1
|
Ji J, Roberts T, Flouri T, Yang Z. Inference of Cross-Species Gene Flow Using Genomic Data Depends on the Methods: Case Study of Gene Flow in Drosophila. Syst Biol 2025:syaf019. [PMID: 40421982 DOI: 10.1093/sysbio/syaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/25/2024] [Accepted: 03/11/2025] [Indexed: 05/28/2025] Open
Abstract
Analysis of genomic data in the past two decades has highlighted the prevalence of introgression as an important evolutionary force in both plants and animals. The genus Drosophila has received much attention recently, with an analysis of genomic sequence data revealing widespread introgression across the species phylogeny for the genus. However, the methods used in the study are based on data summaries for species triplets and are unable to infer gene flow between sister lineages or to identify the direction of gene flow. Hence, we reanalyze a subset of the data using the Bayesian program bpp, which is a full-likelihood implementation of the multispecies coalescent model and can provide more powerful inference of gene flow between species, including its direction, timing, and strength. While our analysis supports the presence of gene flow in the species group, the results differ from the previous study: we infer gene flow between sister lineages undetected previously whereas most gene-flow events inferred in the previous study are rejected in our tests. To verify our conclusions, we performed simulations to examine the properties of Bayesian and summary methods. Bpp was found to have high power to detect gene flow, high accuracy in estimated rates of gene flow, and robustness under misspecification of the mode of gene flow. In contrast, summary methods had low power and produced biased estimates of introgression probability. Our results highlight an urgent need for improving the statistical properties of summary methods and the computational efficiency of likelihood methods for inferring gene flow using genomic sequence data.
Collapse
Affiliation(s)
- Jiayi Ji
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas Roberts
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
2
|
Read WJ, Laver RJ, Lau CC, Moritz C, Zozaya SM. Repeated Mitochondrial Capture With Limited Genomic Introgression in a Lizard Group. Mol Ecol 2025; 34:e17766. [PMID: 40241380 PMCID: PMC12051731 DOI: 10.1111/mec.17766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Mitochondrial introgression is common among animals and is often first identified through mitonuclear discordance-discrepancies between evolutionary relationships inferred from mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA). Over recent decades, genomic data have also revealed extensive nuclear introgression in many animal groups, with implications for genetic and phenotypic diversity. However, the extent to which mtDNA introgression corresponds to nuDNA introgression varies. Here, we investigated historical and recent introgression in the Gehyra nana-occidentalis clade, a complex group of Australian geckos with documented cases of mitonuclear discordance suggestive of repeated mtDNA introgression. We hypothesised that mitonuclear discordance in this clade reflects mtDNA introgression with substantial nuclear introgression. Despite evidence of repeated mtDNA introgression, however, we found little to no evidence of historical nuDNA introgression using exon capture and genome-wide single nucleotide polymorphism (SNP) data. We also found no evidence of gene flow at modern contact zones and detected only a single early generation hybrid. Unsurprisingly, given these results, we found no evidence of transgressive, intermediate, or more variable morphological phenotypes in taxa with introgressed mtDNA. These findings suggest that hybridisation in this system has, at least in some cases, resulted in repeated mitochondrial introgression with little or no nuclear introgression. This pattern aligns with other studies showing limited nuDNA introgression in taxa with mitonuclear discordance, highlighting a potentially broader trend in animal radiations.
Collapse
Affiliation(s)
- Wesley J. Read
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Rebecca J. Laver
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- The University of the Sunshine Coast, Moreton Bay CampusPetrieQueenslandAustralia
| | - Ching Ching Lau
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Stephen M. Zozaya
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| |
Collapse
|
3
|
Kornai D, Jiao X, Ji J, Flouri T, Yang Z. Hierarchical Heuristic Species Delimitation Under the Multispecies Coalescent Model with Migration. Syst Biol 2024; 73:1015-1037. [PMID: 39180155 PMCID: PMC11637770 DOI: 10.1093/sysbio/syae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024] Open
Abstract
The multispecies coalescent (MSC) model accommodates genealogical fluctuations across the genome and provides a natural framework for comparative analysis of genomic sequence data from closely related species to infer the history of species divergence and gene flow. Given a set of populations, hypotheses of species delimitation (and species phylogeny) may be formulated as instances of MSC models (e.g., MSC for 1 species versus MSC for 2 species) and compared using Bayesian model selection. This approach, implemented in the program bpp, has been found to be prone to over-splitting. Alternatively, heuristic criteria based on population parameters (such as population split times, population sizes, and migration rates) estimated from genomic data may be used to delimit species. Here, we develop hierarchical merge and split algorithms for heuristic species delimitation based on the genealogical divergence index (gdi) and implement them in a Python pipeline called hhsd. We characterize the behavior of the gdi under a few simple scenarios of gene flow. We apply the new approaches to a dataset simulated under a model of isolation by distance as well as 3 empirical datasets. Our tests suggest that the new approaches produced sensible results and were less prone to oversplitting. We discuss possible strategies for accommodating paraphyletic species in the hierarchical algorithm, as well as the challenges of species delimitation based on heuristic criteria.
