1
|
Liang H, Mower JP, Chia CP. Functional Prokaryotic-Like Deoxycytidine Triphosphate Deaminases and Thymidylate Synthase in Eukaryotic Social Amoebae: Vertical, Endosymbiotic, or Horizontal Gene Transfer? Mol Biol Evol 2023; 40:msad268. [PMID: 38064674 PMCID: PMC10733785 DOI: 10.1093/molbev/msad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023] Open
Abstract
The de novo synthesis of deoxythymidine triphosphate uses several pathways: gram-negative bacteria use deoxycytidine triphosphate deaminase to convert deoxycytidine triphosphate into deoxyuridine triphosphate, whereas eukaryotes and gram-positive bacteria instead use deoxycytidine monophosphate deaminase to transform deoxycytidine monophosphate to deoxyuridine monophosphate. It is then unusual that in addition to deoxycytidine monophosphate deaminases, the eukaryote Dictyostelium discoideum has 2 deoxycytidine triphosphate deaminases (Dcd1Dicty and Dcd2Dicty). Expression of either DcdDicty can fully rescue the slow growth of an Escherichia coli dcd knockout. Both DcdDicty mitigate the hydroxyurea sensitivity of a Schizosaccharomyces pombe deoxycytidine monophosphate deaminase knockout. Phylogenies show that Dcd1Dicty homologs may have entered the common ancestor of the eukaryotic groups of Amoebozoa, Obazoa, Metamonada, and Discoba through an ancient horizontal gene transfer from a prokaryote or an ancient endosymbiotic gene transfer from a mitochondrion, followed by horizontal gene transfer from Amoebozoa to several other unrelated groups of eukaryotes. In contrast, the Dcd2Dicty homologs were a separate horizontal gene transfer from a prokaryote or a virus into either Amoebozoa or Rhizaria, followed by a horizontal gene transfer between them. ThyXDicty, the D. discoideum thymidylate synthase, another enzyme of the deoxythymidine triphosphate biosynthesis pathway, was suggested previously to be acquired from the ancestral mitochondria or by horizontal gene transfer from alpha-proteobacteria. ThyXDicty can fully rescue the E. coli thymidylate synthase knockout, and we establish that it was obtained by the common ancestor of social amoebae not from mitochondria but from a bacterium. We propose horizontal gene transfer and endosymbiotic gene transfer contributed to the enzyme diversity of the deoxythymidine triphosphate synthesis pathway in most social amoebae, many Amoebozoa, and other eukaryotes.
Collapse
Affiliation(s)
- Heng Liang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Catherine P Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features. mSystems 2023; 8:e0118922. [PMID: 36794936 PMCID: PMC10134795 DOI: 10.1128/msystems.01189-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Autographiviridae is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. Here, we characterized Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range which likely uses lipopolysaccharide (LPS) as a phage receptor. Interestingly, infection dynamics of LUZ100 indicated moderate adsorption rates and low virulence, hinting at temperate characteristics. This hypothesis was supported by genomic analysis, which showed that LUZ100 shares the conventional T7-like genome organization yet carries key genes associated with a temperate lifestyle. To unravel the peculiar characteristics of LUZ100, ONT-cappable-seq transcriptomics analysis was performed. These data provided a bird's-eye view of the LUZ100 transcriptome and enabled the discovery of key regulatory elements, antisense RNA, and transcriptional unit structures. The transcriptional map of LUZ100 also allowed us to identify new RNA polymerase (RNAP)-promoter pairs that can form the basis for biotechnological parts and tools for new synthetic transcription regulation circuitry. The ONT-cappable-seq data revealed that the LUZ100 integrase and a MarR-like regulator (proposed to be involved in the lytic/lysogeny decision) are actively cotranscribed in an operon. In addition, the presence of a phage-specific promoter transcribing the phage-encoded RNA polymerase raises questions on the regulation of this polymerase and suggests that it is interwoven with the MarR-based regulation. This transcriptomics-driven characterization of LUZ100 supports recent evidence that T7-like phages should not automatically be assumed to have a strictly lytic life cycle. IMPORTANCE Bacteriophage T7, considered the "model phage" of the Autographiviridae family, is marked by a strictly lytic life cycle and conserved genome organization. Recently, novel phages within this clade have emerged which display characteristics associated with a temperate life cycle. Screening for temperate behavior is of utmost importance in fields like phage therapy, where strictly lytic phages are generally required for therapeutic applications. In this study, we applied an omics-driven approach to characterize the T7-like Pseudomonas aeruginosa phage LUZ100. These results led to the identification of actively transcribed lysogeny-associated genes in the phage genome, pointing out that temperate T7-like phages are emerging more frequent than initially thought. In short, the combination of genomics and transcriptomics allowed us to obtain a better understanding of the biology of nonmodel Autographiviridae phages, which can be used to optimize the implementation of phages and their regulatory elements in phage therapy and biotechnological applications, respectively.
