1
|
Bernstein JM, Francioli YZ, Schield DR, Adams RH, Perry BW, Farleigh K, Smith CF, Meik JM, Mackessy SP, Castoe TA. Disentangling a genome-wide mosaic of conflicting phylogenetic signals in Western Rattlesnakes. Mol Phylogenet Evol 2025; 206:108309. [PMID: 39938672 DOI: 10.1016/j.ympev.2025.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Species tree inference is often assumed to be more accurate as datasets increase in size, with whole genomes representing the best-case-scenario for estimating a single, most-likely speciation history with high confidence. However, genomes may harbor a complex mixture of evolutionary histories among loci, which amplifies the opportunity for model misspecification and impacts phylogenetic inference. Accordingly, multiple distinct and well-supported phylogenetic trees are often recovered from genome-scale data, and approaches for biologically interpreting these distinct signatures are a major challenge for evolutionary biology in the age of genomics. Here, we analyze 32 whole genomes of nine taxa and two outgroups from the Western Rattlesnake species complex. Using concordance factors, topology weighting, and concatenated and species tree analyses with a chromosome-level reference genome, we characterize the distribution of phylogenetic signal across the genomic landscape. We find that concatenated and species tree analyses of autosomes, the Z (sex) chromosome, and mitochondrial genome yield distinct, yet strongly supported phylogenies. Analyses of site-specific likelihoods show additional patterns consistent with rampant model misspecification, a likely consequence of several evolutionary processes. Together, our results suggest that a combination of historic and recent introgression, along with natural selection, recombination rate variation, and cytonuclear co-evolution of nuclear-encoded mitochondrial genes, underlie genome-wide variation in phylogenetic signal. Our results highlight both the power and complexity of interpreting whole genomes in a phylogenetic context and illustrate how patterns of phylogenetic discordance can reveal the impacts of different evolutionary processes that contribute to genome-wide variation in phylogenetic signal.
Collapse
Affiliation(s)
- Justin M Bernstein
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yannick Z Francioli
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Drew R Schield
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR 72701, USA
| | - Blair W Perry
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keaka Farleigh
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Cara F Smith
- Department of Biochemistry and Molecular Genetics, 12801 East 17th Avenue, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX 76402, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
2
|
Moroz EL, Gmoshinskiy VI, Shchepin ON, Novozhilov YK. The Systematics and Phylogeny of Myxomycetes: Yesterday, Today, and Tomorrow. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 519:356-369. [PMID: 39400900 DOI: 10.1134/s0012496624701242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024]
Abstract
Myxomycetes are amoeboid fungus-like organisms (Amoebozoa) with a unique life cycle characterized by a great morphological diversity of fruiting bodies. Due to the similarity of these structures to the fruiting bodies of some representatives of Ascomycota and Basidiomycota, myxomycetes have been classified as fungi since the first known scientific description in 1654. Only in the 19th century, when their life cycle was studied, did the difference of this group from fungi become clear. During the same period, microscopic structures of fruiting bodies, as well as ornamentation of the spore surface, began to be considered as diagnostic features. Due to this, in the period from the end of the 19th to the middle of the 20th century, a rather stable system was formed. However, as further studies have shown, both macro- and micromorphological characters are often quite variable, depend on environmental conditions, and often result from convergent evolution, which causes difficulties in defining species and taxonomic units of higher ranks. Since the first decade of the 21st century, due to the development of molecular genetic methods and the accumulation of data on nucleotide sequences of marker genes together with the improvement of microscopic studies, it has been possible to obtain data on the evolutionary relationships of different groups of myxomycetes. A milestone in this process was the publication of the first phylogenetic system of myxomycetes in 2019. This work was the starting point for a number of studies on the relationships between different groups of myxomycetes at a lower taxonomic level. Thus, there has been a surge in the number of studies that bring us closer to constructing a natural system.
Collapse
Affiliation(s)
- E L Moroz
- Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus.
| | | | - O N Shchepin
- Komarov Botanical Institute, Russian Academy of Sciences, 197376, St. Petersburg, Russia.