Collapse
Affiliation(s)
- Daniel Kornai
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Xiyun Jiao
- Department of Statistics and Data Science, China Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Ji
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Myers EA, Rautsaw RM, Borja M, Jones J, Grünwald CI, Holding ML, Grazziotin FG, Parkinson CL. Phylogenomic Discordance is Driven by Wide-Spread Introgression and Incomplete Lineage Sorting During Rapid Species Diversification Within Rattlesnakes (Viperidae: Crotalus and Sistrurus). Syst Biol 2024; 73:722-741. [PMID: 38695290 PMCID: PMC11906154 DOI: 10.1093/sysbio/syae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 08/11/2024] Open
Abstract
-Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here, we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like those seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - Jason Jones
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
| | - Christoph I Grünwald
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
- Biodiversa A.C., Avenida de la Ribera #203, C.P. 45900, Chapala, Jalisco, Mexico
| | - Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | | |
Collapse
|
5
|
Šumbera R, Uhrová M, Montoya-Sanhueza G, Bryjová A, Bennett NC, Mikula O. Genetic diversity of the largest African mole-rat genus, Bathyergus. One, two or four species? Mol Phylogenet Evol 2024; 199:108157. [PMID: 39029550 DOI: 10.1016/j.ympev.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Recent advances in sequencing technology and phylogenetic methods allow us to solve puzzling taxonomic questions using detailed analyses of genetic diversity of populations and gene flow between them. The genus of solitary-living dune mole-rat, Bathyergus, is quite unique among six genera of African mole-rats. The animals are by far the largest and the only scratch digging mole-rat genus possessing a skull less adapted to digging, grooved upper incisors, and more surface locomotor activity. Most authors recognize two species of dune mole-rats, B. suillus and B. janetta, but according to others, the genus is monotypic. In addition, recent molecular studies have revealed cryptic genetic diversity and suggested the existence of up to four species. In our study, we used mitochondrial and genome-wide nuclear data collected throughout the distribution of the genus to investigate the number of species. In agreement with previous studies, we found Bathyergus to be differentiated into several distinct lineages, but we also found evidence for a degree of gene flow between some of them. Furthermore, we confirmed that B. janetta is nested within B. suillus, making the latter paraphyletic and we documented an instance of local mitochondrial introgression between these two nominal species. Phylogeographic structure of the genus was found to be very shallow. Although traditionally dated to the Miocene, we found the first split within the genus to be much younger estimated to 0.82 Ma before present. Genealogical distinctiveness of some lineages was very low, and the coancestry matrix showed extensive sharing of closely related haplotypes throughout the genus. Accordingly, Infomap clustering on the matrix showed all populations to form a single cluster. Overall, our study tends to support the existence of only one species of Bathyergus namely, B. suillus. Environmental niche modelling confirmed its dependence on sandy soils and the preference for soils with relatively high carbon content. Bayesian skyline plots indicate recent population decline in the janetta lineage, probably related to global environmental change.
Collapse
Affiliation(s)
- R Šumbera
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic.
