1
|
Lähteenaro M, Benda D, Straka J, Nylander JAA, Bergsten J. Phylogenomic analysis of Stylops reveals the evolutionary history of a Holarctic Strepsiptera radiation parasitizing wild bees. Mol Phylogenet Evol 2024; 195:108068. [PMID: 38554985 DOI: 10.1016/j.ympev.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Holarctic Stylops is the largest genus of the enigmatic insect order Strepsiptera, twisted winged parasites. Members of Stylops are obligate endoparasites of Andrena mining bees and exhibit extreme sexual dimorphism typical of Strepsiptera. So far, molecular studies on Stylops have focused on questions on species delimitation. Here, we utilize the power of whole genome sequencing to infer the phylogeny of this morphologically challenging genus from thousands of loci. We use a species tree method, concatenated maximum likelihood analysis and Bayesian analysis with a relaxed clock model to reconstruct the phylogeny of 46 Stylops species, estimate divergence times, evaluate topological consistency across methods and infer the root position. Furthermore, the biogeographical history and coevolutionary patterns with host species are assessed. All methods recovered a well resolved topology with close to all nodes maximally supported and only a handful of minor topological variations. Based on the result, we find that included species can be divided into 12 species groups, seven of them including only Palaearctic species, three Nearctic and two were geographically mixed. We find a strongly supported root position between a clade formed by the spreta, thwaitesi and gwynanae species groups and the remaining species and that the sister group of Stylops is Eurystylops or Eurystylops + Kinzelbachus. Our results indicate that Stylops originated in the Western Palaearctic or Western Palaearctic and Nearctic in the early Neogene or late Paleogene, with four independent dispersal events to the Nearctic. Cophylogenetic analyses indicate that the diversification of Stylops has been shaped by both significant coevolution with the mining bee hosts and host-shifting. The well resolved and strongly supported phylogeny will provide a valuable phylogenetic basis for further studies into the fascinating world of Strepsipterans.
Collapse
Affiliation(s)
- Meri Lähteenaro
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Daniel Benda
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic; Department of Entomology, National Museum of the Czech Republic, Cirkusová 1740, CZ-19300 Prague 9, Czech Republic.
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic.
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-106 91 Stockholm, Sweden.
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Pérez-Escobar OA, Bogarín D, Przelomska NAS, Ackerman JD, Balbuena JA, Bellot S, Bühlmann RP, Cabrera B, Cano JA, Charitonidou M, Chomicki G, Clements MA, Cribb P, Fernández M, Flanagan NS, Gravendeel B, Hágsater E, Halley JM, Hu AQ, Jaramillo C, Mauad AV, Maurin O, Müntz R, Leitch IJ, Li L, Negrão R, Oses L, Phillips C, Rincon M, Salazar GA, Simpson L, Smidt E, Solano-Gomez R, Parra-Sánchez E, Tremblay RL, van den Berg C, Tamayo BSV, Zuluaga A, Zuntini AR, Chase MW, Fay MF, Condamine FL, Forest F, Nargar K, Renner SS, Baker WJ, Antonelli A. The origin and speciation of orchids. THE NEW PHYTOLOGIST 2024; 242:700-716. [PMID: 38382573 DOI: 10.1111/nph.19580] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.
Collapse
Affiliation(s)
| | - Diego Bogarín
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
- Naturalis Biodiversity Centre, Leiden, CR 2333, the Netherlands
| | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - James D Ackerman
- University of Puerto Rico - Rio Piedras, San Juan, PR, 00925-2537, USA
| | | | | | | | - Betsaida Cabrera
- Jardín Botánico Rafael Maria Moscoso, Santo Domingo, 21-9, Dominican Republic
| | | | | | | | - Mark A Clements
- Centre for Australian National Biodiversity Research (joint venture between Parks Australia and CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
| | | | - Melania Fernández
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
| | - Nicola S Flanagan
- Universidad Pontificia Javeriana, Seccional Cali, Cali, 760031, Colombia
| | | | | | | | - Ai-Qun Hu
- Singapore Botanic Gardens, 1 Cluny Road, Singapore, 257494, Singapore
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Apartado, Panama City, 0843-03092, Panama
| | | | | | - Robert Müntz
- Reserva Biológica Guaitil, Eisenstadt, 7000, Austria
| | | | - Lan Li
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
| | | | - Lizbeth Oses
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
| | - Charlotte Phillips
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Milton Rincon
- Jardín Botánico Jose Celestino Mutis, Bogota, 111071, Colombia
| | | | - Lalita Simpson
- Australian Tropical Herbarium, James Cook University, GPO Box 6811, Cairns, Qld, 4878, Australia
| | - Eric Smidt
- Universidade Federal do Paraná, Curitiba, 19031, Brazil
| | | | | | | | - Cassio van den Berg
- Universidade Estadual de Feira de Santana, Feira de Santana, 44036-900, Brazil
| | | | | | | | - Mark W Chase
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Perth, WA, 6102, Australia
| | | | - Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier|CNRS|IRD|EPHE), Place Eugène Bataillon, Montpellier, 34000, France
| | | | - Katharina Nargar
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
- Australian Tropical Herbarium, James Cook University, GPO Box 6811, Cairns, Qld, 4878, Australia
- Scientific Research Organisation (CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
| | | | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Gothenburg, 417 56, Sweden
- University of Gothenburg, Gothenburg, 417 56, Sweden
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
3
|
Reina-Rodríguez GA, Bogarín D, Hernandez Y, Nicholls-Giraldo I, Pérez-Escobar OA. A new Ophidion (Orchidaceae, Pleurothallidinae) from the Pacific lowlands of Colombia and the unresolved phylogenetic position of Phloeophila s.l. SYST BIODIVERS 2023. [DOI: 10.1080/14772000.2022.2160504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guillermo A. Reina-Rodríguez
- Grupo de Investigación en Orquídeas, Ecología y Sistemática Vegetal, Universidad Nacional de Colombia, Sede Palmira, Colombia
| | - Diego Bogarín
- Jardín Botánico Lankester, Universidad de Costa Rica, P. O. Box 302-7050, Cartago, Costa Rica
- Herbario UCH, Universidad Autónoma de Chiriquí, David, Panamá
- Naturalis Biodiversity Center, Endless Forms group, Leiden, the Netherlands
| | - Yerlin Hernandez
- Fundación San Cipriano. Vía Cali-Buenaventura, Corregimiento de Córdoba, Buenaventura, Colombia
| | - Isabel Nicholls-Giraldo
- Grupo de ecología de agroecosistemas y hábitats naturales GEAHNA, Universidad del Valle, Calle 13 #100-00 – edificio E20 Ciudad Universitaria Meléndez, Cali, Colombia
| | | |
Collapse
|
4
|
Moeller AH, Sanders JG, Sprockett DD, Landers A. Assessing co-diversification in host-associated microbiomes. J Evol Biol 2023; 36:1659-1668. [PMID: 37750599 PMCID: PMC10843161 DOI: 10.1111/jeb.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
When lineages of hosts and microbial symbionts engage in intimate interactions over evolutionary timescales, they can diversify in parallel (i.e., co-diversify), producing associations between the lineages' phylogenetic histories. Tests for co-diversification of individual microbial lineages and their hosts have been developed previously, and these have been applied to discover ancient symbioses in diverse branches of the tree of life. However, most host-microbe relationships are not binary but multipartite, in that a single host-associated microbiota can contain many microbial lineages, generating challenges for assessing co-diversification. Here, we review recent evidence for co-diversification in complex microbiota, highlight the limitations of prior studies, and outline a hypothesis testing approach designed to overcome some of these limitations. We advocate for the use of microbiota-wide scans for co-diversifying symbiont lineages and discuss tools developed for this purpose. Tests for co-diversification for simple host symbiont systems can be extended to entire phylogenies of microbial lineages (e.g., metagenome-assembled or isolate genomes, amplicon sequence variants) sampled from host clades, thereby providing a means for identifying co-diversifying symbionts present within complex microbiota. The relative ages of symbiont clades can corroborate co-diversification, and multi-level permutation tests can account for multiple comparisons and phylogenetic non-independence introduced by repeated sampling of host species. Discovering co-diversifying lineages will generate powerful opportunities for interrogating the molecular evolution and lineage turnover of ancestral, host-species specific symbionts within host-associated microbiota.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Jon G. Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Daniel D. Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Abigail Landers