- Institute of Botany and Landscape Ecology, Greifswald University, 17487, Greifswald, Germany.
| | - Yu K Novozhilov
- Komarov Botanical Institute, Russian Academy of Sciences, 197376, St. Petersburg, Russia.
| |
Collapse
|
3
|
Hou Z, Ma X, Shi X, Li X, Yang L, Xiao S, De Clerck O, Leliaert F, Zhong B. Phylotranscriptomic insights into a Mesoproterozoic-Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae). Nat Commun 2022; 13:1610. [PMID: 35318329 PMCID: PMC8941102 DOI: 10.1038/s41467-022-29282-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 01/09/2023] Open
Abstract
The Ulvophyceae, a major group of green algae, is of particular evolutionary interest because of its remarkable morphological and ecological diversity. Its phylogenetic relationships and diversification timeline, however, are still not fully resolved. In this study, using an extensive nuclear gene dataset, we apply coalescent- and concatenation-based approaches to reconstruct the phylogeny of the Ulvophyceae and to explore the sources of conflict in previous phylogenomic studies. The Ulvophyceae is recovered as a paraphyletic group, with the Bryopsidales being a sister group to the Chlorophyceae, and the remaining taxa forming a clade (Ulvophyceae sensu stricto). Molecular clock analyses with different calibration strategies emphasize the large impact of fossil calibrations, and indicate a Meso-Neoproterozoic origin of the Ulvophyceae (sensu stricto), earlier than previous estimates. The results imply that ulvophyceans may have had a profound influence on oceanic redox structures and global biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition. “Ulvophyceae is a remarkably morphologically and ecologically diverse clade of green algae. Here, the authors reconstruct the Ulvophyceae phylogeny, showing that these algae originated earlier than expected and may have influenced biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition.”
Collapse
Affiliation(s)
- Zheng Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xi Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Frederik Leliaert
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium.,Meise Botanic Garden, Meise, Belgium
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
4
|
Singhal S, Derryberry GE, Bravo GA, Derryberry EP, Brumfield RT, Harvey MG. The dynamics of introgression across an avian radiation. Evol Lett 2021; 5:568-581. [PMID: 34917397 PMCID: PMC8645201 DOI: 10.1002/evl3.256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/11/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023] Open
Abstract
Hybridization and resulting introgression can play both a destructive and a creative role in the evolution of diversity. Thus, characterizing when and where introgression is most likely to occur can help us understand the causes of diversification dynamics. Here, we examine the prevalence of and variation in introgression using phylogenomic data from a large (1300+ species), geographically widespread avian group, the suboscine birds. We first examine patterns of gene tree discordance across the geographic distribution of the entire clade. We then evaluate the signal of introgression in a subset of 206 species triads using Patterson's D‐statistic and test for associations between introgression signal and evolutionary, geographic, and environmental variables. We find that gene tree discordance varies across lineages and geographic regions. The signal of introgression is highest in cases where species occur in close geographic proximity and in regions with more dynamic climates since the Pleistocene. Our results highlight the potential of phylogenomic datasets for examining broad patterns of hybridization and suggest that the degree of introgression between diverging lineages might be predictable based on the setting in which they occur.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biology California State University, Dominguez Hills Carson California 90747
| | - Graham E Derryberry
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996
| | - Gustavo A Bravo
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138.,Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996
| | - Robb T Brumfield
- Museum of Natural Science Louisiana State University Baton Rouge Louisiana 70803.,Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Michael G Harvey
- Department of Biological Sciences The University of Texas at El Paso El Paso Texas 79968.,Biodiversity Collections The University of Texas at El Paso El Paso Texas 79968
| |
Collapse
|
5
|
Li X, Hou Z, Xu C, Shi X, Yang L, Lewis LA, Zhong B. Large Phylogenomic Data sets Reveal Deep Relationships and Trait Evolution in Chlorophyte Green Algae. Genome Biol Evol 2021; 13:6265471. [PMID: 33950183 PMCID: PMC8271138 DOI: 10.1093/gbe/evab101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/01/2022] Open
Abstract
The chlorophyte green algae (Chlorophyta) are species-rich ancient groups ubiquitous in various habitats with high cytological diversity, ranging from microscopic to macroscopic organisms. However, the deep phylogeny within core Chlorophyta remains unresolved, in part due to the relatively sparse taxon and gene sampling in previous studies. Here we contribute new transcriptomic data and reconstruct phylogenetic relationships of core Chlorophyta based on four large data sets up to 2,698 genes of 70 species, representing 80% of extant orders. The impacts of outgroup choice, missing data, bootstrap-support cutoffs, and model misspecification in phylogenetic inference of core Chlorophyta are examined. The species tree topologies of core Chlorophyta from different analyses are highly congruent, with strong supports at many relationships (e.g., the Bryopsidales and the Scotinosphaerales-Dasycladales clade). The monophyly of Chlorophyceae and of Trebouxiophyceae as well as the uncertain placement of Chlorodendrophyceae and Pedinophyceae corroborate results from previous studies. The reconstruction of ancestral scenarios illustrates the evolution of the freshwater-sea and microscopic–macroscopic transition in the Ulvophyceae, and the transformation of unicellular→colonial→multicellular in the chlorophyte green algae. In addition, we provided new evidence that serine is encoded by both canonical codons and noncanonical TAG code in Scotinosphaerales, and stop-to-sense codon reassignment in the Ulvophyceae has originated independently at least three times. Our robust phylogenetic framework of core Chlorophyta unveils the evolutionary history of phycoplast, cyto-morphology, and noncanonical genetic codes in chlorophyte green algae.