Collapse
|
3
|
Bacterial origins of thymidylate metabolism in Asgard archaea and Eukarya. Nat Commun 2023; 14:838. [PMID: 36792581 PMCID: PMC9931769 DOI: 10.1038/s41467-023-36487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Asgard archaea include the closest known archaeal relatives of eukaryotes. Here, we investigate the evolution and function of Asgard thymidylate synthases and other folate-dependent enzymes required for the biosynthesis of DNA, RNA, amino acids and vitamins, as well as syntrophic amino acid utilization. Phylogenies of Asgard folate-dependent enzymes are consistent with their horizontal transmission from various bacterial groups. We experimentally validate the functionality of thymidylate synthase ThyX of the cultured 'Candidatus Prometheoarchaeum syntrophicum'. The enzyme efficiently uses bacterial-like folates and is inhibited by mycobacterial ThyX inhibitors, even though the majority of experimentally tested archaea are known to use carbon carriers distinct from bacterial folates. Our phylogenetic analyses suggest that the eukaryotic thymidylate synthase, required for de novo DNA synthesis, is not closely related to archaeal enzymes and might have been transferred from bacteria to protoeukaryotes during eukaryogenesis. Altogether, our study suggests that the capacity of eukaryotic cells to duplicate their genetic material is a sum of archaeal (replisome) and bacterial (thymidylate synthase) characteristics. We also propose that recent prevalent lateral gene transfer from bacteria has markedly shaped the metabolism of Asgard archaea.
Collapse
|
4
|
Ma R, Lai J, Chen X, Wang L, Yang Y, Wei S, Jiao N, Zhang R. A Novel Phage Infecting Alteromonas Represents a Distinct Group of Siphophages Infecting Diverse Aquatic Copiotrophs. mSphere 2021; 6:e0045421. [PMID: 34106770 PMCID: PMC8265664 DOI: 10.1128/msphere.00454-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages play critical roles in impacting microbial community succession both ecologically and evolutionarily. Although the majority of phage genetic diversity has been increasingly unveiled, phages infecting members of the ecologically important genus Alteromonas remain poorly understood. Here, we present a comprehensive analysis of a newly isolated alterophage, vB_AcoS-R7M (R7M), to characterize its life cycle traits, genomic features, and putative evolutionary origin. R7M harbors abundant genes identified as host-like auxiliary metabolic genes facilitating viral propagation. Genomic analysis suggested that R7M is distinct from currently known alterophages. Interestingly, R7M was found to share a set of similar characteristics with a number of siphophages infecting diverse aquatic opportunistic copiotrophs. We therefore proposed the creation of one new subfamily (Queuovirinae) to group with these evolutionarily related phages. Notably, tail genes were less likely to be shared among them, and baseplate-related genes varied the most. In-depth analyses indicated that R7M has replaced its distal tail with a Rhodobacter capsulatus gene transfer agent (RcGTA)-like baseplate and further acquired a putative receptor interaction site targeting Alteromonas. These findings suggest that horizontal exchanges of viral tail adsorption apparatuses are widespread and vital for phages to hunt new hosts and to adapt to new niches. IMPORTANCE The evolution and ecology of phages infecting members of Alteromonas, a marine opportunistic genus that is widely distributed and of great ecological significance, remain poorly understood. The present study integrates physiological and genomic evidence to characterize the properties and putative phage-host interactions of a newly isolated Alteromonas phage, vB_AcoS-R7M (R7M). A taxonomic study reveals close evolutionary relationships among R7M and a number of siphophages infecting various aquatic copiotrophs. Their similar head morphology and overall genetic framework suggest their putative common ancestry and the grouping of a new viral subfamily. However, their major difference lies in the viral tail adsorption apparatuses and the horizontal exchanges of which possibly account for variations in host specificity. These findings outline an evolutionary scenario for the emergence of diverse viral lineages of a shared genetic pool and give insights into the genetics and ecology of viral host jumps.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Jiayong Lai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yahui Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