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Secci-Petretto G, Englmaier GK, Weiss SJ, Antonov A, Persat H, Denys GPJ, Schenekar T, Romanov VI, Taylor EB, Froufe E. Evaluating a species phylogeny using ddRAD SNPs: Cyto-nuclear discordance and introgression in the salmonid genus Thymallus (Salmonidae). Mol Phylogenet Evol 2023; 178:107654. [PMID: 36336233 DOI: 10.1016/j.ympev.2022.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hybridization and introgression are very common among freshwater fishes due to the dynamic nature of hydrological landscapes. Cyclic patterns of allopatry and secondary contact provide numerous opportunities for interspecific gene flow, which can lead to discordant paths of evolution for mitochondrial and nuclear genomes. Here, we used double digest restriction-site associated DNA sequencing (ddRADseq) to obtain a genome-wide single nucleotide polymorphism (SNP) dataset comprehensive for allThymallus (Salmonidae)species to infer phylogenetic relationships and evaluate potential recent and historical gene flow among species. The newly obtained nuclear phylogeny was largely concordant with a previously published mitogenome-based topology but revealed a few cyto-nuclear discordances. These incongruencies primarily involved the placement of internal nodes rather than the resolution of species, except for one European species where anthropogenic stock transfers are thought to be responsible for the observed pattern. The analysis of four contact zones where multiple species are found revealed a few cases of mitochondrial capture and limited signals of nuclear introgression. Interestingly, the mechanisms restricting interspecific gene flow might be distinct; while in zones of secondary contact, small-scale physical habitat separation appeared as a limiting factor, biologically based reinforcement mechanisms are presumed to be operative in areas where species presumably evolved in sympatry. Signals of historical introgression were largely congruent with the routes of species dispersal previously inferred from mitogenome data. Overall, the ddRADseq dataset provided a robust phylogenetic reconstruction of the genus Thymallus including new insights into historical hybridization and introgression, opening up new questions concerning their evolutionary history.
Collapse
Affiliation(s)
- Giulia Secci-Petretto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Portugal
| | - Gernot K Englmaier
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria
| | - Steven J Weiss
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria.
| | - Alexander Antonov
- Institute of Water and Ecological Problems, Far East Branch, Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680063 Russia
| | - Henri Persat
- Société Française d'Ichthyologie, Muséum National d'Histoire Naturelle Paris, France, 57 rue Cuvier CP26, 75005 Paris, France
| | - Gael P J Denys
- Unité Patrimoine Naturel - Centre d'expertise et de données (2006 OFB - CNRS - MNHN), Muséum national d'Histoire naturelle, 36 rue Geoffroy Saint-Hilaire CP 41, 75005 Paris, France; Biologie des organismes et écosystèmes aquatiques (BOREA 8067), MNHN, CNRS, IRD, SU, UCN, UA, 57 rue Cuvier CP26, 75005 Paris, France
| | - Tamara Schenekar
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Eric B Taylor
- Department of Zoology, Biodiversity Research Centre and Beaty Biodiversity Museum, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z, Canada
| | - Elsa Froufe
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
6
|
Li ZX, Guo XL, Price M, Zhou SD, He XJ. Phylogenetic position of Ligusticopsis (Apiaceae, Apioideae): evidence from molecular data and carpological characters. AOB PLANTS 2022; 14:plac008. [PMID: 35475242 PMCID: PMC9035215 DOI: 10.1093/aobpla/plac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Ligusticopsis (Apiaceae, Apioideae) is now considered to have an East-Asia and Sino-Himalaya distribution. The genus was not recognized as a natural and separate genus and was treated as a synonym of Ligusticum both in Flora Reipublicae Popularis Sinicae and Flora of China since first established, though Pimenov et al. have made many taxonomic revisions to Ligusticopsis, phylogenetic relationships between Ligusticopsis and Ligusticum have been in dispute. Thirty-four plastomes and 35 nrITS from Apioideae were analysed by RAxML and MrBayes to reconstruct the phylogenetic relationships, along with carpology of 10 species and comparative analyses of 17 plastomes to investigate the evidence supporting the independence of Ligusticopsis. As a result, nine species suggested to be Ligusticopsis formed a highly supported monophyletic branch (Subclade A) inside Selineae both in maximum likelihood and Bayesian inference; the results of the comparative analyses further supported the monophyly of Subclade A, mainly in the location of genes at the IRa/LSC boundary, the sequence diversity exhibited by various genes (e.g. trnH-GUG-psbA and ycf2) and same codon biases in terminator TAA (relative synonymous codon usage = 1.75). Species in Subclade A also had shared characters in mericarps, combined with other characters of the plant, 'base clothed in fibrous remnant sheaths, pinnate bracts, pinnate bracteoles longer than rays of umbellule, mericarps strongly compressed dorsally, median and lateral ribs filiform or keeled, marginal ribs winged, and numerous vittae in commissure and each furrow' should be the most important and diagnostic characters of Ligusticopsis. Our phylogenetic trees and other analyses supported the previous taxonomic treatments of Pimenov et al. that Ligusticopsis should be a natural and separate genus rather than a synonym of Ligusticum.
Collapse
Affiliation(s)
- Zi-Xuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Megan Price
- Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| |
Collapse
|
7
|
Silvério R. Mauad AV, Vieira LDN, Antônio de Baura V, Balsanelli E, Maltempi de Souza E, Chase MW, de Camargo Smidt E. Plastid phylogenomics of Pleurothallidinae (Orchidaceae): Conservative plastomes, new variable markers, and comparative analyses of plastid, nuclear, and mitochondrial data. PLoS One 2021; 16:e0256126. [PMID: 34449781 PMCID: PMC8396723 DOI: 10.1371/journal.pone.0256126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
We present the first comparative plastome study of Pleurothallidinae with analyses of structural and molecular characteristics and identification of the ten most-variable regions to be incorporated in future phylogenetic studies. We sequenced complete plastomes of eight species in the subtribe and compared phylogenetic results of these to parallel analyses of their nuclear ribosomal DNA operon (26S, 18S, and 5.8S plus associated spacers) and partial mitochondrial genome sequences (29–38 genes and partial introns). These plastomes have the typical quadripartite structure for which gene content is similar to those of other orchids, with variation only in the composition of the ndh genes. The independent loss of ndh genes had an impact on which genes border the inverted repeats and thus the size of the small single-copy region, leading to variation in overall plastome length. Analyses of 68 coding sequences indicated the same pattern of codon usage as in other orchids, and 13 protein-coding genes under positive selection were detected. Also, we identified 62 polymorphic microsatellite loci and ten highly variable regions, for which we designed primers. Phylogenomic analyses showed that the top ten mutational hotspots represent well the phylogenetic relationships found with whole plastome sequences. However, strongly supported incongruence was observed among plastid, nuclear ribosomal DNA operon, and mitochondrial DNA trees, indicating possible occurrence of incomplete lineage sorting and/or introgressive hybridization. Despite the incongruence, the mtDNA tree retrieved some clades found in other analyses. These results, together with performance in recent studies, support a future role for mitochondrial markers in Pleurothallidinae phylogenetics.
