1
|
Hoscheit P, Desbiez C. Phylodynamics and phylogeography of watermelon mosaic virus: Multiple local invasion routes in southern France and recombination-driven limits to global analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105732. [PMID: 40020892 DOI: 10.1016/j.meegid.2025.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Watermelon mosaic virus (WMV) is a major plant pathogen, infecting over 170 plant species, including cucurbits and legumes. Though mostly propagated locally by aphids in a non-persistent manner, long-range dispersal can occur through human-induced plant or vector movements. Understanding patterns of local and global spread of WMV is crucial to help formulate adequate control strategies. We used phylodynamic methods based on partial and whole-genome sequences collected in France between 2000 and 2017 to reconstruct the introduction of new lineages in the past 30 years and their subsequent diffusion in the country. We identified at least 11 different introduction events, hailing from different parts of the global diversity of WMV, highlighting the critical role international exchanges play in the spread of plant pathogens. For three of these lineages, we estimated the time and location of their introduction in the mid-1990s in the south of France and the speed at which they spread in this specific landscape. We also showed that the highly recombinogenic nature of WMV, as with most potyviruses, makes the use of whole genomes necessary to classify these viruses on a global scale and must be taken into consideration to reconstruct viral evolutionary history. Our results demonstrate how genomic sequencing of plant viruses can help reconstruct specific viral outbreaks and understand global circulation patterns of plant pathogens.
Collapse
Affiliation(s)
- Patrick Hoscheit
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France.
| | | |
Collapse
|
2
|
Bisschop G, Kelleher J, Ralph P. Likelihoods for a general class of ARGs under the SMC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639977. [PMID: 40060524 PMCID: PMC11888268 DOI: 10.1101/2025.02.24.639977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ancestral recombination graphs (ARGs) are the focus of much ongoing research interest. Recent progress in inference has made ARG-based approaches feasible across of range of applications, and many new methods using inferred ARGs as input have appeared. This progress on the long-standing problem of ARG inference has proceeded in two distinct directions. First, the Bayesian inference of ARGs under the Sequentially Markov Coalescent (SMC), is now practical for tens-to-hundreds of samples. Second, approximate models and heuristics can now scale to sample sizes two to three orders of magnitude larger. Although these heuristic methods are reasonably accurate under many metrics, one significant drawback is that the ARGs they estimate do not have the topological properties required to compute a likelihood under models such as the SMC under present-day formulations. In particular, heuristic inference methods typically do not estimate precise details about recombination events, which are currently required to compute a likelihood. In this paper we present a backwards-time formulation of the SMC and derive a straightforward definition of the likelihood of a general class of ARG under this model. We show that this formulation does not require precise details of recombination events to be estimated, and is robust to the presence of polytomies. We discuss the possibilities for inference that this opens.
Collapse
|
3
|
Wong Y, Ignatieva A, Koskela J, Gorjanc G, Wohns AW, Kelleher J. A general and efficient representation of ancestral recombination graphs. Genetics 2024; 228:iyae100. [PMID: 39013109 PMCID: PMC11373519 DOI: 10.1093/genetics/iyae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
As a result of recombination, adjacent nucleotides can have different paths of genetic inheritance and therefore the genealogical trees for a sample of DNA sequences vary along the genome. The structure capturing the details of these intricately interwoven paths of inheritance is referred to as an ancestral recombination graph (ARG). Classical formalisms have focused on mapping coalescence and recombination events to the nodes in an ARG. However, this approach is out of step with some modern developments, which do not represent genetic inheritance in terms of these events or explicitly infer them. We present a simple formalism that defines an ARG in terms of specific genomes and their intervals of genetic inheritance, and show how it generalizes these classical treatments and encompasses the outputs of recent methods. We discuss nuances arising from this more general structure, and argue that it forms an appropriate basis for a software standard in this rapidly growing field.
Collapse
Affiliation(s)
- Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Anastasia Ignatieva
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8TA, UK
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Jere Koskela
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle NE1 7RU, UK
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Anthony W Wohns
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
4
|
Lewanski AL, Grundler MC, Bradburd GS. The era of the ARG: An introduction to ancestral recombination graphs and their significance in empirical evolutionary genomics. PLoS Genet 2024; 20:e1011110. [PMID: 38236805 PMCID: PMC10796009 DOI: 10.1371/journal.pgen.1011110] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
In the presence of recombination, the evolutionary relationships between a set of sampled genomes cannot be described by a single genealogical tree. Instead, the genomes are related by a complex, interwoven collection of genealogies formalized in a structure called an ancestral recombination graph (ARG). An ARG extensively encodes the ancestry of the genome(s) and thus is replete with valuable information for addressing diverse questions in evolutionary biology. Despite its potential utility, technological and methodological limitations, along with a lack of approachable literature, have severely restricted awareness and application of ARGs in evolution research. Excitingly, recent progress in ARG reconstruction and simulation have made ARG-based approaches feasible for many questions and systems. In this review, we provide an accessible introduction and exploration of ARGs, survey recent methodological breakthroughs, and describe the potential for ARGs to further existing goals and open avenues of inquiry that were previously inaccessible in evolutionary genomics. Through this discussion, we aim to more widely disseminate the promise of ARGs in evolutionary genomics and encourage the broader development and adoption of ARG-based inference.
Collapse
Affiliation(s)
- Alexander L. Lewanski
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States of America
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael C. Grundler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gideon S. Bradburd
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Lewanski AL, Grundler MC, Bradburd GS. The era of the ARG: an empiricist's guide to ancestral recombination graphs. ARXIV 2023:arXiv:2310.12070v1. [PMID: 37904740 PMCID: PMC10614969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
In the presence of recombination, the evolutionary relationships between a set of sampled genomes cannot be described by a single genealogical tree. Instead, the genomes are related by a complex, interwoven collection of genealogies formalized in a structure called an ancestral recombination graph (ARG). An ARG extensively encodes the ancestry of the genome(s) and thus is replete with valuable information for addressing diverse questions in evolutionary biology. Despite its potential utility, technological and methodological limitations, along with a lack of approachable literature, have severely restricted awareness and application of ARGs in empirical evolution research. Excitingly, recent progress in ARG reconstruction and simulation have made ARG-based approaches feasible for many questions and systems. In this review, we provide an accessible introduction and exploration of ARGs, survey recent methodological breakthroughs, and describe the potential for ARGs to further existing goals and open avenues of inquiry that were previously inaccessible in evolutionary genomics. Through this discussion, we aim to more widely disseminate the promise of ARGs in evolutionary genomics and encourage the broader development and adoption of ARG-based inference.
Collapse
Affiliation(s)
- Alexander L Lewanski
- Department of Integrative Biology, Michigan State University, East Lansing, MI, US
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, US
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, US
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, US
| | - Michael C Grundler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, US
| | - Gideon S Bradburd
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, US
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, US
| |
Collapse
|