5
|
Tariq MA, Newberry F, Haagmans R, Booth C, Wileman T, Hoyles L, Clokie MRJ, Ebdon J, Carding SR. Genome Characterization of a Novel Wastewater Bacteroides fragilis Bacteriophage (vB_BfrS_23) and its Host GB124. Front Microbiol 2020; 11:583378. [PMID: 33193224 PMCID: PMC7644841 DOI: 10.3389/fmicb.2020.583378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacteroides spp. are part of the human intestinal microbiota but can under some circumstances become clinical pathogens. Phages are a potentially valuable therapeutic treatment option for many pathogens, but phage therapy for pathogenic Bacteroides spp. including Bacteroides fragilis is currently limited to three genome-sequenced phages. Here we describe the isolation from sewage wastewater and genome of a lytic phage, vB_BfrS_23, that infects and kills B. fragilis strain GB124. Transmission electron microscopy identified this phage as a member of the Siphoviridae family. The phage is stable when held at temperatures of 4 and 60°C for 1 h. It has a very narrow host range, only infecting one host from a panel of B. fragilis strains (n = 8). Whole-genome sequence analyses of vB_BfrS_23 determined it is double-stranded DNA phage and is circularly permuted, with a genome of 48,011 bp. The genome encodes 73 putative open reading frames. We also sequenced the host bacterium, B. fragilis GB124 (5.1 Mb), which has two plasmids of 43,923 and 4,138 bp. Although this phage is host specific, its isolation together with the detailed characterization of the host B. fragilis GB124 featured in this study represent a useful starting point from which to facilitate the future development of highly specific therapeutic agents. Furthermore, the phage could be a novel tool in determining water (and water reuse) treatment efficacy, and for identifying human fecal transmission pathways within contaminated environmental waters and foodstuffs.
Collapse
Affiliation(s)
- Mohammad A. Tariq
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Fiona Newberry
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Rik Haagmans
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Catherine Booth
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Tom Wileman
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, Leicester University, Leicester, United Kingdom
| | - James Ebdon
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Brighton, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
7
|
Castelán-Sánchez HG, Lopéz-Rosas I, García-Suastegui WA, Peralta R, Dobson ADW, Batista-García RA, Dávila-Ramos S. Extremophile deep-sea viral communities from hydrothermal vents: Structural and functional analysis. Mar Genomics 2019; 46:16-28. [PMID: 30857856 DOI: 10.1016/j.margen.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxonomic structure of the viral communities present, as well as their potential metabolic functions. The type of natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hydrothermal vents was quite different in comparison with the viruses present in sediments, with specific populations being present in greater abundance in the plume samples when compared with the sediment samples. ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis, DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase. These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent communities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and evolve under purifying selection, and are thus maintained in their genome.