Collapse
Affiliation(s)
| | | | - Valter Antônio de Baura
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Eric de Camargo Smidt
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- * E-mail: (AVSRM); (ECS)
| |
Collapse
|
8
|
Pérez-Escobar OA, Dodsworth S, Bogarín D, Bellot S, Balbuena JA, Schley RJ, Kikuchi IA, Morris SK, Epitawalage N, Cowan R, Maurin O, Zuntini A, Arias T, Serna-Sánchez A, Gravendeel B, Torres Jimenez MF, Nargar K, Chomicki G, Chase MW, Leitch IJ, Forest F, Baker WJ. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. AMERICAN JOURNAL OF BOTANY 2021; 108:1166-1180. [PMID: 34250591 DOI: 10.1002/ajb2.1702] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.
Collapse
Affiliation(s)
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Diego Bogarín
- Lankester Botanic Garden, University of Costa Rica, Cartago, Costa Rica
| | | | | | | | | | | | | | - Robyn Cowan
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | | | | | | | | | | | | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Australia
- National Research Collections, Commonwealth Industrial and Scientific Research Organization, Australia
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 6102, Australia
| | | | - Félix Forest
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | |
Collapse
|
9
|
Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R, Nascimento RN, Assunção I, Lima GSA, Lima ATM, Murilo Zerbini F. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol 2021; 30:3747-3767. [PMID: 34021651 DOI: 10.1111/mec.15997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.
Collapse
Affiliation(s)
- César A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Talita B Mar
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Osvaldo F L Sande
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José C Silva
- Dep. de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Ramos-Sobrinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renato N Nascimento
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Iraildes Assunção
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Gaus S A Lima
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Alison T M Lima
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Serna-Sánchez MA, Pérez-Escobar OA, Bogarín D, Torres-Jimenez MF, Alvarez-Yela AC, Arcila-Galvis JE, Hall CF, de Barros F, Pinheiro F, Dodsworth S, Chase MW, Antonelli A, Arias T. Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution. Sci Rep 2021; 11:6858. [PMID: 33767214 PMCID: PMC7994851 DOI: 10.1038/s41598-021-83664-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/30/2020] [Indexed: 11/29/2022] Open
Abstract
Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth-death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.
Collapse
Affiliation(s)
- Maria Alejandra Serna-Sánchez
- Laboratorio de Biología Comparativa, Corporación Para Investigaciones Biológicas (CIB), Cra. 72 A No. 78 B 141, Medellín, Colombia
- Biodiversity, Evolution and Conservation, EAFIT University, Cra. 49, No. 7 sur 50, Medellín, Colombia
| | | | - Diego Bogarín
- Jardín Botánico Lankester, Universidad de Costa Rica, P. O. Box 302-7050, Cartago, Costa Rica
- Endless Forms Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
| | - María Fernanda Torres-Jimenez
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Astrid Catalina Alvarez-Yela
- Centro de Bioinformática y Biología Computacional (BIOS), Ecoparque Los Yarumos Edificio BIOS, Manizales, Colombia
| | - Juliana E Arcila-Galvis
- Laboratorio de Biología Comparativa, Corporación Para Investigaciones Biológicas (CIB), Cra. 72 A No. 78 B 141, Medellín, Colombia
| | - Climbie F Hall
- Instituto de Botânica, Núcleo de Pesquisa Orquídario Do Estado, Postal 68041, São Paulo, SP, 04045-972, Brasil
| | - Fábio de Barros
- Instituto de Botânica, Núcleo de Pesquisa Orquídario Do Estado, Postal 68041, São Paulo, SP, 04045-972, Brasil
| | - Fábio Pinheiro
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, University Square, Luton, LU1 3JU, UK
| | | | - Alexandre Antonelli
- Royal Botanic Gardens Kew, London, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Tatiana Arias
- Laboratorio de Biología Comparativa, Corporación Para Investigaciones Biológicas (CIB), Cra. 72 A No. 78 B 141, Medellín, Colombia.
- Centro de Bioinformática y Biología Computacional (BIOS), Ecoparque Los Yarumos Edificio BIOS, Manizales, Colombia.
- Tecnológico de Antioquia, Calle 78B NO. 72A - 220, Medellín, Colombia.
| |
Collapse
|
11
|
Bateman RM, Rudall PJ, Murphy ARM, Cowan RS, Devey DS, Peréz-Escobar OA. Whole plastomes are not enough: phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade Ophrys sect. Sphegodes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:654-681. [PMID: 33449086 DOI: 10.1093/jxb/eraa467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/15/2020] [Indexed: 05/21/2023]
Abstract
Plastid sequences have long dominated phylogeny reconstruction at all time depths, predicated on a usually untested assumption that they accurately represent the evolutionary histories of phenotypically circumscribed species. We combined detailed in situ morphometrics (124 plants) and whole-plastome sequencing through genome skimming (71 plants) in order to better understand species-level diversity and speciation in arguably the most challenging monophyletic group within the taxonomically controversial, pseudo-copulatory bee orchid genus Ophrys. Using trees and ordinations, we interpreted the data at four nested demographic levels-macrospecies, mesospecies, microspecies, and local population-seeking the optimal level for bona fide species. Neither morphological nor molecular discontinuities are evident at any level below macrospecies, the observed overlap among taxa suggesting that both mesospecies and microspecies reflect arbitrary division of a continuum of variation. Plastomes represent geographic location more strongly than taxonomic assignment and correlate poorly with morphology, suggesting widespread plastid capture and possibly post-glacial expansion from multiple southern refugia. As they are rarely directly involved in the speciation process, plastomes depend on extinction of intermediate lineages to provide phylogenetic signal and so cannot adequately document evolutionary radiations. The popular 'ethological' evolutionary model recognizes as numerous 'ecological species' (microspecies) lineages perceived as actively diverging as a result of density-dependent selection on very few features that immediately dictate extreme pollinator specificity. However, it is assumed rather than demonstrated that the many microspecies are genuinely diverging. We conversely envisage a complex four-dimensional reticulate network of lineages, generated locally and transiently through a wide spectrum of mechanisms, but each unlikely to maintain an independent evolutionary trajectory long enough to genuinely speciate by escaping ongoing gene flow. The frequent but localized microevolution that characterizes the Ophrys sphegodes complex is often convergent and rarely leads to macroevolution. Choosing between the contrasting 'discontinuity' and 'ethology' models will require next-generation sequencing of nuclear genomes plus ordination of corresponding morphometric matrices, seeking the crucial distinction between retained ancestral polymorphism-consistent with lineage divergence-and polymorphisms reflecting gene flow through 'hybridization'-more consistent with lineage convergence.
