1
|
Dirnberger M, Peláez-Campomanes P, López-Antoñanzas R. Phylogenetic relationships of Neogene hamsters (Mammalia, Rodentia, Cricetinae) revealed under Bayesian inference and maximum parsimony. PeerJ 2024; 12:e18440. [PMID: 39559336 PMCID: PMC11572387 DOI: 10.7717/peerj.18440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
There is an ongoing debate about the internal systematics of today's group of hamsters (Cricetinae), following new insights that are gained based on molecular data. Regarding the closely related fossil cricetids, however, most studies deal with only a limited number of genera and statements about their possible relationships are rare. In this study, 41 fossil species from the Late Miocene to the Pliocene, belonging to seven extinct cricetine genera, Collimys, Rotundomys, Neocricetodon, Pseudocricetus, Cricetulodon, Apocricetus and Hattomys are analysed in a phylogenetic framework using traditional maximum parsimony and Bayesian inference approaches. Following thorough model testing, a relaxed-clock Bayesian inference analysis is performed under tip-dating to estimate divergence times simultaneously. Furthermore, so-called 'rogue' taxa are identified and excluded from the final trees to improve the informative value of the shown relationships. Based on these resulting trees, the fit of the topologies to the stratigraphy is assessed and the ancestral states of the characters are reconstructed under a parsimonious approach and stochastic character mapping. The overall topologies resulting from Bayesian and parsimonious approaches are largely congruent to each other and confirm the monophyly of most of the genera. Additionally, synapomorphies can be identified for each of these genera based on the ancestral state reconstructions. Only Cricetulodon turns out to be paraphyletic, while 'Cricetulodon' complicidens is a member of Neocricetodon. Lastly, this work makes a contribution to a debate that went on for decades, as the genus Kowalskia can be confirmed as junior synonym of Neocricetodon.
Collapse
|
2
|
Rovatsos M, Mazzoleni S, Augstenová B, Altmanová M, Velenský P, Glaw F, Sanchez A, Kratochvíl L. Heteromorphic ZZ/ZW sex chromosomes sharing gene content with mammalian XX/XY are conserved in Madagascan chameleons of the genus Furcifer. Sci Rep 2024; 14:4898. [PMID: 38418601 PMCID: PMC10901801 DOI: 10.1038/s41598-024-55431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.
Collapse
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | | | - Frank Glaw
- Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany
| | - Antonio Sanchez
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Carrasco PA, Koch C, Grazziotin FG, Venegas PJ, Chaparro JC, Scrocchi GJ, Salazar-Valenzuela D, Leynaud GC, Mattoni CI. Total-evidence phylogeny and evolutionary morphology of New World pitvipers (Serpentes: Viperidae: Crotalinae). Cladistics 2023; 39:71-100. [PMID: 36701490 DOI: 10.1111/cla.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023] Open
Abstract
Crotalines (pitvipers) in the Americas are distributed from southern Canada to southern Argentina, and are represented by 13 genera and 163 species that constitute a monophyletic group. Their phylogenetic relationships have been assessed mostly based on DNA sequences, while morphological data have scarcely been used for phylogenetic inquiry. We present a total-evidence phylogeny of New World pitvipers, the most taxon/character comprehensive phylogeny to date. Our analysis includes all genera, morphological data from external morphology, cranial osteology and hemipenial morphology, and DNA sequences from mitochondrial and nuclear genes. We performed analyses with parsimony as an optimality criterion, using different schemes for character weighting. We evaluated the contribution of the different sources of characters to the phylogeny through analyses of reduced datasets and calculation of weighted homoplasy and retention indexes. We performed a morphological character analysis to identify synapomorphies for the main clades. In terms of biogeography, our results support a single colonization event of the Americas by pitvipers, and a cladogenetic event into a Neotropical clade and a North American/Neotropical clade. The results also shed light on the previously unstable position of some taxa, although they could not sufficiently resolve the position of Bothrops lojanus, which may lead to the paraphyly of either Bothrops or Bothrocophias. The morphological character analyses demonstrated that an important phylogenetic signal is contained in characters related to head scalation, the jaws and the dorsum of the skull, and allowed us to detect morphological convergences in external morphology associated with arboreality.
Collapse
Affiliation(s)
- Paola A Carrasco
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, Córdoba, 5000, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Rondeau, 798, Córdoba, 5000, Argentina
| | - Claudia Koch
- Leibniz Institute for the Analysis of Biodiversity Change/Zoologisches Forschungsinstitute und Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo, SP, Brazil
| | - Pablo J Venegas
- Instituto Peruano de Herpetología, Salazar Bondy 136, Santiago de Surco 15038, Lima, Peru.,Rainforest Partnership, 4005 Guadalupe St, Austin, TX, 78751, USA
| | - Juan C Chaparro
- Museo de Biodiversidad del Perú, Urbanización Mariscal Gamarra A-61, Zona 2, Cusco, Peru.,Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Paraninfo Universitario (Plaza de Armas s/n), Cusco, Peru
| | - Gustavo J Scrocchi
- UEL-CONICET and Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, EC170301, Quito, Ecuador
| | - Gerardo C Leynaud
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, Córdoba, 5000, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Rondeau, 798, Córdoba, 5000, Argentina
| | - Camilo I Mattoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, Córdoba, 5000, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Rondeau, 798, Córdoba, 5000, Argentina
| |
Collapse
|
4
|
Anatomy and phylogeny of a new small macraucheniid (Mammalia: Litopterna) from the Bahía Inglesa Formation (late Miocene), Atacama Region, Northern Chile. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
AbstractWe describe a new macraucheniine macraucheniid, Micrauchenia saladensis gen. et sp. nov., from the late Miocene (Huayquerian SALMA). This is the first litoptern from Bahía Inglesa Formation, Chile. The specimen includes a partial mandible, cervical and thoracic vertebrae fragments, and portions of the forelimbs (a scapula fragment, an ulna-radius fragment, seven carpals, three metapodials, two proximal phalanges and four intermediate phalanges). The postcranial anatomy of Micrauchenia saladensis is consistent with terrestrial and cursorial locomotion, which suggests an allochthonous position of this specimen within the marine Bahía Inglesa Formation. The fusion of the ulna and radius and the presence of a radial aliform expansion align Micrauchenia with other macraucheniines, with which it shares these features. We interpret the fusion of the ulna and radius as a cursorial specialization and the aliform expansion as an adaptation for strong flexion movements and to resist higher transverse stresses during locomotion. In addition, Micrauchenia saladensis is the smallest member of the subfamily Macraucheniinae. To test the systematics and phylogenetics of this specimen, we expanded previous morphological matrices of macraucheniids by adding one dental and eight postcranial characters and scoring Micrauchenia saladensis. We performed maximum parsimony and Bayesian phylogenetic analyses, the latter applied for the first time to macraucheniid phylogeny. Our analyses confirm Micrauchenia saladensis as a member of the subfamily Macraucheniinae, although with uncertain affinities within this subfamily.