Collapse
Affiliation(s)
- Hugo G Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Itzel Lopéz-Rosas
- CONACyT Research fellow-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén - Edzná Km 17.5. Colonia Sihochac. Champotón, Campeche 24450, Mexico
| | - Wendy A García-Suastegui
- Laboratorio de Toxicología Molecular, Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P., 72570, Mexico
| | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Alan D W Dobson
- School of Microbiology, University College Cork. Cork, Ireland; Environmental Research Institute, University College, Cork, Ireland
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico.
| |
Collapse
|
8
|
Myllykallio H, Sournia P, Heliou A, Liebl U. Unique Features and Anti-microbial Targeting of Folate- and Flavin-Dependent Methyltransferases Required for Accurate Maintenance of Genetic Information. Front Microbiol 2018; 9:918. [PMID: 29867829 PMCID: PMC5954106 DOI: 10.3389/fmicb.2018.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Comparative genome analyses have led to the discovery and characterization of novel flavin- and folate-dependent methyltransferases that mainly function in DNA precursor synthesis and post-transcriptional RNA modification by forming (ribo) thymidylate and its derivatives. Here we discuss the recent literature on the novel mechanistic features of these enzymes sometimes referred to as “uracil methyltransferases,” albeit we prefer to refer to them as (ribo) thymidylate synthases. These enzyme families attest to the convergent evolution of nucleic acid methylation. Special focus is given to describing the unique characteristics of these flavin- and folate-dependent enzymes that have emerged as new models for studying the non-canonical roles of reduced flavin co-factors (FADH2) in relaying carbon atoms between enzyme substrates. This ancient enzymatic methylation mechanism with a very wide phylogenetic distribution may be more commonly used for biological methylation reactions than previously anticipated. This notion is exemplified by the recent discovery of additional substrates for these enzymes. Moreover, similar reaction mechanisms can be reversed by demethylases, which remove methyl groups e.g., from human histones. Future work is now required to address whether the use of different methyl donors facilitates the regulation of distinct methylation reactions in the cell. It will also be of great interest to address whether the low activity flavin-dependent thymidylate synthases ThyX represent ancestral enzymes that were eventually replaced by the more active thymidylate synthases of the ThyA family to facilitate the maintenance of larger genomes in fast-growing microbes. Moreover, we discuss the recent efforts from several laboratories to identify selective anti-microbial compounds that target flavin-dependent thymidylate synthase ThyX. Altogether we underline how the discovery of the alternative flavoproteins required for methylation of DNA and/or RNA nucleotides, in addition to providing novel targets for antibiotics, has provided new insight into microbial physiology and virulence.
Collapse
Affiliation(s)
- Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Alice Heliou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France.,Laboratoire d'Informatique de l'École Polytechnique, Ecole Polytechnique, Centre National de la Recherche Scientifique, Université Paris-Saclay, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
9
|
Stern A, Yeh MT, Zinger T, Smith M, Wright C, Ling G, Nielsen R, Macadam A, Andino R. The Evolutionary Pathway to Virulence of an RNA Virus. Cell 2017; 169:35-46.e19. [PMID: 28340348 DOI: 10.1016/j.cell.2017.03.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Paralytic polio once afflicted almost half a million children each year. The attenuated oral polio vaccine (OPV) has enabled world-wide vaccination efforts, which resulted in nearly complete control of the disease. However, poliovirus eradication is hampered globally by epidemics of vaccine-derived polio. Here, we describe a combined theoretical and experimental strategy that describes the molecular events leading from OPV to virulent strains. We discover that similar evolutionary events occur in most epidemics. The mutations and the evolutionary trajectories driving these epidemics are replicated using a simple cell-based experimental setup where the rate of evolution is intentionally accelerated. Furthermore, mutations accumulating during epidemics increase the replication fitness of the virus in cell culture and increase virulence in an animal model. Our study uncovers the evolutionary strategies by which vaccine strains become pathogenic and provides a powerful framework for rational design of safer vaccine strains and for forecasting virulence of viruses. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tal Zinger
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Matt Smith
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Wright
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guy Ling
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Rasmus Nielsen