Collapse
|
12
|
Balbuena JA, Pérez-Escobar ÓA, Llopis-Belenguer C, Blasco-Costa I. Random Tanglegram Partitions (Random TaPas): An Alexandrian Approach to the Cophylogenetic Gordian Knot. Syst Biol 2021; 69:1212-1230. [PMID: 32298451 DOI: 10.1093/sysbio/syaa033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiosis is a key driver of evolutionary novelty and ecological diversity, but our understanding of how macroevolutionary processes originate extant symbiotic associations is still very incomplete. Cophylogenetic tools are used to assess the congruence between the phylogenies of two groups of organisms related by extant associations. If phylogenetic congruence is higher than expected by chance, we conclude that there is cophylogenetic signal in the system under study. However, how to quantify cophylogenetic signal is still an open issue. We present a novel approach, Random Tanglegram Partitions (Random TaPas) that applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and nodes that maximize phylogenetic congruence. By means of simulations, we show that the output value produced is inversely proportional to the number and proportion of cospeciation events employed to build simulated tanglegrams. In addition, with time-calibrated trees, Random TaPas can also distinguish cospeciation from pseudocospeciation. Random TaPas can handle large tanglegrams in affordable computational time and incorporates phylogenetic uncertainty in the analyses. We demonstrate its application with two real examples: passerine birds and their feather mites, and orchids and bee pollinators. In both systems, Random TaPas revealed low cophylogenetic signal, but mapping its variation onto the tanglegram pointed to two different coevolutionary processes. We suggest that the recursive partitioning of the tanglegram buffers the effect of phylogenetic nonindependence occurring in current global-fit methods and therefore Random TaPas is more reliable than regular global-fit methods to identify host-symbiont associations that contribute most to cophylogenetic signal. Random TaPas can be implemented in the public-domain statistical software R with scripts provided herein. A User's Guide is also available at GitHub.[Codiversification; coevolution; cophylogenetic signal; Symbiosis.].
Collapse
Affiliation(s)
- Juan Antonio Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Official P.O. Box 22085, 46071 Valencia, Spain
| | | | - Cristina Llopis-Belenguer
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Official P.O. Box 22085, 46071 Valencia, Spain
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, P.O. Box 6134, CH-1211 Geneva, Switzerland
| |
Collapse
|
13
|
Wei N, Pérez-Escobar OA, Musili PM, Huang WC, Yang JB, Hu AQ, Hu GW, Grace OM, Wang QF. Plastome Evolution in the Hyperdiverse Genus Euphorbia (Euphorbiaceae) Using Phylogenomic and Comparative Analyses: Large-Scale Expansion and Contraction of the Inverted Repeat Region. FRONTIERS IN PLANT SCIENCE 2021; 12:712064. [PMID: 34421963 PMCID: PMC8372406 DOI: 10.3389/fpls.2021.712064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/09/2023]
Abstract
With c. 2,000 species, Euphorbia is one of the largest angiosperm genera, yet a lack of chloroplast genome (plastome) resources impedes a better understanding of its evolution. In this study, we assembled and annotated 28 plastomes from Euphorbiaceae, of which 15 were newly sequenced. Phylogenomic and comparative analyses of 22 plastome sequences from all four recognized subgenera within Euphorbia revealed that plastome length in Euphorbia is labile, presenting a range of variation c. 42 kb. Large-scale expansions of the inverted repeat (IR) region were identified, and at the extreme opposite, the near-complete loss of the IR region (with only 355 bp left) was detected for the first time in Euphorbiaceae. Other structural variations, including gene inversion and duplication, and gene loss/pseudogenization, were also observed. We screened the most promising molecular markers from both intergenic and coding regions for phylogeny-based utilities, and estimated maximum likelihood and Bayesian phylogenies from four datasets including whole plastome sequences. The monophyly of Euphorbia is supported, and its four subgenera are recovered in a successive sister relationship. Our study constitutes the first comprehensive investigation on the plastome structural variation in Euphorbia and it provides resources for phylogenetic research in the genus, facilitating further studies on its taxonomy, evolution, and conservation.
Collapse
Affiliation(s)
- Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Paul M. Musili
- East African Herbarium, National Museums of Kenya, Nairobi, Kenya
| | - Wei-Chang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Olwen M. Grace
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- *Correspondence: Olwen M. Grace,
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Qing-Feng Wang,
| |
Collapse
|
14
|
Yao J, Zhao F, Xu Y, Zhao K, Quan H, Su Y, Hao P, Liu J, Yu B, Yao M, Ma X, Liao Z, Lan X. Complete Chloroplast Genome Sequencing and Phylogenetic Analysis of Two Dracocephalum Plants. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4374801. [PMID: 33457408 PMCID: PMC7787725 DOI: 10.1155/2020/4374801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022]
Abstract
Dracocephalum tanguticum and Dracocephalum moldavica are important herbs from Lamiaceae and have great medicinal value. We used the Illumina sequencing technology to sequence the complete chloroplast genome of D. tanguticum and D. moldavica and then conducted de novo assembly. The two chloroplast genomes have a typical quadripartite structure, with the gene's lengths of 82,221 bp and 81,450 bp, large single-copy region's (LSC) lengths of 82,221 bp and 81,450 bp, and small single-copy region's (SSC) lengths of 17,363 bp and 17,066 bp, inverted repeat region's (IR) lengths of 51,370 bp and 51,352 bp, respectively. The GC content of the two chloroplast genomes was 37.80% and 37.83%, respectively. The chloroplast genomes of the two plants encode 133 and 132 genes, respectively, among which there are 88 and 87 protein-coding genes, respectively, as well as 37 tRNA genes and 8 rRNA genes. Among them, the rps2 gene is unique to D. tanguticum, which is not found in D. moldavica. Through SSR analysis, we also found 6 mutation hotspot regions, which can be used as molecular markers for taxonomic studies. Phylogenetic analysis showed that Dracocephalum was more closely related to Mentha.
Collapse
Affiliation(s)
- Junjun Yao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Fangyu Zhao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Yuanjiang Xu
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Kaihui Zhao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Hong Quan
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Yanjie Su
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Peiyu Hao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Jiang Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Benxia Yu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Min Yao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaojing Ma
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, Jiangxi 330029, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing Engineering and Technology Research Center for Sweetpotato, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, Jiangxi 330029, China
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing Engineering and Technology Research Center for Sweetpotato, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Ren T, Li ZX, Xie DF, Gui LJ, Peng C, Wen J, He XJ. Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships. BMC PLANT BIOLOGY 2020; 20:519. [PMID: 33187470 PMCID: PMC7663912 DOI: 10.1186/s12870-020-02696-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The genus Ligusticum consists of approximately 60 species distributed in the Northern Hemisphere. It is one of the most taxonomically difficult taxa within Apiaceae, largely due to the varied morphological characteristics. To investigate the plastome evolution and phylogenetic relationships of Ligusticum, we determined the complete plastome sequences of eight Ligusticum species using a de novo assembly approach. RESULTS Through a comprehensive comparative analysis, we found that the eight plastomes were similar in terms of repeat sequence, SSR, codon usage, and RNA editing site. However, compared with the other seven species, L. delavayi exhibited striking differences in genome size, gene number, IR/SC borders, and sequence identity. Most of the genes remained under the purifying selection, whereas four genes showed relaxed selection, namely ccsA, rpoA, ycf1, and ycf2. Non-monophyly of Ligusticum species was inferred from the plastomes and internal transcribed spacer (ITS) sequences phylogenetic analyses. CONCLUSION The plastome tree and ITS tree produced incongruent tree topologies, which may be attributed to the hybridization and incomplete lineage sorting. Our study highlighted the advantage of plastome with mass informative sites in resolving phylogenetic relationships. Moreover, combined with the previous studies, we considered that the current taxonomy system of Ligusticum needs to be improved and revised. In summary, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of Ligusticum species.