Collapse
|
5
|
Wu L, Tong Y, Ayivi SPG, Storey KB, Zhang JY, Yu DN. The Complete Mitochondrial Genomes of Three Sphenomorphinae Species (Squamata: Scincidae) and the Selective Pressure Analysis on Mitochondrial Genomes of Limbless Isopachys gyldenstolpei. Animals (Basel) 2022; 12:ani12162015. [PMID: 36009607 PMCID: PMC9404441 DOI: 10.3390/ani12162015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
In order to adapt to diverse habitats, organisms often evolve corresponding adaptive mechanisms to cope with their survival needs. The species-rich family of Scincidae contains both limbed and limbless species, which differ fundamentally in their locomotor demands, such as relying on the movement of limbs or only body swing to move. Locomotion requires energy, and different types of locomotion have their own energy requirements. Mitochondria are the energy factories of living things, which provide a lot of energy for various physiological activities of organisms. Therefore, mitochondrial genomes could be tools to explore whether the limb loss of skinks are selected by adaptive evolution. Isopachys gyldenstolpei is a typical limbless skink. Here, we report the complete mitochondrial genomes of I. gyldenstolpei, Sphenomorphus indicus, and Tropidophorus hainanus. The latter two species were included as limbed comparator species to the limbless I. gyldenstolpei. The results showed that the full lengths of the mitochondrial genomes of I. gyldenstolpei, S. indicus, and T. hainanus were 17,210, 16,944, and 17,001 bp, respectively. Three mitochondrial genomes have typical circular double-stranded structures similar to other reptiles, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and the control region. Three mitochondrial genomes obtained in this study were combined with fifteen mitochondrially complete genomes of Scincidae in the NCBI database; the phylogenetic relationship between limbless I. gyldenstolpei and limbed skinks (S. indicus and T. hainanus) is discussed. Through BI and ML trees, Sphenomorphinae and Mabuyinae were monophyletic, while the paraphyly of Scincinae was also recovered. The limbless skink I. gyldenstolpei is closer to the species of Tropidophorus, which has formed a sister group with (T. hainanus + T. hangman). In the mitochondrial genome adaptations between limbless I. gyldenstolpei and limbed skinks, one positively selected site was found in the branch-site model analysis, which was located in ND2 (at position 28, BEB value = 0.907). Through analyzing the protein structure and function of the selected site, we found it was distributed in mitochondrial protein complex I. Positive selection of some mitochondrial genes in limbless skinks may be related to the requirement of energy to fit in their locomotion. Further research is still needed to confirm this conclusion though.
Collapse
Affiliation(s)
- Lian Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China or
| | - Yao Tong
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China or
| | | | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China or
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China or
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
- Correspondence:
| |
Collapse
|
6
|
López-Antoñanzas R, Mitchell J, Simões TR, Condamine FL, Aguilée R, Peláez-Campomanes P, Renaud S, Rolland J, Donoghue PCJ. Integrative Phylogenetics: Tools for Palaeontologists to Explore the Tree of Life. BIOLOGY 2022; 11:1185. [PMID: 36009812 PMCID: PMC9405010 DOI: 10.3390/biology11081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
The modern era of analytical and quantitative palaeobiology has only just begun, integrating methods such as morphological and molecular phylogenetics and divergence time estimation, as well as phenotypic and molecular rates of evolution. Calibrating the tree of life to geological time is at the nexus of many disparate disciplines, from palaeontology to molecular systematics and from geochronology to comparative genomics. Creating an evolutionary time scale of the major events that shaped biodiversity is key to all of these fields and draws from each of them. Different methodological approaches and data employed in various disciplines have traditionally made collaborative research efforts difficult among these disciplines. However, the development of new methods is bridging the historical gap between fields, providing a holistic perspective on organismal evolutionary history, integrating all of the available evidence from living and fossil species. Because phylogenies with only extant taxa do not contain enough information to either calibrate the tree of life or fully infer macroevolutionary dynamics, phylogenies should preferably include both extant and extinct taxa, which can only be achieved through the inclusion of phenotypic data. This integrative phylogenetic approach provides ample and novel opportunities for evolutionary biologists to benefit from palaeontological data to help establish an evolutionary time scale and to test core macroevolutionary hypotheses about the drivers of biological diversification across various dimensions of organisms.
Collapse
Affiliation(s)
- Raquel López-Antoñanzas
- Institut des Sciences de l’Évolution (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), Université de Montpellier, 34090 Montpellier, France
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Jonathan Mitchell
- Department of Biology, West Virginia University Institute of Technology, 410 Neville Street, Beckley, WV 25801, USA
| | - Tiago R. Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), Université de Montpellier, 34090 Montpellier, France
| | - Robin Aguilée
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
| | - Pablo Peláez-Campomanes
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Jonathan Rolland
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
| | | |
Collapse
|
7
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
8
|
Bolet A, Stubbs TL, Herrera-Flores JA, Benton MJ. The Jurassic rise of squamates as supported by lepidosaur disparity and evolutionary rates. eLife 2022; 11:e66511. [PMID: 35502582 PMCID: PMC9064307 DOI: 10.7554/elife.66511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
The squamates (lizards, snakes, and relatives) today comprise more than 10,000 species, and yet their sister group, the Rhynchocephalia, is represented by a single species today, the tuatara. The explosion in squamate diversity has been tracked back to the Cretaceous Terrestrial Revolution, 100 million years ago (Ma), the time when flowering plants began their takeover of terrestrial ecosystems, associated with diversification of coevolving insects and insect-eating predators such as lizards, birds, and mammals. Squamates arose much earlier, but their long pre-Cretaceous history of some 150 million years (Myr) is documented by sparse fossils. Here, we provide evidence for an initial radiation of squamate morphology in the Middle and Late Jurassic (174-145 Ma), and show that they established their key ecological roles much earlier than had been assumed, and they have not changed them much since.
Collapse
Affiliation(s)
- Arnau Bolet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- School of Earth Sciences, University of BristolBristolUnited Kingdom
| | - Thomas L Stubbs
- School of Earth Sciences, University of BristolBristolUnited Kingdom
| | | | - Michael J Benton
- School of Earth Sciences, University of BristolBristolUnited Kingdom
| |
Collapse
|
9
|
Čerňanský A, Stanley EL, Daza JD, Bolet A, Arias JS, Bauer AM, Vidal-García M, Bevitt JJ, Peretti AM, Aung NN, Evans SE. A new Early Cretaceous lizard in Myanmar amber with exceptionally preserved integument. Sci Rep 2022; 12:1660. [PMID: 35102237 PMCID: PMC8803969 DOI: 10.1038/s41598-022-05735-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
We here report on a well-preserved juvenile lizard specimen in Albian amber (ca. 110 mya) from the Hkamti site (Myanmar). This new taxon is represented by an articulated skull and the anterior portion of the trunk, including the pectoral girdle and forelimbs. The scleral ossicles and eyelid are also visible, and the specimen exhibits pristine detail of the integument (of both head and body). In a combined molecular and morphological analysis, it was consistently recovered as a scincoid lizard (Scinciformata), as sister to Tepexisaurus + Xantusiidae. However, the phylogenetic position of the new taxon should be interpreted with caution as the holotype is an immature individual. We explored the possibility of miscoding ontogenetically variable characters by running alternative analyses in which these characters were scored as missing data for our taxon. With the exception of one tree, in which it was sister to Amphisbaenia, the specimen was recovered as a Pan-xantusiid. Moreover, we cannot rule out the possibility that it represents a separate lineage of uncertain phylogenetic position, as it is the case for many Jurassic and Cretaceous taxa. Nonetheless, this fossil offers a rare opportunity to glimpse the external appearance of one group of lizards during the Early Cretaceous.