- Department of Integrative Biology; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Macadam
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Flavin-Dependent Methylation of RNAs: Complex Chemistry for a Simple Modification. J Mol Biol 2016; 428:4867-4881. [PMID: 27825927 DOI: 10.1016/j.jmb.2016.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
RNA methylation is the most abundant and evolutionarily conserved chemical modification of bases or ribose in noncoding and coding RNAs. This rather simple modification has nevertheless major consequences on the function of maturated RNA molecules and ultimately on their cellular fates. The methyl group employed in the methylation is almost universally derived from S-adenosyl-L-methionine via a simple SN2 displacement reaction. However, in some rare cases, the carbon originates from N5,N10-methylenetetrahydrofolate (CH2=THF). Here, a methylene group is transferred first and requires a subsequent reduction step (2e-+H+) via the flavin adenine dinucleotide hydroquinone (FADH-) to form the final methylated derivative. This FAD/folate-dependent mode of chemical reaction, called reductive methylation, is thus far more complex than the usual simple S-adenosyl-L-methionine-dependent one. This reaction is catalyzed by flavoenzymes, now named TrmFO and RlmFO, which respectively modify transfer and ribosomal RNAs. In this review, we briefly recount how these new RNA methyltransferases were discovered and describe a novel aspect of the chemistry of flavins, wherein this versatile biological cofactor is not just a simple redox catalyst but is also a new methyl transfer agent acting via a critical CH2=(N5)FAD iminium intermediate. The enigmatic structural reorganization of these enzymes that needs to take place during catalysis in order to build their active center is also discussed. Finally, recent findings demonstrated that this flavin-dependent mechanism is also employed by enzymatic systems involved in DNA synthesis, suggesting that the use of this cofactor as a methylating agent of biomolecules could be far more usual than initially anticipated.
Collapse
|
11
|
Abstract
Inteins are self-splicing protein elements that are mobile at the DNA level and are sporadically distributed across microbial genomes. Inteins appear to be horizontally transferred, and it has been speculated that phages may play a role in intein distribution. Our attention turns to mycobacteriophages, which infect mycobacteria, where both phage and host harbor inteins. Using bioinformatics, mycobacteriophage genomes were mined for inteins. This study reveals that these mobile elements are present across multiple mycobacteriophage clusters and are pervasive in certain genes, like the large terminase subunit TerL and a RecB-like nuclease, with the majority of intein-containing genes being phage specific. Strikingly, despite this phage specificity, inteins localize to functional motifs shared with bacteria, such that intein-containing genes have similar roles, like hydrolase activity and nucleic acid binding, indicating a global commonality among intein-hosting proteins. Additionally, there are multiple insertion points within active centers, implying independent invasion events, with regulatory implications. Several phage inteins were shown to be splicing competent and to encode functional homing endonucleases, important for mobility. Further, bioinformatic analysis supports the potential for phages as facilitators of intein movement among mycobacteria and related genera. Analysis of catalytic intein residues finds the highly conserved penultimate histidine inconsistently maintained among mycobacteriophages. Biochemical characterization of a noncanonical phage intein shows that this residue influences precursor accumulation, suggesting that splicing has been tuned in phages to modulate generation of important proteins. Together, this work expands our understanding of phage-based intein dissemination and evolution and implies that phages provide a context for evolution of splicing-based regulation. Inteins are mobile protein splicing elements found in critical genes across all domains of life. Mycobacterial inteins are of particular interest because of their occurrence in pathogenic species, such as Mycobacterium tuberculosis and Mycobacterium leprae, which harbor inteins in important proteins. We have discovered a similarity in activities of intein-containing proteins among mycobacteriophages and their intein-rich actinobacterial hosts, with implications for both posttranslational regulation by inteins and phages participating in horizontal intein transfer. Our demonstration of multiple insertion points within active centers of phage proteins implies independent invasion events, indicating the importance of intein maintenance at specific functional sites. The variable conservation of a catalytic splicing residue, leading to profoundly altered splicing rates, points to the regulatory potential of inteins and to mycobacteriophages playing a role in intein evolution. Collectively, these results suggest inteins as posttranslational regulators and mycobacteriophages as both vehicles for intein distribution and incubators for intein evolution.
