1
|
Wei ZR, Jiao D, Wehenkel CA, Wei XX, Wang XQ. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2664-2682. [PMID: 39152659 DOI: 10.1111/jipb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
Collapse
Affiliation(s)
- Zhou-Rui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Christian Anton Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, 34000, Mexico
| | - Xiao-Xin Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Allman ES, Baños H, Mitchell JD, Rhodes JA. TINNiK: inference of the tree of blobs of a species network under the coalescent model. Algorithms Mol Biol 2024; 19:23. [PMID: 39501362 PMCID: PMC11539473 DOI: 10.1186/s13015-024-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/22/2024] [Indexed: 11/08/2024] Open
Abstract
The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting information on network substructures where hybridization or other types of lateral transfer of genetic information occur. By isolating such regions of a network, inference of the tree of blobs can serve as a starting point for a more detailed investigation, or indicate the limit of what may be inferrable without additional assumptions. Building on our theoretical work on the identifiability of the tree of blobs from gene quartet distributions under the Network Multispecies Coalescent model, we develop an algorithm, TINNiK, for statistically consistent tree of blobs inference. We provide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSCquartets 2.0 R package.
Collapse
Affiliation(s)
- Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA.
| | - Hector Baños
- Department of Mathematics, California State University San Bernadino, San Bernadino, CA, USA
| | - Jonathan D Mitchell
- School of Natural Sciences (Mathematics), University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA
| |
Collapse
|
3
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Lanfear R, Hahn MW. The Meaning and Measure of Concordance Factors in Phylogenomics. Mol Biol Evol 2024; 41:msae214. [PMID: 39418118 PMCID: PMC11532913 DOI: 10.1093/molbev/msae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
As phylogenomic datasets have grown in size, researchers have developed new ways to measure biological variation and to assess statistical support for specific branches. Larger datasets have more sites and loci and therefore less sampling variance. While we can more accurately measure the mean signal in these datasets, lower sampling variance is often reflected in uniformly high measures of branch support-such as the bootstrap and posterior probability-limiting their utility. Larger datasets have also revealed substantial biological variation in the topologies found across individual loci, such that the single species tree inferred by most phylogenetic methods represents a limited summary of the data for many purposes. In contrast to measures of statistical support, the degree of underlying topological variation among loci should be approximately constant regardless of the size of the dataset. "Concordance factors" (CFs) and similar statistics have therefore become increasingly important tools in phylogenetics. In this review, we explain why CFs should be thought of as descriptors of topological variation rather than as measures of statistical support, and argue that they provide important information about the predictive power of the species tree not contained in measures of support. We review a growing suite of statistics for measuring concordance, compare them in a common framework that reveals their interrelationships, and demonstrate how to calculate them using an example from birds. We also discuss how measures of topological variation might change in the future as we move beyond estimating a single "tree of life" toward estimating the myriad evolutionary histories underlying genomic variation.
Collapse
Affiliation(s)
- Robert Lanfear
- Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
5
|
Allman ES, Baños H, Mitchell JD, Rhodes JA. TINNiK: Inference of the Tree of Blobs of a Species Network Under the Coalescent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590418. [PMID: 38712257 PMCID: PMC11071406 DOI: 10.1101/2024.04.20.590418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting information on network substructures where hybridization or other types of lateral transfer of genetic information occur. By isolating such regions of a network, inference of the tree of blobs can serve as a starting point for a more detailed investigation, or indicate the limit of what may be inferrable without additional assumptions. Building on our theoretical work on the identifiability of the tree of blobs from gene quartet distributions under the Network Multispecies Coalescent model, we develop an algorithm, TINNiK, for statistically consistent tree of blobs inference. We provide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSCquartets 2.0 R package.
Collapse
Affiliation(s)
- Elizabeth S. Allman
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA
| | - Hector Baños
- Department of Mathematics, California State University San Bernadino, San Bernadino, CA, USA
| | - Jonathan D. Mitchell
- School of Natural Sciences (Mathematics), University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - John A. Rhodes
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA
| |
Collapse
|
6
|
Stankowski S, Zagrodzka ZB, Garlovsky MD, Pal A, Shipilina D, Castillo DG, Lifchitz H, Le Moan A, Leder E, Reeve J, Johannesson K, Westram AM, Butlin RK. The genetic basis of a recent transition to live-bearing in marine snails. Science 2024; 383:114-119. [PMID: 38175895 DOI: 10.1126/science.adi2982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/25/2023] [Indexed: 01/06/2024]
Abstract
Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer-specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer-specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step.