Collapse
Affiliation(s)
- Andrej Čerňanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215, Bratislava, Slovakia.
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, Gainesville, FL, USA
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Arnau Bolet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - J Salvador Arias
- Unidad Ejecutora Lillo (CONICET, Fundación Miguel Lillo), San Miguel de Tucumán, Argentina
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - Marta Vidal-García
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Adolf M Peretti
- GRS Gemresearch Swisslab AG, Baumschulweg 13, 6045, Meggen, Switzerland
- Peretti Museum Foundation, Baumschulweg 13, 6045, Meggen, Switzerland
| | - Nyi Nyi Aung
- Peretti Museum Foundation, Baumschulweg 13, 6045, Meggen, Switzerland
- Myanmar Geosciences Society, c/o Department of Geology, University of Yangon, 11041, Yangon, Myanmar
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
10
|
Lafuma F, Corfe IJ, Clavel J, Di-Poï N. Multiple evolutionary origins and losses of tooth complexity in squamates. Nat Commun 2021; 12:6001. [PMID: 34650041 PMCID: PMC8516937 DOI: 10.1038/s41467-021-26285-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Teeth act as tools for acquiring and processing food, thus holding a prominent role in vertebrate evolution. In mammals, dental-dietary adaptations rely on tooth complexity variations controlled by cusp number and pattern. Complexity increase through cusp addition has dominated the diversification of mammals. However, studies of Mammalia alone cannot reveal patterns of tooth complexity conserved throughout vertebrate evolution. Here, we use morphometric and phylogenetic comparative methods across fossil and extant squamates to show they also repeatedly evolved increasingly complex teeth, but with more flexibility than mammals. Since the Late Jurassic, multiple-cusped teeth evolved over 20 times independently from a single-cusped common ancestor. Squamates frequently lost cusps and evolved varied multiple-cusped morphologies at heterogeneous rates. Tooth complexity evolved in correlation with changes in plant consumption, resulting in several major increases in speciation. Complex teeth played a critical role in vertebrate evolution outside Mammalia, with squamates exemplifying a more labile system of dental-dietary evolution.
Collapse
Affiliation(s)
- Fabien Lafuma
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Ian J Corfe
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
- Geological Survey of Finland, FI-02150, Espoo, Finland.
| | - Julien Clavel
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
11
|
Baeckens S, Temmerman M, Gorb SN, Neto C, Whiting MJ, Van Damme R. Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. J Exp Biol 2021; 224:272432. [PMID: 34642763 PMCID: PMC8541734 DOI: 10.1242/jeb.242939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Animals that habitually cross the boundary between water and land face specific challenges with respect to locomotion, respiration, insulation, fouling and waterproofing. Many semi-aquatic invertebrates and plants have developed complex surface microstructures with water-repellent properties to overcome these problems, but equivalent adaptations of the skin have not been reported for vertebrates that encounter similar environmental challenges. Here, we document the first evidence of evolutionary convergence of hydrophobic structured skin in a group of semi-aquatic tetrapods. We show that the skin surface of semi-aquatic species of Anolis lizards is characterized by a more elaborate microstructural architecture (i.e. longer spines and spinules) and a lower wettability relative to closely related terrestrial species. In addition, phylogenetic comparative models reveal repeated independent evolution of enhanced skin hydrophobicity associated with the transition to a semi-aquatic lifestyle, providing evidence of adaptation. Our findings invite a new and exciting line of inquiry into the ecological significance, evolutionary origin and developmental basis of hydrophobic skin surfaces in semi-aquatic lizards, which is essential for understanding why and how the observed skin adaptations evolved in some and not other semi-aquatic tetrapod lineages. Summary: Multiple Anolis lineages independently evolved a similar skin surface microarchitecture with water-repellent properties as an adaptation to a semi-aquatic lifestyle.
Collapse
Affiliation(s)
- Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Laboratory for the Evolution and Optics of Nanostructures, Department of Biology, Ghent University, 9000 Gent,Belgium
| | - Marie Temmerman
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute of the Christian Albrecht Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Chiara Neto
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
12
|
Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction. Nat Commun 2021; 12:5335. [PMID: 34521829 PMCID: PMC8440539 DOI: 10.1038/s41467-021-25136-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
Mass extinctions have repeatedly shaped global biodiversity. The Cretaceous-Paleogene (K-Pg) mass extinction caused the demise of numerous vertebrate groups, and its aftermath saw the rapid diversification of surviving mammals, birds, frogs, and teleost fishes. However, the effects of the K-Pg extinction on the evolution of snakes-a major clade of predators comprising over 3,700 living species-remains poorly understood. Here, we combine an extensive molecular dataset with phylogenetically and stratigraphically constrained fossil calibrations to infer an evolutionary timescale for Serpentes. We reveal a potential diversification among crown snakes associated with the K-Pg mass extinction, led by the successful colonisation of Asia by the major extant clade Afrophidia. Vertebral morphometrics suggest increasing morphological specialisation among marine snakes through the Paleogene. The dispersal patterns of snakes following the K-Pg underscore the importance of this mass extinction event in shaping Earth's extant vertebrate faunas.
Collapse
|
13
|
Ananjeva NB, Gordeev DA, Korost DV. The Review of the Autotomy of Agamid Lizards with Considerations about the Types of Autotomy and Regeneration. J Dev Biol 2021; 9:jdb9030032. [PMID: 34449652 PMCID: PMC8395757 DOI: 10.3390/jdb9030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
We present a review of the data on the intervertebral autotomy and regeneration of agamid lizards based on an analysis of information obtained over a 35-year period after the publication of thorough reviews (Arnold, 1984, 1988 and Bellairs, Bryant, 1985). It is supplemented by our own studies of 869 specimens of agamid lizards (Sauria, Agamidae) stored in the herpetological collections of the Zoological Institute of the Russian Academy of Sciences (St. Petersburg, Russia) and the Zoological Museum of the Moscow State University (Moscow, Russia), represented by 31 species of 16 genera. The manifestations of the ability for autotomy and regeneration in phylogenetic lineages within the family—Leiolepidinae, Amphibolurinae, Agaminae, Draconinae—are considered. A comparative morphological analysis of the structure of the caudal vertebrae was carried out using the Computer Microtomography Methods (micro-CT) in the following ecomorphological types of agama: (1) with developed abilities to caudal autotomy and regeneration, (2) with the ability to caudal autotomy but without regeneration and (3) without the ability to autotomy. The phenomenon of intervertebral autotomy (urotomy) in snakes is considered too. Possible ways of evolution of the ability to caudal autotomy as a defense strategy against predators are discussed in the phylogenetic context.
Collapse
Affiliation(s)
| | - Dmitry Anatolyevich Gordeev
- Institute of Natural Sciences, Department of Biology, Volgograd State University, 400062 Volgograd, Russia;
- Russian Federal Research Institute of Fisheries and Oceanography (VolgogradNIRO), 400001 Volgograd, Russia
| | - Dmitry Vyacheslavovich Korost
- Department of Geology and Geochemistry of Fossil Fuels, Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
14
|
Dutel H, Gröning F, Sharp AC, Watson PJ, Herrel A, Ross CF, Jones MEH, Evans SE, Fagan MJ. Comparative cranial biomechanics in two lizard species: impact of variation in cranial design. J Exp Biol 2021; 224:jeb.234831. [PMID: 33504585 PMCID: PMC7970069 DOI: 10.1242/jeb.234831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus. In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus. Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards. Summary:In vivo measurements and computer-based simulations of the cranial mechanics of two large lizards indicate that similar mechanical behaviour is shared by lizards with distinct cranial architecture, and show the importance of the postorbital bar in resisting the feeding loads.