Collapse
Affiliation(s)
- Xi Li
- College of Life Sciences, Nanjing Normal University, China
| | - Zheng Hou
- College of Life Sciences, Nanjing Normal University, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, China
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
6
|
Jiang X, Edwards SV, Liu L. The Multispecies Coalescent Model Outperforms Concatenation Across Diverse Phylogenomic Data Sets. Syst Biol 2021; 69:795-812. [PMID: 32011711 PMCID: PMC7302055 DOI: 10.1093/sysbio/syaa008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 11/30/2022] Open
Abstract
A statistical framework of model comparison and model validation is essential to resolving the debates over concatenation and coalescent models in phylogenomic data analysis. A set of statistical tests are here applied and developed to evaluate and compare the adequacy of substitution, concatenation, and multispecies coalescent (MSC) models across 47 phylogenomic data sets collected across tree of life. Tests for substitution models and the concatenation assumption of topologically congruent gene trees suggest that a poor fit of substitution models, rejected by 44% of loci, and concatenation models, rejected by 38% of loci, is widespread. Logistic regression shows that the proportions of GC content and informative sites are both negatively correlated with the fit of substitution models across loci. Moreover, a substantial violation of the concatenation assumption of congruent gene trees is consistently observed across six major groups (birds, mammals, fish, insects, reptiles, and others, including other invertebrates). In contrast, among those loci adequately described by a given substitution model, the proportion of loci rejecting the MSC model is 11%, significantly lower than those rejecting the substitution and concatenation models. Although conducted on reduced data sets due to computational constraints, Bayesian model validation and comparison both strongly favor the MSC over concatenation across all data sets; the concatenation assumption of congruent gene trees rarely holds for phylogenomic data sets with more than 10 loci. Thus, for large phylogenomic data sets, model comparisons are expected to consistently and more strongly favor the coalescent model over the concatenation model. We also found that loci rejecting the MSC have little effect on species tree estimation. Our study reveals the value of model validation and comparison in phylogenomic data analysis, as well as the need for further improvements of multilocus models and computational tools for phylogenetic inference. [Bayes factor; Bayesian model validation; coalescent prior; congruent gene trees; independent prior; Metazoa; posterior predictive simulation.]
Collapse
Affiliation(s)
- Xiaodong Jiang
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Liang Liu
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA.,Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, USA
| |
Collapse
|
7
|
Layton KKS, Carvajal JI, Wilson NG. Mimicry and mitonuclear discordance in nudibranchs: New insights from exon capture phylogenomics. Ecol Evol 2020; 10:11966-11982. [PMID: 33209263 PMCID: PMC7664011 DOI: 10.1002/ece3.6727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
Abstract
Phylogenetic inference and species delimitation can be challenging in taxonomic groups that have recently radiated and where introgression produces conflicting gene trees, especially when species delimitation has traditionally relied on mitochondrial data and color pattern. Chromodoris, a genus of colorful and toxic nudibranch in the Indo-Pacific, has been shown to have extraordinary cryptic diversity and mimicry, and has recently radiated, ultimately complicating species delimitation. In these cases, additional genome-wide data can help improve phylogenetic resolution and provide important insights about evolutionary history. Here, we employ a transcriptome-based exon capture approach to resolve Chromodoris phylogeny with data from 2,925 exons and 1,630 genes, derived from 15 nudibranch transcriptomes. We show that some previously identified mimics instead show mitonuclear discordance, likely deriving from introgression or mitochondrial capture, but we confirm one "pure" mimic in Western Australia. Sister-species relationships and species-level entities were recovered with high support in both concatenated maximum likelihood (ML) and summary coalescent phylogenies, but the ML topologies were highly variable while the coalescent topologies were consistent across datasets. Our work also demonstrates the broad phylogenetic utility of 149 genes that were previously identified from eupulmonate gastropods. This study is one of the first to (a) demonstrate the efficacy of exon capture for recovering relationships among recently radiated invertebrate taxa, (b) employ genome-wide nuclear markers to test mimicry hypotheses in nudibranchs and (c) provide evidence for introgression and mitochondrial capture in nudibranchs.