| | - M Uhrová
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic
| | - G Montoya-Sanhueza
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile (UACh), Valdivia, Chile
| | - A Bryjová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - O Mikula
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Potter S, Moritz C, Piggott MP, Bragg JG, Afonso Silva AC, Bi K, McDonald-Spicer C, Turakulov R, Eldridge MDB. Museum Skins Enable Identification of Introgression Associated with Cytonuclear Discordance. Syst Biol 2024; 73:579-593. [PMID: 38577768 PMCID: PMC11377193 DOI: 10.1093/sysbio/syae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
Increased sampling of genomes and populations across closely related species has revealed that levels of genetic exchange during and after speciation are higher than previously thought. One obvious manifestation of such exchange is strong cytonuclear discordance, where the divergence in mitochondrial DNA (mtDNA) differs from that for nuclear genes more (or less) than expected from differences between mtDNA and nuclear DNA (nDNA) in population size and mutation rate. Given genome-scale data sets and coalescent modeling, we can now confidently identify cases of strong discordance and test specifically for historical or recent introgression as the cause. Using population sampling, combining exon capture data from historical museum specimens and recently collected tissues we showcase how genomic tools can resolve complex evolutionary histories in the brachyotis group of rock-wallabies (Petrogale). In particular, applying population and phylogenomic approaches we can assess the role of demographic processes in driving complex evolutionary patterns and assess a role of ancient introgression and hybridization. We find that described species are well supported as monophyletic taxa for nDNA genes, but not for mtDNA, with cytonuclear discordance involving at least 4 operational taxonomic units across 4 species which diverged 183-278 kya. ABC modeling of nDNA gene trees supports introgression during or after speciation for some taxon pairs with cytonuclear discordance. Given substantial differences in body size between the species involved, this evidence for gene flow is surprising. Heterogenous patterns of introgression were identified but do not appear to be associated with chromosome differences between species. These and previous results suggest that dynamic past climates across the monsoonal tropics could have promoted reticulation among related species.
Collapse
Affiliation(s)
- Sally Potter
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Macquarie Park, NSW 2109, Australia
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
| | - Maxine P Piggott
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT 0811, Australia
| | - Jason G Bragg
- National Herbarium of New South Wales, The Royal Botanical Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia
| | | | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Christiana McDonald-Spicer
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
| | - Rustamzhon Turakulov
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Earth Sciences, College of Science and Engineering, Flinders University GPO Box 2100, Adelaide, SA 5001, Australia
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia
| |
Collapse
|
7
|
Pavón-Vázquez CJ, Rana Q, Farleigh K, Crispo E, Zeng M, Liliah J, Mulcahy D, Ascanio A, Jezkova T, Leaché AD, Flouri T, Yang Z, Blair C. Gene Flow and Isolation in the Arid Nearctic Revealed by Genomic Analyses of Desert Spiny Lizards. Syst Biol 2024; 73:323-342. [PMID: 38190300 DOI: 10.1093/sysbio/syae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Colonia Los Reyes Ixtacala, Tlalnepantla, Estado de México, C.P. 54090, México
| | - Qaantah Rana
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Keaka Farleigh
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Erika Crispo
- Department of Biology, Pace University, One Pace Plaza, New York, NY 10038, USA
| | - Mimi Zeng
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Jeevanie Liliah
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Daniel Mulcahy
- Collection Future, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin 10115, Germany
| | - Alfredo Ascanio
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Tomas Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
8
|
Pang XX, Zhang DY. Detection of Ghost Introgression Requires Exploiting Topological and Branch Length Information. Syst Biol 2024; 73:207-222. [PMID: 38224495 PMCID: PMC11129598 DOI: 10.1093/sysbio/syad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
In recent years, the study of hybridization and introgression has made significant progress, with ghost introgression-the transfer of genetic material from extinct or unsampled lineages to extant species-emerging as a key area for research. Accurately identifying ghost introgression, however, presents a challenge. To address this issue, we focused on simple cases involving 3 species with a known phylogenetic tree. Using mathematical analyses and simulations, we evaluated the performance of popular phylogenetic methods, including HyDe and PhyloNet/MPL, and the full-likelihood method, Bayesian Phylogenetics and Phylogeography (BPP), in detecting ghost introgression. Our findings suggest that heuristic approaches relying on site-pattern counts or gene-tree topologies struggle to differentiate ghost introgression from introgression between sampled non-sister species, frequently leading to incorrect identification of donor and recipient species. The full-likelihood method BPP uses multilocus sequence alignments directly-hence taking into account both gene-tree topologies and branch lengths, by contrast, is capable of detecting ghost introgression in phylogenomic datasets. We analyzed a real-world phylogenomic dataset of 14 species of Jaltomata (Solanaceae) to showcase the potential of full-likelihood methods for accurate inference of introgression.