Collapse
Affiliation(s)
- Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK .,Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| | - Flora Gröning
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alana C Sharp
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.,Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Peter J Watson
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| | - Anthony Herrel
- UMR 7179 MECADEV, MNHN - CNRS, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Callum F Ross
- Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Marc E H Jones
- Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Susan E Evans
- Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Michael J Fagan
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
15
|
Herrera-Flores JA, Stubbs TL, Benton MJ. Ecomorphological diversification of squamates in the Cretaceous. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201961. [PMID: 33959350 PMCID: PMC8074880 DOI: 10.1098/rsos.201961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 05/14/2023]
Abstract
Squamates (lizards and snakes) are highly successful modern vertebrates, with over 10 000 species. Squamates have a long history, dating back to at least 240 million years ago (Ma), and showing increasing species richness in the Late Cretaceous (84 Ma) and Early Palaeogene (66-55 Ma). We confirm that the major expansion of dietary functional morphology happened before these diversifications, in the mid-Cretaceous, 110-90 Ma. Until that time, squamates had relatively uniform tooth types, which then diversified substantially and ecomorphospace expanded to modern levels. This coincides with the Cretaceous Terrestrial Revolution, when angiosperms began to take over terrestrial ecosystems, providing new roles for plant-eating and pollinating insects, which were, in turn, new sources of food for herbivorous and insectivorous squamates. There was also an early Late Cretaceous (95-90 Ma) rise in jaw size disparity, driven by the diversification of marine squamates, particularly early mosasaurs. These events established modern levels of squamate feeding ecomorphology before the major steps in species diversification, confirming decoupling of diversity and disparity. In fact, squamate feeding ecomorphospace had been partially explored in the Late Jurassic and Early Cretaceous, and jaw innovation in Late Cretaceous squamates involved expansions at the extremes of morphospace.
Collapse
Affiliation(s)
- Jorge A. Herrera-Flores
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Thomas L. Stubbs
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michael J. Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Spasojevic T, Broad GR, Sääksjärvi IE, Schwarz M, Ito M, Korenko S, Klopfstein S. Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae). Syst Biol 2021; 70:322-339. [PMID: 33057674 PMCID: PMC7875445 DOI: 10.1093/sysbio/syaa079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023] Open
Abstract
Taxon sampling is a central aspect of phylogenetic study design, but it has received limited attention in the context of total-evidence dating, a widely used dating approach that directly integrates molecular and morphological information from extant and fossil taxa. We here assess the impact of commonly employed outgroup sampling schemes and missing morphological data in extant taxa on age estimates in a total-evidence dating analysis under the uniform tree prior. Our study group is Pimpliformes, a highly diverse, rapidly radiating group of parasitoid wasps of the family Ichneumonidae. We analyze a data set comprising 201 extant and 79 fossil taxa, including the oldest fossils of the family from the Early Cretaceous and the first unequivocal representatives of extant subfamilies from the mid-Paleogene. Based on newly compiled molecular data from ten nuclear genes and a morphological matrix that includes 222 characters, we show that age estimates become both older and less precise with the inclusion of more distant and more poorly sampled outgroups. These outgroups not only lack morphological and temporal information but also sit on long terminal branches and considerably increase the evolutionary rate heterogeneity. In addition, we discover an artifact that might be detrimental for total-evidence dating: "bare-branch attraction," namely high attachment probabilities of certain fossils to terminal branches for which morphological data are missing. Using computer simulations, we confirm the generality of this phenomenon and show that a large phylogenetic distance to any of the extant taxa, rather than just older age, increases the risk of a fossil being misplaced due to bare-branch attraction. After restricting outgroup sampling and adding morphological data for the previously attracting, bare branches, we recover a Jurassic origin for Pimpliformes and Ichneumonidae. This first age estimate for the group not only suggests an older origin than previously thought but also that diversification of the crown group happened well before the Cretaceous-Paleogene boundary. Our case study demonstrates that in order to obtain robust age estimates, total-evidence dating studies need to be based on a thorough and balanced sampling of both extant and fossil taxa, with the aim of minimizing evolutionary rate heterogeneity and missing morphological information. [Bare-branch attraction; ichneumonids; fossils; morphological matrix; phylogeny; RoguePlots.].
Collapse
Affiliation(s)
- Tamara Spasojevic
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Department of Entomology, National Museum of Natural History, Washington, DC 20560, USA
| | - Gavin R Broad
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | | | | | - Masato Ito
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, 657-8501 Japan
| | - Stanislav Korenko
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague 6, Suchdol, Czech Republic
| | - Seraina Klopfstein
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Abteilung für Biowissenschaften, Naturhistorisches Museum Basel, 4051 Basel, Switzerland
| |
Collapse
|
17
|
Scarpetta SG. Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200317. [PMID: 32968509 PMCID: PMC7481707 DOI: 10.1098/rsos.200317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Teiid lizards are well represented in the fossil record and are common components of modern ecosystems in North and South America. Many fossils were referred to the cnemidophorine teiid group (whiptails, racerunners and relatives), particularly from North America. However, systematic interpretations of morphological features in cnemidophorines were hampered by the historically problematic taxonomy of the clade, and the biogeography and chronology of cnemidophorine evolution in North America is poorly understood from the fossil record. Few fossil cnemidophorines were identified with an apomorphy-based diagnosis, and there are almost no fossil cnemidophorines that could be used to anchor node calibrations. Here, I describe a cnemidophorine from the Miocene Ogallala Group of Nebraska and diagnose the fossil using apomorphies. In that process, I clarify the systematic utility of several morphological features of cnemidophorine lizards. I refer the fossil to the least inclusive clade containing Aspidoscelis, Holcosus and Pholidoscelis. The most conservative minimum age of the locality of the fossil is a fission-track date of 6.3 Ma, but mammal biochronology provides a more refined age of 9.4 Ma, which can be used as a minimum age for the crown cnemidophorine clade in divergence time analyses. The fossil indicates that a cnemidophorine lineage that does not live in Nebraska today inhabited the area during the Miocene. I refrain from naming a new taxon pending discovery of additional fossil material of the lineage to which the fossil belonged.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Dunoyer LA, Seifert AW, Van Cleve J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:94-115. [PMID: 32558244 DOI: 10.1002/jez.b.22974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 11/11/2022]
Abstract
Some form of regeneration occurs in all lifeforms and extends from single-cell organisms to humans. The degree to which regenerative ability is distributed across different taxa, however, is harder to ascertain given the potential for phylogenetic constraint or inertia, and adaptive processes to shape this pattern. Here, we examine the phylogenetic history of regeneration in two groups where the trait has been well-studied: arthropods and reptiles. Because autotomy is often present alongside regeneration in these groups, we performed ancestral state reconstructions for both traits to more precisely assess the timing of their origins and the degree to which these traits coevolve. Using an ancestral trait reconstruction, we find that autotomy and regeneration were present at the base of the arthropod and reptile trees. We also find that when autotomy is lost it does not re-evolve easily. Lastly, we find that the distribution of regeneration is intimately connected to autotomy with the association being stronger in reptiles than in arthropods. Although these patterns suggest that decoupling autotomy and regeneration at a broad phylogenetic scale may be difficult, the available data provides useful insight into their entanglement. Ultimately, our reconstructions provide the important groundwork to explore how selection may have played a role during the loss of regeneration in specific lineages.