Collapse
Affiliation(s)
- Sean Stankowski
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
- Department of Ecology and Evolution, University of Sussex, Brighton BN1 9RH, UK
| | - Zuzanna B Zagrodzka
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin D Garlovsky
- Department of Applied Zoology, Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Arka Pal
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Daria Shipilina
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
- Department of Ecology and Genetics, Program of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | - Hila Lifchitz
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Alan Le Moan
- CNRS and Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Erica Leder
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | - James Reeve
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| |
Collapse
|
7
|
Xue TT, Janssens SB, Liu BB, Yu SX. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Mol Phylogenet Evol 2024; 190:107956. [PMID: 37898296 DOI: 10.1016/j.ympev.2023.107956] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.
Collapse
Affiliation(s)
- Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Yang L, Harris AJ, Wen F, Li Z, Feng C, Kong H, Kang M. Phylogenomic Analyses Reveal an Allopolyploid Origin of Core Didymocarpinae (Gesneriaceae) Followed by Rapid Radiation. Syst Biol 2023; 72:1064-1083. [PMID: 37158589 PMCID: PMC10627561 DOI: 10.1093/sysbio/syad029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Allopolyploid plants have long been regarded as possessing genetic advantages under certain circumstances due to the combined effects of their hybrid origins and duplicated genomes. However, the evolutionary consequences of allopolyploidy in lineage diversification remain to be fully understood. Here, we investigate the evolutionary consequences of allopolyploidy using 138 transcriptomic sequences of Gesneriaceae, including 124 newly sequenced, focusing particularly on the largest subtribe Didymocarpinae. We estimated the phylogeny of Gesneriaceae using concatenated and coalescent-based methods based on five different nuclear matrices and 27 plastid genes, focusing on relationships among major clades. To better understand the evolutionary affinities in this family, we applied a range of approaches to characterize the extent and cause of phylogenetic incongruence. We found that extensive conflicts between nuclear and chloroplast genomes and among nuclear genes were caused by both incomplete lineage sorting (ILS) and reticulation, and we found evidence of widespread ancient hybridization and introgression. Using the most highly supported phylogenomic framework, we revealed multiple bursts of gene duplication throughout the evolutionary history of Gesneriaceae. By incorporating molecular dating and analyses of diversification dynamics, our study shows that an ancient allopolyploidization event occurred around the Oligocene-Miocene boundary, which may have driven the rapid radiation of core Didymocarpinae.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fang Wen
- Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, 541006 Guilin, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
10
|
Yang LH, Shi XZ, Wen F, Kang M. Phylogenomics reveals widespread hybridization and polyploidization in Henckelia (Gesneriaceae). ANNALS OF BOTANY 2023; 131:953-966. [PMID: 37177810 PMCID: PMC10332401 DOI: 10.1093/aob/mcad047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Hybridization has long been recognized as an important process for plant evolution and is often accompanied by polyploidization, another prominent force in generating biodiversity. Despite its pivotal importance in evolution, the actual prevalence and distribution of hybridization across the tree of life remain unclear. METHODS We used whole-genome shotgun (WGS) sequencing and cytological data to investigate the evolutionary history of Henckelia, a large genus in the family Gesneriaceae with a high frequency of suspected hybridization and polyploidization events. We generated WGS sequencing data at about 10× coverage for 26 Chinese Henckelia species plus one Sri Lankan species. To untangle the hybridization history, we separately extracted whole plastomes and thousands of single-copy nuclear genes from the sequencing data, and reconstructed phylogenies based on both nuclear and plastid data. We also explored sources of both genealogical and cytonuclear conflicts and identified signals of hybridization and introgression within our phylogenomic dataset using several statistical methods. Additionally, to test the polyploidization history, we evaluated chromosome counts for 45 populations of the 27 Henckelia species studied. KEY RESULTS We obtained well-supported phylogenetic relationships using both concatenation- and coalescent-based methods. However, the nuclear phylogenies were highly inconsistent with the plastid phylogeny, and we observed intensive discordance among nuclear gene trees. Further analyses suggested that both incomplete lineage sorting and gene flow contributed to the observed cytonuclear and genealogical discordance. Our analyses of introgression and phylogenetic networks revealed a complex history of hybridization within the genus Henckelia. In addition, based on chromosome counts for 27 Henckelia species, we found independent polyploidization events occurred within Henckelia after different hybridization events. CONCLUSIONS Our findings demonstrated that hybridization and polyploidization are common in Henckelia. Furthermore, our results revealed that H. oblongifolia is not a member of the redefined Henckelia and they suggested several other taxonomic treatments in this genus.