Collapse
Affiliation(s)
- Kara K. S. Layton
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
- School of Biological Sciences, Zoology BuildingUniversity of AberdeenAberdeenUK
| | - Jose I. Carvajal
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| | - Nerida G. Wilson
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| |
Collapse
|
8
|
Valderrama E, Sass C, Pinilla-Vargas M, Skinner D, Maas PJM, Maas-van de Kamer H, Landis JB, Guan CJ, Specht CD. Unraveling the Spiraling Radiation: A Phylogenomic Analysis of Neotropical Costus L. FRONTIERS IN PLANT SCIENCE 2020; 11:1195. [PMID: 32922414 PMCID: PMC7456938 DOI: 10.3389/fpls.2020.01195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/23/2020] [Indexed: 06/01/2023]
Abstract
The family of pantropical spiral gingers (Costaceae Nakai; c. 125 spp.) can be used as a model to enhance our understanding of the mechanisms underlying Neotropical diversity. Costaceae has higher taxonomic diversity in South and Central America (c. 72 Neotropical species, c. 30 African, c. 23 Southeast Asian), particularly due to a radiation of Neotropical species of the genus Costus L. (c. 57 spp.). However, a well-supported phylogeny of the Neotropical spiral gingers including thorough sampling of proposed species encompassing their full morphologic and geographic variation is lacking, partly due to poor resolution recovered in previous analyses using a small sampling of loci. Here we use a phylogenomic approach to estimate the phylogeny of a sample of Neotropical Costus species using a targeted enrichment approach. Baits were designed to capture conserved elements' variable at the species level using available genomic sequences of Costus species and relatives. We obtained 832 loci (generating 791,954 aligned base pairs and 31,142 parsimony informative sites) for samples that encompassed the geographical and/or morphological diversity of some recognized species. Higher support values that improve the results of previous studies were obtained when including all the available loci, even those producing unresolved gene trees and having a low proportion of variable sites. Concatenation and coalescent-based species trees methods converge in almost the same topology suggesting a robust estimation of the relationships, even under the high levels of gene tree conflict presented here. The bait set design here presented made inferring a robust phylogeny to test taxonomic hypotheses possible and will improve our understanding of the origins of the charismatic diversity of the Neotropical spiral gingers.
Collapse
Affiliation(s)
- Eugenio Valderrama
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Chodon Sass
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Maria Pinilla-Vargas
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | | | - Paul J. M. Maas
- Section Botany, Naturalis Biodiversity Center, Leiden, Netherlands
| | | | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Clarice J. Guan
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Karin BR, Gamble T, Jackman TR. Optimizing Phylogenomics with Rapidly Evolving Long Exons: Comparison with Anchored Hybrid Enrichment and Ultraconserved Elements. Mol Biol Evol 2020; 37:904-922. [PMID: 31710677 PMCID: PMC7038749 DOI: 10.1093/molbev/msz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Biology, Villanova University, Villanova, PA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA
| |
Collapse
|
10
|
Polynomial-Time Statistical Estimation of Species Trees Under Gene Duplication and Loss. LECTURE NOTES IN COMPUTER SCIENCE 2020. [DOI: 10.1007/978-3-030-45257-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV. Whole-Genome Analyses Resolve the Phylogeny of Flightless Birds (Palaeognathae) in the Presence of an Empirical Anomaly Zone. Syst Biol 2019; 68:937-955. [PMID: 31135914 PMCID: PMC6857515 DOI: 10.1093/sysbio/syz019] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/06/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Palaeognathae represent one of the two basal lineages in modern birds, and comprise the volant (flighted) tinamous and the flightless ratites. Resolving palaeognath phylogenetic relationships has historically proved difficult, and short internal branches separating major palaeognath lineages in previous