Collapse
Affiliation(s)
- Luc A Dunoyer
- Department of Biology, University of Kentucky, Lexington, Kentucky.,Department of Life Sciences, Wake Technical Community College, Raleigh, North Carolina
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Bittencourt JS, Simões TR, Caldwell MW, Langer MC. Discovery of the oldest South American fossil lizard illustrates the cosmopolitanism of early South American squamates. Commun Biol 2020; 3:201. [PMID: 32350412 PMCID: PMC7190622 DOI: 10.1038/s42003-020-0926-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/31/2020] [Indexed: 11/09/2022] Open
Abstract
Squamates have an extremely long evolutionary history with a fossil record that extends into the Middle Triassic. However, most of our knowledge of their early evolutionary history is derived from Laurasian records. Therefore, fundamental questions regarding the early evolution of squamates in the Southern Hemisphere, such as the origins of the extremely diverse and endemic South American fauna, remain unanswered. Here, we describe a new lizard species that represents the oldest fossil squamate from South America, demonstrating that squamates were present on that continent at least 20 million years earlier than previously recorded. The new species represents the first occurrence of the extinct squamate family Paramacellodidae in South America and displays an unusual limb morphology. Finally, our findings suggest early South American squamates were part of a much broader distribution of their respective clades, in sharp contrast to the high levels of endemicity characteristic of modern faunas.
Collapse
Affiliation(s)
- Jonathas Souza Bittencourt
- Departamento de Geologia, Laboratório de Paleontologia e Macroevolução (CPMTC-IGC), Universidade Federal de Minas Gerais, Belo Horizonte-MG, 31270-901, Brazil.
| | - Tiago Rodrigues Simões
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| | - Michael Wayne Caldwell
- Department of Biological Sciences, and Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Max Cardoso Langer
- Departamento de Biologia, Laboratório de Paleontologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto-SP, 14040-901, Brazil
| |
Collapse
|
20
|
Álvarez-Padilla F, Kallal RJ, Hormiga G. Taxonomy and Phylogenetics of Nanometinae and Other Australasian Orb-Weaving Spiders (Araneae: Tetragnathidae). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2020. [DOI: 10.1206/0003-0090.438.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fernando Álvarez-Padilla
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México
| | - Robert J. Kallal
- Department of Biological Sciences, The George Washington University
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University
| |
Collapse
|
21
|
Blom MPK, Matzke NJ, Bragg JG, Arida E, Austin CC, Backlin AR, Carretero MA, Fisher RN, Glaw F, Hathaway SA, Iskandar DT, McGuire JA, Karin BR, Reilly SB, Rittmeyer EN, Rocha S, Sanchez M, Stubbs AL, Vences M, Moritz C. Habitat preference modulates trans-oceanic dispersal in a terrestrial vertebrate. Proc Biol Sci 2019; 286:20182575. [PMID: 31161911 DOI: 10.1098/rspb.2018.2575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of long-distance dispersal (LDD) in shaping geographical distributions has been debated since the nineteenth century. In terrestrial vertebrates, LDD events across large water bodies are considered highly improbable, but organismal traits affecting dispersal capacity are generally not taken into account. Here, we focus on a recent lizard radiation and combine a summary-coalescent species tree based on 1225 exons with a probabilistic model that links dispersal capacity to an evolving trait, to investigate whether ecological specialization has influenced the probability of trans-oceanic dispersal. Cryptoblepharus species that occur in coastal habitats have on average dispersed 13 to 14 times more frequently than non-coastal species and coastal specialization has, therefore, led to an extraordinarily widespread distribution that includes multiple continents and distant island archipelagoes. Furthermore, their presence across the Pacific substantially predates the age of human colonization and we can explicitly reject the possibility that these patterns are solely shaped by human-mediated dispersal. Overall, by combining new analytical methods with a comprehensive phylogenomic dataset, we use a quantitative framework to show how coastal specialization can influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.
Collapse
Affiliation(s)
- Mozes P K Blom
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,2 Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung , Berlin , Germany
| | - Nicholas J Matzke
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,3 School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Jason G Bragg
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| | - Evy Arida
- 4 Research Center for Biology, The Indonesian Institute of Sciences , Cibinong , Indonesia
| | | | - Adam R Backlin
- 6 U.S. Geological Survey, Western Ecological Research Center , Santa Ana, CA , USA
| | | | - Robert N Fisher
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Frank Glaw
- 9 Department of Herpetology, Zoologische Staatssamlung Münich , Munich , Germany
| | - Stacie A Hathaway
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Djoko T Iskandar
- 10 School of Life Sciences and Technology, Institut Teknologi , Bandung , Indonesia
| | - Jimmy A McGuire
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Benjamin R Karin
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Sean B Reilly
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Eric N Rittmeyer
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,5 Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| | - Sara Rocha
- 12 Department of Biochemistry, Genetics and Immunology & Biomedical Research Center (CINBIO), University of Vigo , Vigo , Spain
| | | | - Alexander L Stubbs
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Miguel Vences
- 14 Zoological Institute, Technische Universität Braunschweig , Braunschweig , Germany
| | - Craig Moritz
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| |
Collapse
|
22
|
Dobson JS, Zdenek CN, Hay C, Violette A, Fourmy R, Cochran C, Fry BG. Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage. Toxins (Basel) 2019; 11:E255. [PMID: 31067768 PMCID: PMC6563220 DOI: 10.3390/toxins11050255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
The functional activities of Anguimorpha lizard venoms have received less attention compared to serpent lineages. Bite victims of varanid lizards often report persistent bleeding exceeding that expected for the mechanical damage of the bite. Research to date has identified the blockage of platelet aggregation as one bleeding-inducing activity, and destructive cleavage of fibrinogen as another. However, the ability of the venoms to prevent clot formation has not been directly investigated. Using a thromboelastograph (TEG5000), clot strength was measured after incubating human fibrinogen with Heloderma and Varanus lizard venoms. Clot strengths were found to be highly variable, with the most potent effects produced by incubation with Varanus venoms from the Odatria and Euprepriosaurus clades. The most fibrinogenolytically active venoms belonged to arboreal species and therefore prey escape potential is likely a strong evolutionary selection pressure. The results are also consistent with reports of profusive bleeding from bites from other notably fibrinogenolytic species, such as V. giganteus. Our results provide evidence in favour of the predatory role of venom in varanid lizards, thus shedding light on the evolution of venom in reptiles and revealing potential new sources of bioactive molecules useful as lead compounds in drug design and development.