Collapse
Affiliation(s)
- Li-Hua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Xi-Zuo Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wen
- Gesneriad Conservation Center of China, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
11
|
de Jong MJ, Niamir A, Wolf M, Kitchener AC, Lecomte N, Seryodkin IV, Fain SR, Hagen SB, Saarma U, Janke A. Range-wide whole-genome resequencing of the brown bear reveals drivers of intraspecies divergence. Commun Biol 2023; 6:153. [PMID: 36746982 PMCID: PMC9902616 DOI: 10.1038/s42003-023-04514-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Population-genomic studies can shed new light on the effect of past demographic processes on contemporary population structure. We reassessed phylogeographical patterns of a classic model species of postglacial recolonisation, the brown bear (Ursus arctos), using a range-wide resequencing dataset of 128 nuclear genomes. In sharp contrast to the erratic geographical distribution of mtDNA and Y-chromosomal haplotypes, autosomal and X-chromosomal multi-locus datasets indicate that brown bear population structure is largely explained by recent population connectivity. Multispecies coalescent based analyses reveal cases where mtDNA haplotype sharing between distant populations, such as between Iberian and southern Scandinavian bears, likely results from incomplete lineage sorting, not from ancestral population structure (i.e., postglacial recolonisation). However, we also argue, using forward-in-time simulations, that gene flow and recombination can rapidly erase genomic evidence of former population structure (such as an ancestral population in Beringia), while this signal is retained by Y-chromosomal and mtDNA, albeit likely distorted. We further suggest that if gene flow is male-mediated, the information loss proceeds faster in autosomes than in X chromosomes. Our findings emphasise that contemporary autosomal genetic structure may reflect recent population dynamics rather than postglacial recolonisation routes, which could contribute to mtDNA and Y-chromosomal discordances.
Collapse
Affiliation(s)
- Menno J. de Jong
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325 Germany
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325 Germany
| | - Magnus Wolf
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325 Germany ,grid.7839.50000 0004 1936 9721Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany
| | - Andrew C. Kitchener
- grid.422302.50000 0001 0943 6159Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF UK ,grid.4305.20000 0004 1936 7988School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh, EH8 9XP UK
| | - Nicolas Lecomte
- grid.265686.90000 0001 2175 1792Canada Research Chair in Polar and Boreal Ecology, Department of Biology, University of Moncton, Moncton, New Brunswick E1H1R2 Canada
| | - Ivan V. Seryodkin
- grid.465394.90000 0004 0611 5319Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences, 7 Radio St., Vladivostok, 690041 Russia
| | - Steven R. Fain
- National Fish & Wildlife Forensic Laboratory, Ashland, OR USA
| | - Snorre B. Hagen
- grid.454322.60000 0004 4910 9859Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925 Svanvik, Norway
| | - Urmas Saarma
- grid.10939.320000 0001 0943 7661Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409 Estonia
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325 Germany ,grid.7839.50000 0004 1936 9721Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany ,grid.511284.b0000 0004 8004 5574LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat Commun 2023; 14:617. [PMID: 36739280 PMCID: PMC9899254 DOI: 10.1038/s41467-023-36247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
In lineages of allopolyploid origin, sets of homoeologous chromosomes may coexist that differ in gene content and syntenic structure. Presence or absence of genes and microsynteny along chromosomal blocks can serve to differentiate subgenomes and to infer phylogenies. We here apply genome-structural data to infer relationships in an ancient allopolyploid lineage, the walnut family (Juglandaceae), by using seven chromosome-level genomes, two of them newly assembled. Microsynteny and gene-content analyses yield identical topologies that place Platycarya with Engelhardia as did a 1980s morphological-cladistic study. DNA-alignment-based topologies here and in numerous earlier studies instead group Platycarya with Carya and Juglans, perhaps misled by past hybridization. All available data support a hybrid origin of Juglandaceae from extinct or unsampled progenitors nested within, or sister to, Myricaceae. Rhoiptelea chiliantha, sister to all other Juglandaceae, contains proportionally more DNA repair genes and appears to evolve at a rate 2.6- to 3.5-times slower than the remaining species.