molecular phylogenies suggest that extensive incomplete lineage sorting (ILS) might have accompanied a rapid ancient divergence. Here, we investigate palaeognath relationships using genome-wide data sets of three types of noncoding nuclear markers, together totaling 20,850 loci and over 41 million base pairs of aligned sequence data. We recover a fully resolved topology placing rheas as the sister to kiwi and emu + cassowary that is congruent across marker types for two species tree methods (MP-EST and ASTRAL-II). This topology is corroborated by patterns of insertions for 4274 CR1 retroelements identified from multispecies whole-genome screening, and is robustly supported by phylogenomic subsampling analyses, with MP-EST demonstrating particularly consistent performance across subsampling replicates as compared to ASTRAL. In contrast, analyses of concatenated data supermatrices recover rheas as the sister to all other nonostrich palaeognaths, an alternative that lacks retroelement support and shows inconsistent behavior under subsampling approaches. While statistically supporting the species tree topology, conflicting patterns of retroelement insertions also occur and imply high amounts of ILS across short successive internal branches, consistent with observed patterns of gene tree heterogeneity. Coalescent simulations and topology tests indicate that the majority of observed topological incongruence among gene trees is consistent with coalescent variation rather than arising from gene tree estimation error alone, and estimated branch lengths for short successive internodes in the inferred species tree fall within the theoretical range encompassing the anomaly zone. Distributions of empirical gene trees confirm that the most common gene tree topology for each marker type differs from the species tree, signifying the existence of an empirical anomaly zone in palaeognaths.
Collapse
Affiliation(s)
- Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Timothy B Sackton
- Informatics Group, Harvard University, 28 Oxford Street, Cambridge, MA 02138, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Michele Clamp
- Informatics Group, Harvard University, 28 Oxford Street, Cambridge, MA 02138, USA
| | - Allan J Baker
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario M5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Loiseau O, Olivares I, Paris M, de La Harpe M, Weigand A, Koubínová D, Rolland J, Bacon CD, Balslev H, Borchsenius F, Cano A, Couvreur TLP, Delnatte C, Fardin F, Gayot M, Mejía F, Mota-Machado T, Perret M, Roncal J, Sanin MJ, Stauffer F, Lexer C, Kessler M, Salamin N. Targeted Capture of Hundreds of Nuclear Genes Unravels Phylogenetic Relationships of the Diverse Neotropical Palm Tribe Geonomateae. FRONTIERS IN PLANT SCIENCE 2019; 10:864. [PMID: 31396244 PMCID: PMC6640726 DOI: 10.3389/fpls.2019.00864] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 05/11/2023]
Abstract
The tribe Geonomateae is a widely distributed group of 103 species of Neotropical palms which contains six ecologically important understory or subcanopy genera. Although it has been the focus of many studies, our understanding of the evolutionary history of this group, and in particular of the taxonomically complex genus Geonoma, is far from complete due to a lack of molecular data. Specifically, the previous Sanger sequencing-based studies used a few informative characters and partial sampling. To overcome these limitations, we used a recently developed Arecaceae-specific target capture bait set to undertake a phylogenomic analysis of the tribe Geonomateae. We sequenced 3,988 genomic regions for 85% of the species of the tribe, including 84% of the species of the largest genus, Geonoma. Phylogenetic relationships were inferred using both concatenation and coalescent methods. Overall, our phylogenetic tree is highly supported and congruent with taxonomic delimitations although several morphological taxa were revealed to be non-monophyletic. It is the first time that such a large genomic dataset is provided for an entire tribe within the Arecaceae. Our study lays the groundwork not only for detailed macro- and micro-evolutionary studies within the group, but also sets a workflow for understanding other species complexes across the tree of life.