Collapse
Affiliation(s)
- Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zi-Xuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ling-Jian Gui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jun Wen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
16
|
Guo C, Ma PF, Yang GQ, Ye XY, Guo Y, Liu JX, Liu YL, Eaton DAR, Guo ZH, Li DZ. Parallel ddRAD and Genome Skimming Analyses Reveal a Radiative and Reticulate Evolutionary History of the Temperate Bamboos. Syst Biol 2020; 70:756-773. [PMID: 33057686 PMCID: PMC8208805 DOI: 10.1093/sysbio/syaa076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.]
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Qian Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
17
|
ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae). Mol Phylogenet Evol 2020; 146:106758. [DOI: 10.1016/j.ympev.2020.106758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
|
18
|
Pérez-Escobar OA, Bogarín D, Schley R, Bateman RM, Gerlach G, Harpke D, Brassac J, Fernández-Mazuecos M, Dodsworth S, Hagsater E, Blanco MA, Gottschling M, Blattner FR. Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data. Mol Phylogenet Evol 2020; 144:106672. [DOI: 10.1016/j.ympev.2019.106672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023]
|
19
|
Bogarín D, Pérez-Escobar OA, Karremans AP, Fernández M, Kruizinga J, Pupulin F, Smets E, Gravendeel B. Phylogenetic comparative methods improve the selection of characters for generic delimitations in a hyperdiverse Neotropical orchid clade. Sci Rep 2019; 9:15098. [PMID: 31641165 PMCID: PMC6805863 DOI: 10.1038/s41598-019-51360-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022] Open
Abstract
Taxonomic delimitations are challenging because of the convergent and variable nature of phenotypic traits. This is evident in species-rich lineages, where the ancestral and derived states and their gains and losses are difficult to assess. Phylogenetic comparative methods help to evaluate the convergent evolution of a given morphological character, thus enabling the discovery of traits useful for classifications. In this study, we investigate the evolution of selected traits to test for their suitability for generic delimitations in the clade Lepanthes, one of the Neotropical species-richest groups. We evaluated every generic name proposed in the Lepanthes clade producing densely sampled phylogenies with Maximum Parsimony, Maximum Likelihood, and Bayesian approaches. Using Ancestral State Reconstructions, we then assessed 18 phenotypic characters that have been traditionally employed to diagnose genera. We propose the recognition of 14 genera based on solid morphological delimitations. Among the characters assessed, we identified 16 plesiomorphies, 12 homoplastic characters, and seven synapomorphies, the latter of which are reproductive features mostly related to the pollination by pseudocopulation and possibly correlated with rapid diversifications in Lepanthes. Furthermore, the ancestral states of some reproductive characters suggest that these traits are associated with pollination mechanisms alike promoting homoplasy. Our methodological approach enables the discovery of useful traits for generic delimitations in the Lepanthes clade and offers various other testable hypotheses on trait evolution for future research on Pleurothallidinae orchids because the phenotypic variation of some characters evaluated here also occurs in other diverse genera.
Collapse
Affiliation(s)
- Diego Bogarín
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, P.O. Box 302-7050, Costa Rica.
- Herbarium UCH, Universidad Autónoma de Chiriquí, David, Chiriquí, Panama.
- Naturalis Biodiversity Center, Endless Forms group, Leiden, The Netherlands.
| | - Oscar A Pérez-Escobar
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Adam P Karremans
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, P.O. Box 302-7050, Costa Rica
- Naturalis Biodiversity Center, Endless Forms group, Leiden, The Netherlands
| | - Melania Fernández
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, P.O. Box 302-7050, Costa Rica
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jaco Kruizinga
- Hortus botanicus, Leiden University, Leiden, The Netherlands
| | - Franco Pupulin
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, P.O. Box 302-7050, Costa Rica
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, USA
- Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, Florida, 34236, USA
| | - Erik Smets
- Naturalis Biodiversity Center, Endless Forms group, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- KU Leuven, Ecology, Evolution and Biodiversity Conservation, Leuven, Belgium
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Endless Forms group, Leiden, The Netherlands
- University of Applied Sciences Leiden, Faculty of Science and Technology, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
20
|
Kahnt B, Hattingh WN, Theodorou P, Wieseke N, Kuhlmann M, Glennon KL, Niet T, Paxton R, Cron GV. Should I stay or should I go? Pollinator shifts rather than cospeciation dominate the evolutionary history of South African
Rediviva
bees and their
Diascia
host plants. Mol Ecol 2019; 28:4118-4133. [DOI: 10.1111/mec.15154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Belinda Kahnt
- General Zoology Institute of Biology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Wesley N. Hattingh
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Braamfontein South Africa
| | - Panagiotis Theodorou
- General Zoology Institute of Biology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Nicolas Wieseke
- Institute for Informatics University of Leipzig Leipzig Germany
| | - Michael Kuhlmann
- Zoological Museum Kiel University Kiel Germany
- Department of Life Sciences Natural History Museum London UK
| | - Kelsey L. Glennon
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Braamfontein South Africa
| | - Timotheüs Niet
- School of Life Sciences Centre for Functional Biodiversity University of Kwazulu‐Natal Pietermaritzburg South Africa
| | - Robert Paxton
- General Zoology Institute of Biology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Glynis V. Cron
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Braamfontein South Africa
| |
Collapse
|
21
|
Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus bawanglingensis Huang, Li et Xing, a Vulnerable Oak Tree in China. FORESTS 2019. [DOI: 10.3390/f10070587] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quercus bawanglingensis Huang, Li et Xing, an endemic evergreen oak of the genus Quercus (Fagaceae) in China, is currently listed in the Red List of Chinese Plants as a vulnerable (VU) plant. No chloroplast (cp) genome information is currently available for Q. bawanglingensis, which would be essential for the establishment of guidelines for its conservation and breeding. In the present study, the cp genome of Q. bawanglingensis was sequenced and assembled into double-stranded circular DNA with a length of 161,394 bp. Two inverted repeats (IRs) with a total of 51,730 bp were identified, and the rest of the sequence was separated into two single-copy regions, namely, a large single-copy (LSC) region (90,628 bp) and a small single-copy (SSC) region (19,036 bp). The genome of Q. bawanglingensis contains 134 genes (86 protein-coding genes, 40 tRNAs and eight rRNAs). More forward (29) than inverted long repeats (21) are distributed in the cp genome. A simple sequence repeat (SSR) analysis showed that the genome contains 82 SSR loci, involving 84.15% A/T mononucleotides. Sequence comparisons among the nine complete cp genomes, including the genomes of Q. bawanglingensis, Q. tarokoensis Hayata (NC036370), Q. aliena var. acutiserrata Maxim. ex Wenz. (KU240009), Q. baronii Skan (KT963087), Q. aquifolioides Rehd. et Wils. (KX911971), Q. variabilis Bl. (KU240009), Fagus engleriana Seem. (KX852398), Lithocarpus balansae (Drake) A. Camus (KP299291) and Castanea mollissima Bl. (HQ336406), demonstrated that the diversity of SC regions was higher than that of IR regions, which might facilitate identification of the relationships within this extremely complex family. A phylogenetic analysis showed that Fagus engleriana and Trigonobalanus doichangensis form the basis of the produced evolutionary tree. Q. bawanglingensis and Q. tarokoensis, which belong to the group Ilex, share the closest relationship. The analysis of the cp genome of Q. bawanglingensis provides crucial genetic information for further studies of this vulnerable species and the taxonomy, phylogenetics and evolution of Quercus.