Collapse
|
12
|
Klopfstein S, Vilhelmsen L, Ronquist F. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology. Syst Biol 2015; 64:1089-103. [PMID: 26272507 PMCID: PMC4604834 DOI: 10.1093/sysbio/syv052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology.
Collapse
Affiliation(s)
- Seraina Klopfstein
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden; The University of Adelaide, ACEBB, Adelaide SA 5005, Australia; Natural History Museum, Department of Invertebrates, CH-3005 Bern, Switzerland;
| | - Lars Vilhelmsen
- Biosystematics, Natural History Museum of Denmark, DK-2100 Copenhagen Ø, Denmark
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| |
Collapse
|
13
|
Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria. PLoS Genet 2015; 11:e1005612. [PMID: 26484862 PMCID: PMC4618355 DOI: 10.1371/journal.pgen.1005612] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10–90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism. Horizontal gene transfer (HGT) is central to bacterial evolution. The outcome of an HGT event (fixation in a population, elimination, or separation as a subdominant clone) depends not only on the availability of a new gene but crucially on the fitness cost or benefit of the genomic incorporation of the foreign gene and its expression in recipient bacteria. Here we studied the fitness landscape for inter-species chromosomal replacement of an essential protein, dihydrofolate reductase (DHFR) encoded by the folA gene, by its orthologs from other mesophilic bacteria. We purified and biochemically characterized 33 out of 35 orthologous DHFRs and found that most of them are stable and more catalytically active than E. coli DHFR. However, the inter-species replacement of DHFR caused significant fitness loss for most transgenic strains due to low abundance of orthologous DHFRs in E. coli cytoplasm. Laboratory evolution resulted in an increase in orthologous DHFR abundance leading to a dramatic fitness improvement. Genomic and proteomic analyses of “naive” and evolved strains suggest a new function of protein homeostasis to discriminate between “self” and “non-self” proteins, thus creating fitness barriers to HGT.
Collapse
|
14
|
Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD, de Miranda JR, Neumann P. The Apis mellifera Filamentous Virus Genome. Viruses 2015; 7:3798-815. [PMID: 26184284 PMCID: PMC4517127 DOI: 10.3390/v7072798] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.
Collapse
Affiliation(s)
- Laurent Gauthier
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | | | - Ulrike Hartmann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - François Cousserans
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - Jay D Evans
- Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden.
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland.
| |
Collapse
|
15
|
The place of RNA in the origin and early evolution of the genetic machinery. Life (Basel) 2014; 4:1050-91. [PMID: 25532530 PMCID: PMC4284482 DOI: 10.3390/life4041050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.
Collapse
|
16
|
Jagielska E, Płucienniczak A, Dąbrowska M, Dowierciał A, Rode W. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence. Parasit Vectors 2014; 7:175. [PMID: 24716800 PMCID: PMC4022200 DOI: 10.1186/1756-3305-7-175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Methods Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Results Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Conclusions Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.