Collapse
|
13
|
Identifiability of species network topologies from genomic sequences using the logDet distance. J Math Biol 2022; 84:35. [PMID: 35385988 DOI: 10.1007/s00285-022-01734-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Inference of network-like evolutionary relationships between species from genomic data must address the interwoven signals from both gene flow and incomplete lineage sorting. The heavy computational demands of standard approaches to this problem severely limit the size of datasets that may be analyzed, in both the number of species and the number of genetic loci. Here we provide a theoretical pointer to more efficient methods, by showing that logDet distances computed from genomic-scale sequences retain sufficient information to recover network relationships in the level-1 ultrametric case. This result is obtained under the Network Multispecies Coalescent model combined with a mixture of General Time-Reversible sequence evolution models across individual gene trees. It applies to both unlinked site data, such as for SNPs, and to sequence data in which many contiguous sites may have evolved on a common tree, such as concatenated gene sequences. Thus under standard stochastic models statistically justifiable inference of network relationships from sequences can be accomplished without consideration of individual genes or gene trees.
Collapse
|
14
|
Xiao TW, Yan HF, Ge XJ. Plastid phylogenomics of tribe Perseeae (Lauraceae) yields insights into the evolution of East Asian subtropical evergreen broad-leaved forests. BMC PLANT BIOLOGY 2022; 22:32. [PMID: 35027008 PMCID: PMC8756638 DOI: 10.1186/s12870-021-03413-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The East Asian subtropical evergreen broad-leaved forests (EBLFs) harbor remarkable biodiversity. However, their historical assembly remains unclear. To gain new insights into the assembly of this biome, we generated a molecular phylogeny of one of its essential plant groups, the tribe Perseeae (Lauraceae). RESULTS Our plastid tree topologies were robust to analyses based on different plastid regions and different strategies for data partitioning, nucleotide substitution saturation, and gap handling. We found that tribe Perseeae comprised six major clades and began to colonize the subtropical EBLFs of East Asia in the early Miocene. The diversification rates of tribe Perseeae accelerated twice in the late Miocene. CONCLUSIONS Our findings suggest that the intensified precipitation in East Asia in the early Miocene may have facilitated range expansions of the subtropical EBLFs and establishment of tribe Perseeae within this biome. By the late Miocene, species assembly and diversification within the EBLFs had become rapid.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
15
|
Thomson RC, Brown JM. OUP accepted manuscript. Syst Biol 2022; 71:917-920. [PMID: 35088868 PMCID: PMC9203063 DOI: 10.1093/sysbio/syac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
The scale of data sets used to infer phylogenies has grown dramatically in the last decades, providing researchers with an enormous amount of information with which to draw inferences about evolutionary history. However, standard approaches to assessing confidence in those inferences (e.g., nonparametric bootstrap proportions [BP] and Bayesian posterior probabilities [PPs]) are still deeply influenced by statistical procedures and frameworks that were developed when information was much more limited. These approaches largely quantify uncertainty caused by limited amounts of data, which is often vanishingly small with modern, genome-scale sequence data sets. As a consequence, today’s phylogenomic studies routinely report near-complete confidence in their inferences, even when different studies reach strongly conflicting conclusions and the sites and loci in a single data set contain much more heterogeneity than our methods assume or can accommodate. Therefore, we argue that BPs and marginal PPs of bipartitions have outlived their utility as the primary means of measuring phylogenetic support for modern phylogenomic data sets with large numbers of sites relative to the number of taxa. Continuing to rely on these measures will hinder progress towards understanding remaining sources of uncertainty in the most challenging portions of the Tree of Life. Instead, we encourage researchers to examine the ideas and methods presented in this special issue of Systematic Biology and to explore the area further in their own work. The papers in this special issue outline strategies for assessing confidence and uncertainty in phylogenomic data sets that move beyond stochastic error due to limited data and offer promise for more productive dialogue about the challenges that we face in reaching our shared goal of understanding the history of life on Earth.[Big data; gene tree variation; genomic era; statistical bias.]