Collapse
|
22
|
Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data. Mol Phylogenet Evol 2019; 135:98-104. [DOI: 10.1016/j.ympev.2019.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/20/2022]
|
23
|
Acosta JM, Zuloaga FO, Reinheimer R. Nuclear phylogeny and hypothesized allopolyploidization events in the Subtribe Otachyriinae (Paspaleae, Poaceae). SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1572035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Juan M. Acosta
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD, San Isidro, Buenos Aires, Argentina
| | - Fernando O. Zuloaga
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD, San Isidro, Buenos Aires, Argentina
| | - Renata Reinheimer
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
24
|
Anchored hybrid enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex. Mol Phylogenet Evol 2018; 129:27-47. [DOI: 10.1016/j.ympev.2018.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/25/2018] [Accepted: 07/15/2018] [Indexed: 11/20/2022]
|
25
|
From tree tops to the ground: Reversals to terrestrial habit in Galeandra orchids (Epidendroideae: Catasetinae). Mol Phylogenet Evol 2018; 127:952-960. [DOI: 10.1016/j.ympev.2018.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023]
|
26
|
Li X, Li Y, Zang M, Li M, Fang Y. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus acutissima. Int J Mol Sci 2018; 19:ijms19082443. [PMID: 30126202 PMCID: PMC6121628 DOI: 10.3390/ijms19082443] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023] Open
Abstract
Quercus acutissima, an important endemic and ecological plant of the Quercus genus, is widely distributed throughout China. However, there have been few studies on its chloroplast genome. In this study, the complete chloroplast (cp) genome of Q. acutissima was sequenced, analyzed, and compared to four species in the Fagaceae family. The size of the Q. acutissima chloroplast genome is 161,124 bp, including one large single copy (LSC) region of 90,423 bp and one small single copy (SSC) region of 19,068 bp, separated by two inverted repeat (IR) regions of 51,632 bp. The GC content of the whole genome is 36.08%, while those of LSC, SSC, and IR are 34.62%, 30.84%, and 42.78%, respectively. The Q. acutissima chloroplast genome encodes 136 genes, including 88 protein-coding genes, four ribosomal RNA genes, and 40 transfer RNA genes. In the repeat structure analysis, 31 forward and 22 inverted long repeats and 65 simple-sequence repeat loci were detected in the Q. acutissima cp genome. The existence of abundant simple-sequence repeat loci in the genome suggests the potential for future population genetic work. The genome comparison revealed that the LSC region is more divergent than the SSC and IR regions, and there is higher divergence in noncoding regions than in coding regions. The phylogenetic relationships of 25 species inferred that members of the Quercus genus do not form a clade and that Q. acutissima is closely related to Q. variabilis. This study identified the unique characteristics of the Q. acutissima cp genome, which will provide a theoretical basis for species identification and biological research.
Collapse
Affiliation(s)
- Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yongfu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Mingyue Zang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd., Nanjing 210014, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
27
|
Yang Y, Zhu J, Feng L, Zhou T, Bai G, Yang J, Zhao G. Plastid Genome Comparative and Phylogenetic Analyses of the Key Genera in Fagaceae: Highlighting the Effect of Codon Composition Bias in Phylogenetic Inference. FRONTIERS IN PLANT SCIENCE 2018; 9:82. [PMID: 29449857 PMCID: PMC5800003 DOI: 10.3389/fpls.2018.00082] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/15/2018] [Indexed: 05/10/2023]
Abstract
Fagaceae is one of the largest and economically important taxa within Fagales. Considering the incongruence among inferences from plastid and nuclear genes in the previous Fagaceae phylogeny studies, we assess the performance of plastid phylogenomics in this complex family. We sequenced and assembled four complete plastid genomes (Fagus engleriana, Quercus spinosa, Quercus aquifolioides, and Quercus glauca) using reference-guided assembly approach. All of the other 12 published plastid genomes in Fagaceae were retrieved for genomic analyses (including repeats, sequence divergence and codon usage) and phylogenetic inference. The genomic analyses reveal that plastid genomes in Fagaceae are conserved. Comparing the phylogenetic relationships of the key genera in Fagaceae inferred from different codon positions and gene function datasets, we found that the first two codon sites dataset recovered nearly all relationships and received high support. Thus, the result suggested that codon composition bias had great influence on Fagaceae phylogenetic inference. Our study not only provides basic understanding of Fagaceae plastid genomes, but also illuminates the effectiveness of plastid phylogenomics in resolving relationships of this intractable family.
Collapse
Affiliation(s)
- Yanci Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| | - Juan Zhu
- Middle School of Xi'an Electronic Science and Technology, Xi'an, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Guoqing Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
28
|
Gale SW, Duangjai S, Li J, Ito Y, Watthana S, Termwutthipreecha P, Cheuk ML, Suddee S. Integrative analyses of Nervilia (Orchidaceae) section Linervia reveal further undescribed cryptic diversity in Thailand. SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2017.1415233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Stephan W. Gale
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong
| | - Sutee Duangjai
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Jihong Li
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong
| | - Yu Ito
- Plant Phylogenetics and Conservation Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Santi Watthana
- School of Biology, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Phatsara Termwutthipreecha
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Mang Lung Cheuk
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong
| | - Somran Suddee
- Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
29
|
Sweet AD, Boyd BM, Allen JM, Villa SM, Valim MP, Rivera-Parra JL, Wilson RE, Johnson KP. Integrating phylogenomic and population genomic patterns in avian lice provides a more complete picture of parasite evolution. Evolution 2017; 72:95-112. [PMID: 29094340 DOI: 10.1111/evo.13386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 02/05/2023]
Abstract
Parasite diversity accounts for most of the biodiversity on earth, and is shaped by many processes (e.g., cospeciation, host switching). To identify the effects of the processes that shape parasite diversity, it is ideal to incorporate both deep (phylogenetic) and shallow (population) perspectives. To this end, we developed a novel workflow to obtain phylogenetic and population genetic data from whole genome sequences of body lice parasitizing New World ground-doves. Phylogenies from these data showed consistent, highly resolved species-level relationships for the lice. By comparing the louse and ground-dove phylogenies, we found that over long-term evolutionary scales their phylogenies were largely congruent. Many louse lineages (both species and populations) also demonstrated high host-specificity, suggesting ground-dove divergence is a primary driver of their parasites' diversity. However, the few louse taxa that are generalists are structured according to biogeography at the population level. This suggests dispersal among sympatric hosts has some effect on body louse diversity, but over deeper time scales the parasites eventually sort according to host species. Overall, our results demonstrate that multiple factors explain the patterns of diversity in this group of parasites, and that the effects of these factors can vary over different evolutionary scales. The integrative approach we employed was crucial for uncovering these patterns, and should be broadly applicable to other studies.