Collapse
Affiliation(s)
| | | | | | | | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
17
|
Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales. BMC Evol Biol 2012; 12:85. [PMID: 22694720 PMCID: PMC3436685 DOI: 10.1186/1471-2148-12-85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/27/2012] [Indexed: 02/01/2023] Open
Abstract
Background Horizontal gene transfer (HGT) has greatly impacted the genealogical history of many lineages, particularly for prokaryotes, with genes frequently moving in and out of a line of descent. Many genes that were acquired by a lineage in the past likely originated from ancestral relatives that have since gone extinct. During the course of evolution, HGT has played an essential role in the origin and dissemination of genetic and metabolic novelty. Results Three divergent forms of leucyl-tRNA synthetase (LeuRS) exist in the archaeal order Halobacteriales, commonly known as haloarchaea. Few haloarchaeal genomes have the typical archaeal form of this enzyme and phylogenetic analysis indicates it clusters within the Euryarchaeota as expected. The majority of sequenced halobacterial genomes possess a bacterial form of LeuRS. Phylogenetic reconstruction puts this larger group of haloarchaea at the base of the bacterial domain. The most parsimonious explanation is that an ancient transfer of LeuRS took place from an organism related to the ancestor of the bacterial domain to the haloarchaea. The bacterial form of LeuRS further underwent gene duplications and/or gene transfers within the haloarchaea, with some genomes possessing two distinct types of bacterial LeuRS. The cognate tRNALeu also reveals two distinct clusters for the haloarchaea; however, these tRNALeu clusters do not coincide with the groupings found in the LeuRS tree, revealing that LeuRS evolved independently of its cognate tRNA. Conclusions The study of leucyl-tRNA synthetase in haloarchaea illustrates the importance of gene transfer originating in lineages that went extinct since the transfer occurred. The haloarchaeal LeuRS and tRNALeu did not co-evolve.
Collapse
|
18
|
Ogilvie LA, Caplin J, Dedi C, Diston D, Cheek E, Bowler L, Taylor H, Ebdon J, Jones BV. Comparative (meta)genomic analysis and ecological profiling of human gut-specific bacteriophage φB124-14. PLoS One 2012; 7:e35053. [PMID: 22558115 PMCID: PMC3338817 DOI: 10.1371/journal.pone.0035053] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/08/2012] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape within the human gut microbiome.
Collapse
Affiliation(s)
- Lesley A. Ogilvie
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Jonathan Caplin
- School of Environment and Technology, University of Brighton, Brighton, United Kingdom
| | - Cinzia Dedi
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - David Diston
- School of Environment and Technology, University of Brighton, Brighton, United Kingdom
| | - Elizabeth Cheek
- School of Computing, Engineering and Mathematics, University of Brighton, Brighton, United Kingdom
| | - Lucas Bowler
- Sussex Proteomics Centre, University of Sussex, Brighton, United Kingdom
| | - Huw Taylor
- School of Environment and Technology, University of Brighton, Brighton, United Kingdom
| | - James Ebdon
- School of Environment and Technology, University of Brighton, Brighton, United Kingdom
| | - Brian V. Jones
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Andam CP, Gogarten JP. Biased gene transfer and its implications for the concept of lineage. Biol Direct 2011; 6:47. [PMID: 21943000 PMCID: PMC3191353 DOI: 10.1186/1745-6150-6-47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 09/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background In the presence of horizontal gene transfer (HGT), the concepts of lineage and genealogy in the microbial world become more ambiguous because chimeric genomes trace their ancestry from a myriad of sources, both living and extinct. Results We present the evolutionary histories of three aminoacyl-tRNA synthetases (aaRS) to illustrate that the concept of organismal lineage in the prokaryotic world is defined by both vertical inheritance and reticulations due to HGT. The acquisition of a novel gene from a distantly related taxon can be considered as a shared derived character that demarcates a group of organisms, as in the case of the spirochaete Phenylalanyl-tRNA synthetase (PheRS). On the other hand, when organisms transfer genetic material with their close kin, the similarity and therefore relatedness observed among them is essentially shaped by gene transfer. Studying the distribution patterns of divergent genes with identical functions, referred to as homeoalleles, can reveal preferences for transfer partners. We describe the very ancient origin and the distribution of the archaeal homeoalleles for Threonyl-tRNA synthetases (ThrRS) and Seryl-tRNA synthetases (SerRS). Conclusions Patterns created through biased HGT can be undistinguishable from those created through shared organismal ancestry. A re-evaluation of the definition of lineage is necessary to reflect genetic relatedness due to both HGT and vertical inheritance. In most instances, HGT bias will maintain and strengthen similarity within groups. Only in cases where HGT bias is due to other factors, such as shared ecological niche, do patterns emerge from gene phylogenies that are in conflict with those reflecting shared organismal ancestry. Reviewers This article was reviewed by W. Ford Doolittle, François-Joseph Lapointe, and Frederic Bouchard.