Collapse
Affiliation(s)
- Robert C Thomson
- School of Life Sciences, University of Hawai‘i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA
- Correspondence to be sent to: School of Life Sciences, University of Hawai‘i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; E-mail:
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
16
|
Kong H, Condamine FL, Yang L, Harris AJ, Feng C, Wen F, Kang M. Phylogenomic and Macroevolutionary Evidence for an Explosive Radiation of a Plant Genus in the Miocene. Syst Biol 2021; 71:589-609. [PMID: 34396416 PMCID: PMC9016594 DOI: 10.1093/sysbio/syab068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Mountain systems harbor a substantial fraction of global biodiversity and, thus, provide excellent opportunities to study rapid diversification and to understand the historical processes underlying the assembly of biodiversity hotspots. The rich biodiversity in mountains is widely regarded as having arisen under the influence of geological and climatic processes as well as the complex interactions among them. However, the relative contribution of geology and climate in driving species radiation is seldom explored. Here, we studied the evolutionary radiation of Oreocharis (Gesneriaceae), which has diversified extensively throughout East Asia, especially within the Hengduan Mountains (HDM), using transcriptomic data and a time calibrated phylogeny for 88% (111/126) of all species of the genus. In particular, we applied phylogenetic reconstructions to evaluate the extent of incomplete lineage sorting accompanying the early and rapid radiation in the genus. We then fit macroevolutionary models to explore its spatial and diversification dynamics in Oreocharis and applied explicit birth–death models to investigate the effects of past environmental changes on its diversification. Evidence from 574 orthologous loci suggest that Oreocharis underwent an impressive early burst of speciation starting ca. 12 Ma in the Miocene, followed by a drastic decline in speciation toward the present. Although we found no evidence for a shift in diversification rate across the phylogeny of Oreocharis, we showed a difference in diversification dynamics between the HDM and non-HDM lineages, with higher diversification rates in the HDM. The diversification dynamic of Oreocharis is most likely positively associated with temperature-dependent speciation and dependency on the Asian monsoons. We suggest that the warm and humid climate of the mid-Miocene was probably the primary driver of the rapid diversification in Oreocharis, while mountain building of the HDM might have indirectly affected species diversification of the HDM lineage. This study highlights the importance of past climatic changes, combined with mountain building, in creating strong environmental heterogeneity and driving diversification of mountain plants, and suggests that the biodiversity in the HDM cannot directly be attributed to mountain uplift, contrary to many recent speculations.[East Asian monsoons; environmental heterogeneity; Hengduan Mountains; incomplete lineage sorting; Oreocharis; past climate change; rapid diversification; transcriptome.]
Collapse
Affiliation(s)
- Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - Fang Wen
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, 541006 Guilin, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650 Guangzhou, China
| |
Collapse
|
17
|
Rhodes JA, Baños H, Mitchell JD, Allman ES. MSCquartets 1.0: quartet methods for species trees and networks under the multispecies coalescent model in R. Bioinformatics 2021; 37:1766-1768. [PMID: 33031510 DOI: 10.1093/bioinformatics/btaa868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
SUMMARY MSCquartets is an R package for species tree hypothesis testing, inference of species trees and inference of species networks under the Multispecies Coalescent model of incomplete lineage sorting and its network analog. Input for these analyses are collections of metric or topological locus trees which are then summarized by the quartets displayed on them. Results of hypothesis tests at user-supplied levels are displayed in a simplex plot by color-coded points. The package implements the QDC and WQDC algorithms for topological and metric species tree inference, and the NANUQ algorithm for level-1 topological species network inference, all of which give statistically consistent estimators under the model. AVAILABILITY AND IMPLEMENTATION MSCquartets is available through the Comprehensive R Archive Network: https://CRAN.R-project.org/package=MSCquartets.
Collapse
Affiliation(s)
- John A Rhodes
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA
| | - Hector Baños
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
| | - Jonathan D Mitchell
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA.,Unité Bioinformatique Evolutive, C3BI USR 3756, Institut Pasteur & CNRS, Paris, France
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA
| |
Collapse
|
18
|
Rhodes JA, Baños H, Mitchell JD, Allman ES. MSCquartets 1.0: quartet methods for species trees and networks under the multispecies coalescent model in R. BIOINFORMATICS (OXFORD, ENGLAND) 2021; 37:1766-1768. [PMID: 33031510 DOI: 10.1101/2020.05.01.073361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 05/26/2023]
Abstract
SUMMARY MSCquartets is an R package for species tree hypothesis testing, inference of species trees and inference of species networks under the Multispecies Coalescent model of incomplete lineage sorting and its network analog. Input for these analyses are collections of metric or topological locus trees which are then summarized by the quartets displayed on them. Results of hypothesis tests at user-supplied levels are displayed in a simplex plot by color-coded points. The package implements the QDC and WQDC algorithms for topological and metric species tree inference, and the NANUQ algorithm for level-1 topological species network inference, all of which give statistically consistent estimators under the model. AVAILABILITY AND IMPLEMENTATION MSCquartets is available through the Comprehensive R Archive Network: https://CRAN.R-project.org/package=MSCquartets.
Collapse
Affiliation(s)
- John A Rhodes
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA
| | - Hector Baños
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
| | - Jonathan D Mitchell
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA
- Unité Bioinformatique Evolutive, C3BI USR 3756, Institut Pasteur & CNRS, Paris, France
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA
| |
Collapse
|