioinformatics, University of British Columbia, Vancouver, Canada.,Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Matthew W Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Matos-Maraví P, Wahlberg N, Freitas AVL, Devries P, Antonelli A, Penz CM. Mesoamerica is a cradle and the Atlantic Forest is a museum of Neotropical butterfly diversity: insights from the evolution and biogeography of Brassolini (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Regional species diversity is explained ultimately by speciation, extinction and dispersal. Here, we estimate dispersal and speciation rates of Neotropical butterflies to propose an explanation for the distribution and diversity of extant species. We focused on the tribe Brassolini (owl butterflies and allies), a Neotropical group that comprises 17 genera and 108 species, most of them endemic to rainforest biomes. We inferred a robust species tree using the multispecies coalescent framework and a dataset including molecular and morphological characters. This formed the basis for three changes in Brassolini classification: (1) Naropina syn. nov. is subsumed within Brassolina; (2) Aponarope syn. nov. is subsumed within Narope; and (3) Selenophanes orgetorix comb. nov. is reassigned from Catoblepia to Selenophanes. By applying biogeographical stochastic mapping, we found contrasting species diversification and dispersal dynamics across rainforest biomes, which might be explained, in part, by the geological and environmental history of each bioregion. Our results revealed a mosaic of biome-specific evolutionary histories within the Neotropics, where butterfly species have diversified rapidly (cradles: Mesoamerica), have accumulated gradually (museums: Atlantic Forest) or have diversified and accumulated alternately (Amazonia). Our study contributes evidence from a major butterfly lineage that the Neotropics are a museum and a cradle of species diversity.
Collapse
Affiliation(s)
- Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan 37, 22362 Lund, Sweden
| | - André V L Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, CEP 13.083-862 Campinas, São Paulo, Brazil
| | - Phil Devries
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Courtesy Curators of Lepidoptera, Florida Museum of Natural History, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Royal Botanical Gardens Kew, Richmond TW9 3AE, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Carla M Penz
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| |
Collapse
|