Collapse
Affiliation(s)
- Cheryl P Andam
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | | |
Collapse
|
20
|
|
21
|
Tuller T, Girshovich Y, Sella Y, Kreimer A, Freilich S, Kupiec M, Gophna U, Ruppin E. Association between translation efficiency and horizontal gene transfer within microbial communities. Nucleic Acids Res 2011; 39:4743-55. [PMID: 21343180 PMCID: PMC3113575 DOI: 10.1093/nar/gkr054] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Horizontal gene transfer (HGT) is a major force in microbial evolution. Previous studies have suggested that a variety of factors, including restricted recombination and toxicity of foreign gene products, may act as barriers to the successful integration of horizontally transferred genes. This study identifies an additional central barrier to HGT-the lack of co-adaptation between the codon usage of the transferred gene and the tRNA pool of the recipient organism. Analyzing the genomic sequences of more than 190 microorganisms and the HGT events that have occurred between them, we show that the number of genes that were horizontally transferred between organisms is positively correlated with the similarity between their tRNA pools. Those genes that are better adapted to the tRNA pools of the target genomes tend to undergo more frequent HGT. At the community (or environment) level, organisms that share a common ecological niche tend to have similar tRNA pools. These results remain significant after controlling for diverse ecological and evolutionary parameters. Our analysis demonstrates that there are bi-directional associations between the similarity in the tRNA pools of organisms and the number of HGT events occurring between them. Similar tRNA pools between a donor and a host tend to increase the probability that a horizontally acquired gene will become fixed in its new genome. Our results also suggest that frequent HGT may be a homogenizing force that increases the similarity in the tRNA pools of organisms within the same community.
Collapse
Affiliation(s)
- Tamir Tuller
- Faculty of Mathematics and Computer Science, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Blavatnik School of Computer Science, School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
23
|
Biased gene transfer mimics patterns created through shared ancestry. Proc Natl Acad Sci U S A 2010; 107:10679-84. [PMID: 20495090 DOI: 10.1073/pnas.1001418107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In phylogenetic reconstruction, two types of bacterial tyrosyl-tRNA synthetases (TyrRS) form distinct clades with many bacterial phyla represented in both clades. Very few taxa possess both forms, and maximum likelihood analysis of the distribution of TyrRS types suggests horizontal gene transfer (HGT), rather than an ancient duplication followed by differential gene loss, as the contributor to the evolutionary history of TyrRS in bacteria. However, for each TyrRS type, phylogenetic reconstruction yields phylogenies similar to the ribosomal phylogeny, revealing that frequent gene transfer has not destroyed the expected phylogeny; rather, the expected phylogenetic signal was reinforced or even created by HGT. We show that biased HGT can mimic patterns created through shared ancestry by in silico simulation. Furthermore, in cases where genomic synteny is sufficient to allow comparisons of relative gene positions, both tyrRS types occupy equivalent positions in closely related genomes, rejecting the loss hypothesis. Although the two types of bacterial TyrRS are only distantly related and only rarely coexist in a single genome, they have many features in common with alleles that are swapped between related lineages. We propose to label these functionally similar homologs as homeoalleles. We conclude that the observed phylogenetic pattern reflects both vertical inheritance and biased HGT and that the signal caused by common organismal descent is difficult to distinguish from the signal due to biased gene transfer.
Collapse
|