Collapse
Affiliation(s)
- Andrew D Sweet
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Illinois 61820.,Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820
| | - Bret M Boyd
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Illinois 61820.,Department of Entomology, University of Georgia, Athens, Georgia 30602
| | - Julie M Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Illinois 61820.,Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
| | - Scott M Villa
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Michel P Valim
- Biotério da Universidade Iguaçu, Av. Abílio Augusto Távora, 2134, RJ 26275, Brazil
| | - Jose L Rivera-Parra
- Departamento de Petroleos, Facultad de Geologia y Petroleos, Escuela Politecnica Nacional, Quito, Ecuador
| | - Robert E Wilson
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Illinois 61820
| |
Collapse
|
30
|
Kong H, Condamine FL, Harris AJ, Chen J, Pan B, Möller M, Hoang VS, Kang M. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol Ecol 2017; 26:6414-6429. [PMID: 28960701 DOI: 10.1111/mec.14367] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
Karst ecosystems in southern China are species-rich and have high levels of endemism, yet little is known regarding the evolutionary processes responsible for the origin and diversification of karst biodiversity. The genus Primulina (Gesneriaceae) comprises ca. 170 species endemic to southern China with high levels of ecological (edaphic) specialization, providing an exceptional model to study the plant diversification in karsts. We used molecular data from nine chloroplast and 11 nuclear regions and macroevolutionary analyses to assess the origin and cause of species diversification due to palaeoenvironmental changes and edaphic specialization in Primulina. We found that speciation was positively associated with changes in past temperatures and East Asian monsoons through the evolutionary history of Primulina. Climatic change around the mid-Miocene triggered an early burst followed by a slowdown of diversification rate towards the present with the climate cooling. We detected different speciation rates among edaphic types, and transitions among soil types were infrequently and did not impact the overall speciation rate. Our findings suggest that both global temperature changes and East Asian monsoons have played crucial roles in floristic diversification within the karst ecosystems in southern China, such that speciation was higher when climate was warmer and wetter. This is the first study to directly demonstrate that past monsoon activity is positively correlated with speciation rate in East Asia. This case study could motivate further investigations to assess the impacts of past environmental changes on the origin and diversification of biodiversity in global karst ecosystems, most of which are under threat.
Collapse
Affiliation(s)
- Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier), Montpellier, France
| | - A J Harris
- Department of Botany, MRC 166, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Junlin Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Pan
- Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | | | - Van Sam Hoang
- Forest Plant Department, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
| |
Collapse
|
31
|
Pérez-Escobar OA, Chomicki G, Condamine FL, de Vos JM, Martins AC, Smidt EC, Klitgård B, Gerlach G, Heinrichs J. Multiple Geographical Origins of Environmental Sex Determination enhanced the diversification of Darwin's Favourite Orchids. Sci Rep 2017; 7:12878. [PMID: 29018291 PMCID: PMC5635016 DOI: 10.1038/s41598-017-12300-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022] Open
Abstract
Environmental sex determination (ESD) - a change in sexual function during an individual life span driven by environmental cues - is an exceedingly rare sexual system among angiosperms. Because ESD can directly affect reproduction success, it could influence diversification rate as compared with lineages that have alternative reproductive systems. Here we test this hypothesis using a solid phylogenetic framework of Neotropical Catasetinae, the angiosperm lineage richest in taxa with ESD. We assess whether gains of ESD are associated with higher diversification rates compared to lineages with alternative systems while considering additional traits known to positively affect diversification rates in orchids. We found that ESD has evolved asynchronously three times during the last ~5 Myr. Lineages with ESD have consistently higher diversification rates than related lineages with other sexual systems. Habitat fragmentation due to mega-wetlands extinction, and climate instability are suggested as the driving forces for ESD evolution.
Collapse
Affiliation(s)
| | - Guillaume Chomicki
- Department of Plant Sciences, University of Oxford, South Park Road, OX1 3RB, Oxford, United Kingdom
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut de Sciences de l'Evolution (Université de Montpellier), Place Eugène Bataillon, 34095, Montpellier, France
| | - Jurriaan M de Vos
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, TW9 3AB, United Kingdom.
- Department of Environmental Sciences - Botany, University of Basel, Totengässlein 3, 4051, Basel, Switzerland.
| | - Aline C Martins
- Department of Botany, Federal University of Paraná, PB 19031, Curitiba, PR, 81531-980, Brazil
| | - Eric C Smidt
- Department of Botany, Federal University of Paraná, PB 19031, Curitiba, PR, 81531-980, Brazil
| | - Bente Klitgård
- Department of Identification and Naming, Royal Botanic Gardens Kew, Richmond, TW9 3AB, UK
| | - Günter Gerlach
- Botanischer Garten München, Menzinger Straße 67, D-80638, München, Germany
| | - Jochen Heinrichs
- Department für Biologie I, Systematische Botanik und Mykologie, Ludwig-Maximilians-Universität, Menzinger Straße 67, D-80638, München, Germany
| |
Collapse
|
32
|
Pérez-Escobar OA, Gottschling M, Chomicki G, Condamine FL, Klitgård BB, Pansarin E, Gerlach G. Andean Mountain Building Did not Preclude Dispersal of Lowland Epiphytic Orchids in the Neotropics. Sci Rep 2017; 7:4919. [PMID: 28687774 PMCID: PMC5501825 DOI: 10.1038/s41598-017-04261-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/22/2017] [Indexed: 11/17/2022] Open
Abstract
The Andean uplift is one of the major orographic events in the New World and has impacted considerably the diversification of numerous Neotropical lineages. Despite its importance for biogeography, the specific role of mountain ranges as a dispersal barrier between South and Central American lowland plant lineages is still poorly understood. The swan orchids (Cycnoches) comprise ca 34 epiphytic species distributed in lowland and pre-montane forests of Central and South America. Here, we study the historical biogeography of Cycnoches to better understand the impact of the Andean uplift on the diversification of Neotropical lowland plant lineages. Using novel molecular sequences (five nuclear and plastid regions) and twelve biogeographic models, we infer that the most recent common ancestor of Cycnoches originated in Amazonia ca 5 Mya. The first colonization of Central America occurred from a direct migration event from Amazonia, and multiple bidirectional trans-Andean migrations between Amazonia and Central America took place subsequently. Notably, these rare biological exchanges occurred well after major mountain building periods. The Andes have limited plant migration, yet it has seldom allowed episodic gene exchange of lowland epiphyte lineages such as orchids with great potential for effortless dispersal because of the very light, anemochorous seeds.
Collapse
Affiliation(s)
- Oscar Alejandro Pérez-Escobar
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians Universität, Menzinger Straße 67, D - 80638, Munich, Germany.