Collapse
Affiliation(s)
- James S Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
23
|
Beck RMD, Baillie C. Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc Biol Sci 2018; 285:20181632. [PMID: 30963896 PMCID: PMC6304057 DOI: 10.1098/rspb.2018.1632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/23/2018] [Indexed: 01/16/2023] Open
Abstract
Phylogenies of mammals based on morphological data continue to show several major areas of conflict with the current consensus view of their relationships, which is based largely on molecular data. This raises doubts as to whether current morphological character sets are able to accurately resolve mammal relationships. We tested this under a hypothetical 'best case scenario' by using ancestral state reconstruction (under both maximum parsimony and maximum likelihood) to infer the morphologies of fossil ancestors for all clades present in a recent comprehensive DNA sequence-based phylogeny of mammals, and then seeing what effect the subsequent inclusion of these predicted ancestors had on unconstrained phylogenetic analyses of morphological data. We found that this resulted in topologies that are highly congruent with the current consensus phylogeny, at least when the predicted ancestors are assumed to be well preserved and densely sampled. Most strikingly, several analyses recovered the monophyly of clades that have never been found in previous morphology-only studies, such as Afrotheria and Laurasiatheria. Our results suggest that, at least in principle, improvements in the fossil record-specifically the discovery of fossil taxa that preserve the ancestral or near-ancestral morphologies of the nodes in the current consensus-may be sufficient to largely reconcile morphological and molecular estimates of mammal phylogeny, even using current morphological character sets.
Collapse
Affiliation(s)
- Robin M. D. Beck
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Charles Baillie
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
24
|
Bertin TJC, Thivichon-Prince B, LeBlanc ARH, Caldwell MW, Viriot L. Current Perspectives on Tooth Implantation, Attachment, and Replacement in Amniota. Front Physiol 2018; 9:1630. [PMID: 30519190 PMCID: PMC6258785 DOI: 10.3389/fphys.2018.01630] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/29/2018] [Indexed: 01/03/2023] Open
Abstract
Teeth and dentitions contain many morphological characters which give them a particularly important weight in comparative anatomy, systematics, physiology and ecology. As teeth are organs that contain the hardest mineralized tissues vertebrates can produce, their fossil remains are abundant and the study of their anatomy in fossil specimens is of major importance in evolutionary biology. Comparative anatomy has long favored studies of dental characters rather than features associated with tooth attachment and implantation. Here we review a large part of the historical and modern work on the attachment, implantation and replacement of teeth in Amniota. We propose synthetic definitions or redefinitions of most commonly used terms, some of which have led to confusion and conflation of terminology. In particular, there has long been much conflation between dental implantation that strictly concerns the geometrical aspects of the tooth-bone interface, and the nature of the dental attachment, which mostly concerns the histological features occurring at this interface. A second aim of this work was to evaluate the diversity of tooth attachment, implantation and replacement in extant and extinct amniotes in order to derive hypothetical evolutionary trends in these different dental traits over time. Continuous dental replacement prevails within amniotes, replacement being drastically modified only in Mammalia and when dental implantation is acrodont. By comparison, dental implantation frequently and rapidly changes at various taxonomic scales and is often homoplastic. This contrasts with the conservatism in the identity of the tooth attachment tissues (cementum, periodontal ligament, and alveolar bone), which were already present in the earliest known amniotes. Because the study of dental attachment requires invasive histological investigations, this trait is least documented and therefore its evolutionary history is currently poorly understood. Finally, it is essential to go on collecting data from all groups of amniotes in order to better understand and consequently better define dental characters.
Collapse
Affiliation(s)
- Thomas J. C. Bertin
- Team Evolution of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Béatrice Thivichon-Prince
- Team Evolution of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculte d’Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d’Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Aaron R. H. LeBlanc
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Laurent Viriot
- Team Evolution of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
25
|
Casanovas-Vilar I, Garcia-Porta J, Fortuny J, Sanisidro Ó, Prieto J, Querejeta M, Llácer S, Robles JM, Bernardini F, Alba DM. Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group. eLife 2018; 7:39270. [PMID: 30296996 PMCID: PMC6177260 DOI: 10.7554/elife.39270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022] Open
Abstract
Flying squirrels are the only group of gliding mammals with a remarkable diversity and wide geographical range. However, their evolutionary story is not well known. Thus far, identification of extinct flying squirrels has been exclusively based on dental features, which, contrary to certain postcranial characters, are not unique to them. Therefore, fossils attributed to this clade may indeed belong to other squirrel groups. Here we report the oldest fossil skeleton of a flying squirrel (11.6 Ma) that displays the gliding-related diagnostic features shared by extant forms and allows for a recalibration of the divergence time between tree and flying squirrels. Our phylogenetic analyses combining morphological and molecular data generally support older dates than previous molecular estimates (~23 Ma), being congruent with the inclusion of some of the earliest fossils (~36 Ma) into this clade. They also show that flying squirrels experienced little morphological change for almost 12 million years. Mammals can walk, hop, swim and fly; a few, like marsupial sugar gliders or colugos, can even glide. With 52 species scattered across the Northern hemisphere, flying squirrels are by far the most successful group that adopted this way of going airborne. To drift from tree to tree, these small animals pack their own ‘parachute’: a membrane draping between their lower limbs and the long cartilage rods that extend from their wrists. Tiny specialized wrist bones, which are unique to flying squirrels, help to support the cartilaginous extensions. The origin of flying squirrels is a point of contention: while most genetic studies point towards the group splitting from tree squirrels about 23 million years ago, the oldest remains – mostly cheek teeth – suggest the animals were already soaring through forests 36 million years ago. However, recent studies show that the dental features used to distinguish between gliding and non-gliding squirrels may actually be shared by the two groups. In 2002, the digging of a dump site in Barcelona unearthed a peculiar skeleton: first a tail and two thigh bones, big enough that the researchers thought it could be the fossil of a small primate. In fact, and much to the disappointment of paleoprimatologists, further excavating revealed that it was a rodent. As the specimen – nearly an entire skeleton – was being prepared, paleontologists insisted that all the ‘dirt’ attached to the bones had to be carefully screen-washed. From the mud emerged the minuscule specialized wrist bones: the primate-turned-rodent was in fact Miopetaurista neogrivensis, an extinct flying squirrel. Here, Casanovas-Vilar et al. describe the 11.6 million years old fossil, the oldest ever found. The wrist bones reveal that the animal belongs to the group of flying squirrels that have large sizes. Evolutionary analyses that combined molecular and paleontological data demonstrated that flying squirrels evolved from tree squirrels as far back as 31 to 25 million years ago, and possibly even earlier. In addition, the results show that Miopetaurista is closely related to Petaurista, a modern group of giant flying squirrels. In fact, their skeletons are so similar that the large species that currently inhabit the tropical and subtropical forests of Asia could be considered living fossils. Molecular and paleontological data are often at odds, but this fossil shows that they can be reconciled and combined to retrace history. Discovering older fossils, or even transitional forms, could help to retrace how flying squirrels took a leap from the rest of their evolutionary tree.