Collapse
Affiliation(s)
- Xiao-Xu Pang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Da-Yong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Bedoya AM. Botany and geogenomics: Constraining geological hypotheses in the neotropics with large-scale genetic data derived from plants. AMERICAN JOURNAL OF BOTANY 2024; 111:e16306. [PMID: 38557829 DOI: 10.1002/ajb2.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 04/04/2024]
Abstract
Decades of empirical research have revealed how the geological history of our planet shaped plant evolution by establishing well-known patterns (e.g., how mountain uplift resulted in high rates of diversification and replicate radiations in montane plant taxa). This follows a traditional approach where botanical data are interpreted in light of geological events. In this synthesis, I instead describe how by integrating natural history, phylogenetics, and population genetics, botanical research can be applied alongside geology and paleontology to inform our understanding of past geological and climatic processes. This conceptual shift aligns with the goals of the emerging field of geogenomics. In the neotropics, plant geogenomics is a powerful tool for the reciprocal exploration of two long standing questions in biology and geology: how the dynamic landscape of the region came to be and how it shaped the evolution of the richest flora. Current challenges that are specific to analytical approaches for plant geogenomics are discussed. I describe the scale at which various geological questions can be addressed from biological data and what makes some groups of plants excellent model systems for geogenomics research. Although plant geogenomics is discussed with reference to the neotropics, the recommendations given here for approaches to plant geogenomics can and should be expanded to exploring long-standing questions on how the earth evolved with the use of plant DNA.
Collapse
Affiliation(s)
- Ana M Bedoya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803, LA, USA
| |
Collapse
|
10
|
Sánchez KI, Recknagel H, Elmer KR, Avila LJ, Morando M. Tracing evolutionary trajectories in the presence of gene flow in South American temperate lizards (Squamata: Liolaemus kingii group). Evolution 2024; 78:716-733. [PMID: 38262697 DOI: 10.1093/evolut/qpae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.
Collapse
Affiliation(s)
- Kevin I Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
- Departamento de Biología y Ambiente, Universidad Nacional de la Patagonia San Juan Bosco, Sede Puerto Madryn, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
11
|
Frankel LE, Ané C. Summary Tests of Introgression Are Highly Sensitive to Rate Variation Across Lineages. Syst Biol 2023; 72:1357-1369. [PMID: 37698548 DOI: 10.1093/sysbio/syad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
The evolutionary implications and frequency of hybridization and introgression are increasingly being recognized across the tree of life. To detect hybridization from multi-locus and genome-wide sequence data, a popular class of methods are based on summary statistics from subsets of 3 or 4 taxa. However, these methods often carry the assumption of a constant substitution rate across lineages and genes, which is commonly violated in many groups. In this work, we quantify the effects of rate variation on the D test (also known as ABBA-BABA test), the D3 test, and HyDe. All 3 tests are used widely across a range of taxonomic groups, in part because they are very fast to compute. We consider rate variation across species lineages, across genes, their lineage-by-gene interaction, and rate variation across gene-tree edges. We simulated species networks according to a birth-death-hybridization process, so as to capture a range of realistic species phylogenies. For all 3 methods tested, we found a marked increase in the false discovery of reticulation (type-1 error rate) when there is rate variation across species lineages. The D3 test was the most sensitive, with around 80% type-1 error, such that D3 appears to more sensitive to a departure from the clock than to the presence of reticulation. For all 3 tests, the power to detect hybridization events decreased as the number of hybridization events increased, indicating that multiple hybridization events can obscure one another if they occur within a small subset of taxa. Our study highlights the need to consider rate variation when using site-based summary statistics, and points to the advantages of methods that do not require assumptions on evolutionary rates across lineages or across genes.
Collapse
Affiliation(s)
- Lauren E Frankel
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Sanderson BJ, Gambhir D, Feng G, Hu N, Cronk QC, Percy DM, Freaner FM, Johnson MG, Smart LB, Keefover-Ring K, Yin T, Ma T, DiFazio SP, Liu J, Olson MS. Phylogenomics reveals patterns of ancient hybridization and differential diversification that contribute to phylogenetic conflict in willows, poplars, and close relatives. Syst Biol 2023; 72:1220-1232. [PMID: 37449764 DOI: 10.1093/sysbio/syad042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a "spectacular failure" due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix-Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera.
Collapse
Affiliation(s)
- Brian J Sanderson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
- Department of Biology, West Virginia University, Morgantown, WV 26506,USA
| | - Diksha Gambhir
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Guanqiao Feng
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Nan Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Quentin C Cronk
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York 14456, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506,USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
13
|
Flouri T, Jiao X, Huang J, Rannala B, Yang Z. Efficient Bayesian inference under the multispecies coalescent with migration. Proc Natl Acad Sci U S A 2023; 120:e2310708120. [PMID: 37871206 PMCID: PMC10622872 DOI: 10.1073/pnas.2310708120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 10/25/2023] Open
Abstract
Analyses of genome sequence data have revealed pervasive interspecific gene flow and enriched our understanding of the role of gene flow in speciation and adaptation. Inference of gene flow using genomic data requires powerful statistical methods. Yet current likelihood-based methods involve heavy computation and are feasible for small datasets only. Here, we implement the multispecies-coalescent-with-migration model in the Bayesian program bpp, which can be used to test for gene flow and estimate migration rates, as well as species divergence times and population sizes. We develop Markov chain Monte Carlo algorithms for efficient sampling from the posterior, enabling the analysis of genome-scale datasets with thousands of loci. Implementation of both introgression and migration models in the same program allows us to test whether gene flow occurred continuously over time or in pulses. Analyses of genomic data from Anopheles mosquitoes demonstrate rich information in typical genomic datasets about the mode and rate of gene flow.