- Identification and Naming department, Royal Botanic Gardens, Kew, TW9 3AB, Surrey, UK.
| | - Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians Universität, Menzinger Straße 67, D - 80638, Munich, Germany
| | - Guillaume Chomicki
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians Universität, Menzinger Straße 67, D - 80638, Munich, Germany
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut de Sciences de l'Evolution (Université de Montpellier), Place Eugène Bataillon, 34095, Montpellier, France
| | - Bente B Klitgård
- Identification and Naming department, Royal Botanic Gardens, Kew, TW9 3AB, Surrey, UK
| | - Emerson Pansarin
- Departamento de Biologia, Facultade de Filosofia, Ciências e Letras, Universidade de Sao Paulo, Ribeirao Preto, SP, 14040-901, Brazil
| | - Günter Gerlach
- Botanischer Garten München, Menzinger Straße 61, D - 80638, Munich, Germany.
| |
Collapse
|
33
|
Pérez‐Escobar OA, Chomicki G, Condamine FL, Karremans AP, Bogarín D, Matzke NJ, Silvestro D, Antonelli A. Recent origin and rapid speciation of Neotropical orchids in the world's richest plant biodiversity hotspot. THE NEW PHYTOLOGIST 2017; 215:891-905. [PMID: 28631324 PMCID: PMC5575461 DOI: 10.1111/nph.14629] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/07/2017] [Indexed: 05/07/2023]
Abstract
The Andean mountains of South America are the most species-rich biodiversity hotspot worldwide with c. 15% of the world's plant species, in only 1% of the world's land surface. Orchids are a key element of the Andean flora, and one of the most prominent components of the Neotropical epiphyte diversity, yet very little is known about their origin and diversification. We address this knowledge gap by inferring the biogeographical history and diversification dynamics of the two largest Neotropical orchid groups (Cymbidieae and Pleurothallidinae), using two unparalleled, densely sampled orchid phylogenies (including more than 400 newly generated DNA sequences), comparative phylogenetic methods, geological and biological datasets. We find that the majority of Andean orchid lineages only originated in the last 20-15 million yr. Andean lineages are derived from lowland Amazonian ancestors, with additional contributions from Central America and the Antilles. Species diversification is correlated with Andean orogeny, and multiple migrations and recolonizations across the Andes indicate that mountains do not constrain orchid dispersal over long timescales. Our study sheds new light on the timing and geography of a major Neotropical diversification, and suggests that mountain uplift promotes species diversification across all elevational zones.
Collapse
Affiliation(s)
| | - Guillaume Chomicki
- Systematic Botany and MycologyUniversity of Munich (LMU)67 Menzinger Str.Munich80638Germany
| | - Fabien L. Condamine
- CNRSUMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier)Place Eugène Bataillon34095MontpellierFrance
| | - Adam P. Karremans
- Lankester Botanical GardenUniversity of Costa RicaPO Box 302‐7050CartagoCosta Rica
- Naturalis Biodiversity CenterLeiden2333 CRthe Netherlands
| | - Diego Bogarín
- Lankester Botanical GardenUniversity of Costa RicaPO Box 302‐7050CartagoCosta Rica
- Naturalis Biodiversity CenterLeiden2333 CRthe Netherlands
| | - Nicholas J. Matzke
- Division of Ecology, Evolution, and GeneticsResearch School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Daniele Silvestro
- Department of Biological and Environmental SciencesUniversity of Gothenburg413 19GothenburgSweden
- Department of Computational Biology, BiophoreUniversity of Lausanne1015LausanneSwitzerland
- Gothenburg Global Biodiversity CentreBox 461SE‐405 30GöteborgSweden
| | - Alexandre Antonelli
- Department of Biological and Environmental SciencesUniversity of Gothenburg413 19GothenburgSweden
- Gothenburg Global Biodiversity CentreBox 461SE‐405 30GöteborgSweden
- Gothenburg Botanical GardenCarl Skottsbergs gata 22A41319GothenburgSweden
| |
Collapse
|
34
|
Vargas OM, Ortiz EM, Simpson BB. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). THE NEW PHYTOLOGIST 2017; 214:1736-1750. [PMID: 28333396 DOI: 10.1111/nph.14530] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/19/2017] [Indexed: 05/21/2023]
Abstract
High-throughput sequencing is helping biologists to overcome the difficulties of inferring the phylogenies of recently diverged taxa. The present study analyzes the phylogenetic signal of genomic regions with different inheritance patterns using genome skimming and ddRAD-seq in a species-rich Andean genus (Diplostephium) and its allies. We analyzed the complete nuclear ribosomal cistron, the complete chloroplast genome, a partial mitochondrial genome, and a nuclear-ddRAD matrix separately with phylogenetic methods. We applied several approaches to understand the causes of incongruence among datasets, including simulations and the detection of introgression using the D-statistic (ABBA-BABA test). We found significant incongruence among the nuclear, chloroplast, and mitochondrial phylogenies. The strong signal of hybridization found by simulations and the D-statistic among genera and inside the main clades of Diplostephium indicate reticulate evolution as a main cause of phylogenetic incongruence. Our results add evidence for a major role of reticulate evolution in events of rapid diversification. Hybridization and introgression confound chloroplast and mitochondrial phylogenies in relation to the species tree as a result of the uniparental inheritance of these genomic regions. Practical implications regarding the prevalence of hybridization are discussed in relation to the phylogenetic method.
Collapse
Affiliation(s)
- Oscar M Vargas
- Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI, 48109, USA
| | - Edgardo M Ortiz
- Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Beryl B Simpson
- Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
35
|
Hutchinson MC, Cagua EF, Balbuena JA, Stouffer DB, Poisot T. paco: implementing Procrustean Approach to Cophylogeny in R. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12736] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology Princeton University 106A Guyot Hall Princeton NJ 08544 USA
- Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch New Zealand
| | - E. Fernando Cagua
- Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch New Zealand
| | - Juan A. Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia 2 Professor José Beltrán Martínez StreetPaterna Valencia 46980 Spain
| | - Daniel B. Stouffer
- Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch New Zealand
| | - Timothée Poisot
- Department of Biological Sciences, University of Montréal Pavillon Marie‐Victorin 90 Vincent‐d’Indy Avenue Montréal QC H2V 2S9 Canada
| |
Collapse
|
36
|
Cophylogenetic analysis of New World ground-doves (Aves: Columbidae) and their parasitic wing lice (Insecta: Phthiraptera: Columbicola). Mol Phylogenet Evol 2016; 103:122-132. [DOI: 10.1016/j.ympev.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 11/24/2022]
|
37
|
Gordon BR, Klinger CR, Weese DJ, Lau JA, Burke PV, Dentinger BTM, Heath KD. Decoupled genomic elements and the evolution of partner quality in nitrogen-fixing rhizobia. Ecol Evol 2016; 6:1317-27. [PMID: 27087920 PMCID: PMC4775534 DOI: 10.1002/ece3.1953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/24/2023] Open
Abstract
Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long-term impacts of global changes, such as increased N (nitrogen) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or HGT (horizontal gene transfer). In a previous work using the legume/rhizobia mutualism, we demonstrated that long-term nitrogen fertilization caused the evolution of less-mutualistic rhizobia. Here, we use our 63 previously isolated rhizobium strains in comparative phylogenetic and quantitative genetic analyses to determine the degree to which variation in partner quality is attributable to phylogenetic relationships among strains versus recent genetic changes in response to N fertilization. We find evidence of distinct evolutionary relationships between chromosomal and pSym genes, and broad similarity between pSym genes. We also find that nifD has a unique evolutionary history that explains much of the variation in partner quality, and suggest MoFe subunit interaction sites in the evolution of less-mutualistic rhizobia. These results provide insight into the mechanisms behind the evolutionary response of rhizobia to long-term N fertilization, and we discuss the implications of our results for the evolution of the mutualism.
Collapse
Affiliation(s)
- Benjamin R. Gordon
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| | - Christie R. Klinger
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| | - Dylan J. Weese
- Department of BiologySt. Ambrose University518 West Locust StDavenportIowa52803
| | - Jennifer A. Lau
- Kellogg Biological Station and Department of Plant BiologyMichigan State University3700 E. Gull Lake DriveHickory CornersMichigan49060
| | - Patricia V. Burke
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| | | | - Katy D. Heath
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| |
Collapse
|