Collapse
Affiliation(s)
- Isaac Casanovas-Vilar
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Garcia-Porta
- Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centre de Recherches sur les Paléoenvironnements et la Paléobiodiversité, Muséum national d'Histoire naturelle, Paris, France
| | - Óscar Sanisidro
- Biodiversity Institute, University of Kansas, Lawrence, United States
| | - Jérôme Prieto
- Department für Geo- und Umweltwissenschaften, Paläontologie, Ludwig-Maximilians-Universität München, Munich, Germany.,Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | | | - Sergio Llácer
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep M Robles
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Federico Bernardini
- Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy.,Multidisciplinary Laboratory, The 'Abdus Salam' International Centre for Theoretical Physics, Trieste, Italy
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Mongiardino Koch N, Gauthier JA. Noise and biases in genomic data may underlie radically different hypotheses for the position of Iguania within Squamata. PLoS One 2018; 13:e0202729. [PMID: 30133514 PMCID: PMC6105018 DOI: 10.1371/journal.pone.0202729] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Squamate reptiles are a major component of vertebrate biodiversity whose crown-clade traces its origin to a narrow window of time in the Mesozoic during which the main subclades diverged in rapid succession. Deciphering phylogenetic relationships among these lineages has proven challenging given the conflicting signals provided by genomic and phenomic data. Most notably, the placement of Iguania has routinely differed between data sources, with morphological evidence supporting a sister relationship to the remaining squamates (Scleroglossa hypothesis) and molecular data favoring a highly nested position alongside snakes and anguimorphs (Toxicofera hypothesis). We provide novel insights by generating an expanded morphological dataset and exploring the presence of phylogenetic signal, noise, and biases in molecular data. Our analyses confirm the presence of strong conflicting signals for the position of Iguania between morphological and molecular datasets. However, we also find that molecular data behave highly erratically when inferring the deepest branches of the squamate tree, a consequence of limited phylogenetic signal to resolve this ancient radiation with confidence. This, in turn, seems to result from a rate of evolution that is too high for historical signals to survive to the present. Finally, we detect significant systematic biases, with iguanians and snakes sharing faster rates of molecular evolution and a similarly biased nucleotide composition. A combination of scant phylogenetic signal, high levels of noise, and the presence of systematic biases could result in the misplacement of Iguania. We regard this explanation to be at least as plausible as the complex scenario of convergence and reversals required for morphological data to be misleading. We further evaluate and discuss the utility of morphological data to resolve ancient radiations, as well as its impact in combined-evidence phylogenomic analyses, with results relevant for the assessment of evidence and conflict across the Tree of Life.
Collapse
Affiliation(s)
- Nicolás Mongiardino Koch
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
| | - Jacques A. Gauthier
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
- Yale Peabody Museum of Natural History, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
Jackson LM, Fernando PC, Hanscom JS, Balhoff JP, Mabee PM. Automated Integration of Trees and Traits: A Case Study Using Paired Fin Loss Across Teleost Fishes. Syst Biol 2018; 67:559-575. [PMID: 29325126 PMCID: PMC6005059 DOI: 10.1093/sysbio/syx098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/24/2022] Open
Abstract
Data synthesis required for large-scale macroevolutionary studies is challenging with the current tools available for integration. Using a classic question regarding the frequency of paired fin loss in teleost fishes as a case study, we sought to create automated methods to facilitate the integration of broad-scale trait data with a sizable species-level phylogeny. Similar to the evolutionary pattern previously described for limbs, pelvic and pectoral fin reduction and loss are thought to have occurred independently multiple times in the evolution of fishes. We developed a bioinformatics pipeline to identify the presence and absence of pectoral and pelvic fins of 12,582 species. To do this, we integrated a synthetic morphological supermatrix of phenotypic data for the pectoral and pelvic fins for teleost fishes from the Phenoscape Knowledgebase (two presence/absence characters for 3047 taxa) with a species-level tree for teleost fishes from the Open Tree of Life project (38,419 species). The integration method detailed herein harnessed a new combined approach by utilizing data based on ontological inference, as well as phylogenetic propagation, to reduce overall data loss. Using inference enabled by ontology-based annotations, missing data were reduced from 98.0% to 85.9%, and further reduced to 34.8% by phylogenetic data propagation. These methods allowed us to extend the data to an additional 11,293 species for a total of 12,582 species with trait data. The pectoral fin appears to have been independently lost in a minimum of 19 lineages and the pelvic fin in 48. Though interpretation is limited by lack of phylogenetic resolution at the species level, it appears that following loss, both pectoral and pelvic fins were regained several (3) to many (14) times respectively. Focused investigation into putative regains of the pectoral fin, all within one clade (Anguilliformes), showed that the pectoral fin was regained at least twice following loss. Overall, this study points to specific teleost clades where strategic phylogenetic resolution and genetic investigation will be necessary to understand the pattern and frequency of pectoral fin reversals.
Collapse
Affiliation(s)
- Laura M Jackson
- Department of Biology, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| | - Pasan C Fernando
- Department of Biology, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| | - Josh S Hanscom
- Department of Biology, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| | - James P Balhoff
- Renaissance Computing Institute, University of North Carolina, 100 Europa Drive Suite 540, Chapel Hill, NC 27517, USA
| | - Paula M Mabee
- Department of Biology, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
28
|
Moore AJ, Mo J, Clark JM, Xu X. Cranial anatomy of Bellusaurus sui (Dinosauria: Eusauropoda) from the Middle-Late Jurassic Shishugou Formation of northwest China and a review of sauropod cranial ontogeny. PeerJ 2018; 6:e4881. [PMID: 29868283 PMCID: PMC5985764 DOI: 10.7717/peerj.4881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 11/20/2022] Open
Abstract
Bellusaurus sui is an enigmatic sauropod dinosaur from the Middle-Late Jurassic Shishugou Formation of northwest China. Bellusaurus is known from a monospecific bonebed preserving elements from more than a dozen juvenile individuals, including numerous bones of the skull, providing rare insight into the cranial anatomy of juvenile sauropods. Here, we present a comprehensive description of the cranial anatomy of Bellusaurus, supplementing the holotypic cranial material with additional elements recovered from recent joint Sino-American field expeditions. Bellusaurus is diagnosed by several unique autapomorphies, including a neurovascular foramen piercing the ascending process of the maxilla at midheight, the frontal process of the nasal extending farther posteriorly onto the frontal than the prefrontal, and U-shaped medial and lateral notches in the posterior margin of the ventral process of the squamosal. Several features identified here, including a preantorbital opening in the maxilla, a stepped dorsal margin of the vomerine process of the pterygoid, and the partitioning of the dorsal midline endocranial fossae associated with the dural venous sinuses into anterior and posterior components by a transverse ridge of the parietal, are consistent with recent phylogenetic hypotheses that recover Bellusaurus as a basal macronarian or close relative of Neosauropoda. We review the current state of knowledge of sauropod cranial ontogeny, placing several aspects of the cranial anatomy of Bellusaurus in an ontogenetic context and providing explicit hypotheses of ontogenetic transformations that can be tested by future discoveries of ontogenetic variants of sauropod skulls. While scoring ontogenetically variable characters as unknown may help to alleviate the biasing effects of ontogeny on the phylogenetic position of juvenile specimens, we caution that this approach may remove phylogenetically informative character information, and argue that inference methods that are known to be less sensitive to homoplasy than equal weights parsimony (i.e., implied weights parsimony; Bayesian approaches) should also be employed.