Collapse
Affiliation(s)
- Tomáš Flouri
- Department of Genetics, Evolution, and Environment, University College London, LondonWC1E 6BT, United Kingdom
| | - Xiyun Jiao
- Department of Statistics and Data Science, China Southern University of Science and Technology, Shenzhen518055, China
| | - Jun Huang
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing100069, China
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Tiley GP, Flouri T, Jiao X, Poelstra JW, Xu B, Zhu T, Rannala B, Yoder AD, Yang Z. Estimation of species divergence times in presence of cross-species gene flow. Syst Biol 2023; 72:820-836. [PMID: 36961245 PMCID: PMC10405360 DOI: 10.1093/sysbio/syad015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
Cross-species introgression can have significant impacts on phylogenomic reconstruction of species divergence events. Here, we used simulations to show how the presence of even a small amount of introgression can bias divergence time estimates when gene flow is ignored in the analysis. Using advances in analytical methods under the multispecies coalescent (MSC) model, we demonstrate that by accounting for incomplete lineage sorting and introgression using large phylogenomic data sets this problem can be avoided. The multispecies-coalescent-with-introgression (MSci) model is capable of accurately estimating both divergence times and ancestral effective population sizes, even when only a single diploid individual per species is sampled. We characterize some general expectations for biases in divergence time estimation under three different scenarios: 1) introgression between sister species, 2) introgression between non-sister species, and 3) introgression from an unsampled (i.e., ghost) outgroup lineage. We also conducted simulations under the isolation-with-migration (IM) model and found that the MSci model assuming episodic gene flow was able to accurately estimate species divergence times despite high levels of continuous gene flow. We estimated divergence times under the MSC and MSci models from two published empirical datasets with previous evidence of introgression, one of 372 target-enrichment loci from baobabs (Adansonia), and another of 1000 transcriptome loci from 14 species of the tomato relative, Jaltomata. The empirical analyses not only confirm our findings from simulations, demonstrating that the MSci model can reliably estimate divergence times but also show that divergence time estimation under the MSC can be robust to the presence of small amounts of introgression in empirical datasets with extensive taxon sampling. [divergence time; gene flow; hybridization; introgression; MSci model; multispecies coalescent].
Collapse
Affiliation(s)
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Statistics and Data Science, China Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Bo Xu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianqi Zhu
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
- Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
15
|
Thawornwattana Y, Huang J, Flouri T, Mallet J, Yang Z. Inferring the Direction of Introgression Using Genomic Sequence Data. Mol Biol Evol 2023; 40:msad178. [PMID: 37552932 PMCID: PMC10439365 DOI: 10.1093/molbev/msad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Genomic data are informative about the history of species divergence and interspecific gene flow, including the direction, timing, and strength of gene flow. However, gene flow in opposite directions generates similar patterns in multilocus sequence data, such as reduced sequence divergence between the hybridizing species. As a result, inference of the direction of gene flow is challenging. Here, we investigate the information about the direction of gene flow present in genomic sequence data using likelihood-based methods under the multispecies-coalescent-with-introgression model. We analyze the case of two species, and use simulation to examine cases with three or four species. We find that it is easier to infer gene flow from a small population to a large one than in the opposite direction, and easier to infer inflow (gene flow from outgroup species to an ingroup species) than outflow (gene flow from an ingroup species to an outgroup species). It is also easier to infer gene flow if there is a longer time of separate evolution between the initial divergence and subsequent introgression. When introgression is assumed to occur in the wrong direction, the time of introgression tends to be correctly estimated and the Bayesian test of gene flow is often significant, while estimates of introgression probability can be even greater than the true probability. We analyze genomic sequences from Heliconius butterflies to demonstrate that typical genomic datasets are informative about the direction of interspecific gene flow, as well as its timing and strength.
Collapse
Affiliation(s)
| | - Jun Huang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|