Collapse
Affiliation(s)
- Andrew J Moore
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jinyou Mo
- Natural History Museum of Guangxi Zhuang Autonomous Region, Nanning, China
| | - James M Clark
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Cleary TJ, Benson RBJ, Evans SE, Barrett PM. Lepidosaurian diversity in the Mesozoic-Palaeogene: the potential roles of sampling biases and environmental drivers. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171830. [PMID: 29657788 PMCID: PMC5882712 DOI: 10.1098/rsos.171830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 05/27/2023]
Abstract
Lepidosauria is a speciose clade with a long evolutionary history, but there have been few attempts to explore its taxon richness through time. Here we estimate patterns of terrestrial lepidosaur genus diversity for the Triassic-Palaeogene (252-23 Ma), and compare observed and sampling-corrected richness curves generated using Shareholder Quorum Subsampling and classical rarefaction. Generalized least-squares regression (GLS) is used to investigate the relationships between richness, sampling and environmental proxies. We found low levels of richness from the Triassic until the Late Cretaceous (except in the Kimmeridgian-Tithonian of Europe). High richness is recovered for the Late Cretaceous of North America, which declined across the K-Pg boundary but remained relatively high throughout the Palaeogene. Richness decreased following the Eocene-Oligocene Grande Coupure in North America and Europe, but remained high in North America and very high in Europe compared to the Late Cretaceous; elsewhere data are lacking. GLS analyses indicate that sampling biases (particularly, the number of fossil collections per interval) are the best explanation for long-term face-value genus richness trends. The lepidosaur fossil record presents many problems when attempting to reconstruct past diversity, with geographical sampling biases being of particular concern, especially in the Southern Hemisphere.
Collapse
Affiliation(s)
- Terri J. Cleary
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roger B. J. Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Susan E. Evans
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
30
|
The ecological origins of snakes as revealed by skull evolution. Nat Commun 2018; 9:376. [PMID: 29371624 PMCID: PMC5785544 DOI: 10.1038/s41467-017-02788-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
The ecological origin of snakes remains amongst the most controversial topics in evolution, with three competing hypotheses: fossorial; marine; or terrestrial. Here we use a geometric morphometric approach integrating ecological, phylogenetic, paleontological, and developmental data for building models of skull shape and size evolution and developmental rate changes in squamates. Our large-scale data reveal that whereas the most recent common ancestor of crown snakes had a small skull with a shape undeniably adapted for fossoriality, all snakes plus their sister group derive from a surface-terrestrial form with non-fossorial behavior, thus redirecting the debate toward an underexplored evolutionary scenario. Our comprehensive heterochrony analyses further indicate that snakes later evolved novel craniofacial specializations through global acceleration of skull development. These results highlight the importance of the interplay between natural selection and developmental processes in snake origin and diversification, leading first to invasion of a new habitat and then to subsequent ecological radiations.
Collapse
|
31
|
Koludarov I, Jackson TN, Brouw BOD, Dobson J, Dashevsky D, Arbuckle K, Clemente CJ, Stockdale EJ, Cochran C, Debono J, Stephens C, Panagides N, Li B, Manchadi MLR, Violette A, Fourmy R, Hendrikx I, Nouwens A, Clements J, Martelli P, Kwok HF, Fry BG. Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins (Basel) 2017; 9:E242. [PMID: 28783084 PMCID: PMC5577576 DOI: 10.3390/toxins9080242] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.
Collapse
Affiliation(s)
- Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Timothy Nw Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
- Australian Venom Research Unit, School of Biomedical Sciences, Level 2 Medical Building, University of Melbourne, Victoria 3010, Australia.
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Christofer J Clemente
- University of the Sunshine Coast, School of Science and Engineering, Sippy Downs, Queensland 4558, Australia.
| | | | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Carson Stephens
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | | | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queenslnd, St. Lucia QLD 4072, Australia.
| | - Judith Clements
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | | | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
32
|
Duan J, Sanggaard KW, Schauser L, Lauridsen SE, Enghild JJ, Schierup MH, Wang T. Transcriptome analysis of the response of Burmese python to digestion. Gigascience 2017; 6:1-18. [PMID: 28873961 PMCID: PMC5597892 DOI: 10.1093/gigascience/gix057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion.
Collapse
Affiliation(s)
- Jinjie Duan
- Bioinformatics Research Center, Aarhus University, C.F. Moellers Alle 8, Aarhus C, Denmark
| | - Kristian Wejse Sanggaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Denmark
| | | | - Sanne Enok Lauridsen
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Denmark
| | - Mikkel Heide Schierup
- Bioinformatics Research Center, Aarhus University, C.F. Moellers Alle 8, Aarhus C, Denmark
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
| | - Tobias Wang
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
| |
Collapse
|
33
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
34
|
Torres-Carvajal O, Koch C, Venegas PJ, Poe S. Phylogeny and diversity of neotropical monkey lizards (Iguanidae: Polychrus Cuvier, 1817). PLoS One 2017; 12:e0178139. [PMID: 28570575 PMCID: PMC5453479 DOI: 10.1371/journal.pone.0178139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022] Open
Abstract
Neotropical monkey lizards (Polychrus) are arboreal lizards with compressed bodies, partially fused eyelids and strikingly long, whip-like tails. The eight currently recognized species occur in the lowlands of South and Central America. Based on the largest taxon and character sampling to date, we analyze three mitochondrial and one nuclear gene using Bayesian methods to (1) infer the phylogeny of Polychrus under both concatenated-tree and species-tree methods; (2) identify lineages that could represent putative undescribed species; and (3) estimate divergence times. Our species tree places P. acutirostris as the sister taxon to all other species of Polychrus. While the phylogenetic position of P. gutturosus and P. peruvianus is poorly resolved, P. marmoratus and P. femoralis are strongly supported as sister to P. liogaster and P. jacquelinae, respectively. Recognition of P. auduboni and P. marmoratus sensu stricto as distinct species indicates that the populations of "P. marmoratus" from the Amazon and the Atlantic coast in Brazil represent separate species. Similarly, populations of P. femoralis from the Tumbes region might belong to a cryptic undescribed species. Relative divergence times and published age estimates suggest that the orogeny of the Andes did not play a significant role in the early evolution of Polychrus.
Collapse
Affiliation(s)
- Omar Torres-Carvajal
- Museo de Zoología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- * E-mail:
| | - Claudia Koch
- Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Steve Poe
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, New Mexico, United States of America
| |
Collapse
|
35
|
Skawiński T, Borczyk B. Evolution of developmental sequences in lepidosaurs. PeerJ 2017; 5:e3262. [PMID: 28462054 PMCID: PMC5410152 DOI: 10.7717/peerj.3262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/01/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Lepidosaurs, a group including rhynchocephalians and squamates, are one of the major clades of extant vertebrates. Although there has been extensive phylogenetic work on this clade, its interrelationships are a matter of debate. Morphological and molecular data suggest very different relationships within squamates. Despite this, relatively few studies have assessed the utility of other types of data for inferring squamate phylogeny. METHODS We used developmental sequences of 20 events in 29 species of lepidosaurs. These sequences were analysed using event-pairing and continuous analysis. They were transformed into cladistic characters and analysed in TNT. Ancestral state reconstructions were performed on two main phylogenetic hypotheses of squamates (morphological and molecular). RESULTS Cladistic analyses conducted using characters generated by these methods do not resemble any previously published phylogeny. Ancestral state reconstructions are equally consistent with both morphological and molecular hypotheses of squamate phylogeny. Only several inferred heterochronic events are common to all methods and phylogenies. DISCUSSION Results of the cladistic analyses, and the fact that reconstructions of heterochronic events show more similarities between certain methods rather than phylogenetic hypotheses, suggest that phylogenetic signal is at best weak in the studied developmental events. Possibly the developmental sequences analysed here evolve too quickly to recover deep divergences within Squamata.
Collapse
Affiliation(s)
- Tomasz Skawiński
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland
| |
Collapse
|