Collapse
Affiliation(s)
- Oriane Loiseau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ingrid Olivares
- Department for Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Margot Paris
- Department of Biology, Unit Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Anna Weigand
- Department for Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Darina Koubínová
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Natural History Museum of Geneva, Geneva, Switzerland
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Henrik Balslev
- Department of Bioscience, Biodiversity and Ecoinformatics, Aarhus University, Aarhus, Denmark
| | | | - Angela Cano
- Cambridge University Botanic Garden, Cambridge, United Kingdom
| | | | | | | | - Marc Gayot
- National Forestry Office, Guadeloupe, France
| | - Fabian Mejía
- Facultad de Ciencias y Biotecnología, Universidad CES, Medellin, Colombia
| | - Talita Mota-Machado
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathieu Perret
- Department of Botany and Plant Biology, Conservatory and Botanical Garden of the City of Geneva, University of Geneva, Geneva, Switzerland
| | - Julissa Roncal
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Maria José Sanin
- Facultad de Ciencias y Biotecnología, Universidad CES, Medellin, Colombia
| | - Fred Stauffer
- Department of Botany and Plant Biology, Conservatory and Botanical Garden of the City of Geneva, University of Geneva, Geneva, Switzerland
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Michael Kessler
- Department for Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Blom MPK, Matzke NJ, Bragg JG, Arida E, Austin CC, Backlin AR, Carretero MA, Fisher RN, Glaw F, Hathaway SA, Iskandar DT, McGuire JA, Karin BR, Reilly SB, Rittmeyer EN, Rocha S, Sanchez M, Stubbs AL, Vences M, Moritz C. Habitat preference modulates trans-oceanic dispersal in a terrestrial vertebrate. Proc Biol Sci 2019; 286:20182575. [PMID: 31161911 DOI: 10.1098/rspb.2018.2575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of long-distance dispersal (LDD) in shaping geographical distributions has been debated since the nineteenth century. In terrestrial vertebrates, LDD events across large water bodies are considered highly improbable, but organismal traits affecting dispersal capacity are generally not taken into account. Here, we focus on a recent lizard radiation and combine a summary-coalescent species tree based on 1225 exons with a probabilistic model that links dispersal capacity to an evolving trait, to investigate whether ecological specialization has influenced the probability of trans-oceanic dispersal. Cryptoblepharus species that occur in coastal habitats have on average dispersed 13 to 14 times more frequently than non-coastal species and coastal specialization has, therefore, led to an extraordinarily widespread distribution that includes multiple continents and distant island archipelagoes. Furthermore, their presence across the Pacific substantially predates the age of human colonization and we can explicitly reject the possibility that these patterns are solely shaped by human-mediated dispersal. Overall, by combining new analytical methods with a comprehensive phylogenomic dataset, we use a quantitative framework to show how coastal specialization can influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.
Collapse
Affiliation(s)
- Mozes P K Blom
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,2 Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung , Berlin , Germany
| | - Nicholas J Matzke
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,3 School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Jason G Bragg
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| | - Evy Arida
- 4 Research Center for Biology, The Indonesian Institute of Sciences , Cibinong , Indonesia
| | | | - Adam R Backlin
- 6 U.S. Geological Survey, Western Ecological Research Center , Santa Ana, CA , USA
| | | | - Robert N Fisher
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Frank Glaw
- 9 Department of Herpetology, Zoologische Staatssamlung Münich , Munich , Germany
| | - Stacie A Hathaway
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Djoko T Iskandar
- 10 School of Life Sciences and Technology, Institut Teknologi , Bandung , Indonesia
| | - Jimmy A McGuire
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Benjamin R Karin
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Sean B Reilly
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Eric N Rittmeyer
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,5 Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| | - Sara Rocha
- 12 Department of Biochemistry, Genetics and Immunology & Biomedical Research Center (CINBIO), University of Vigo , Vigo , Spain
| | | | - Alexander L Stubbs
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Miguel Vences
- 14 Zoological Institute, Technische Universität Braunschweig , Braunschweig , Germany
| | - Craig Moritz
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| |
Collapse
|
14
|
Parks MB, Wickett NJ, Alverson AJ. Signal, Uncertainty, and Conflict in Phylogenomic Data for a Diverse Lineage of Microbial Eukaryotes (Diatoms, Bacillariophyta). Mol Biol Evol 2019; 35:80-93. [PMID: 29040712 PMCID: PMC5850769 DOI: 10.1093/molbev/msx268] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diatoms (Bacillariophyta) are a species-rich group of eukaryotic microbes diverse in morphology, ecology, and metabolism. Previous reconstructions of the diatom phylogeny based on one or a few genes have resulted in inconsistent resolution or low support for critical nodes. We applied phylogenetic paralog pruning techniques to a data set of 94 diatom genomes and transcriptomes to infer perennially difficult species relationships, using concatenation and summary-coalescent methods to reconstruct species trees from data sets spanning a wide range of thresholds for taxon and column occupancy in gene alignments. Conflicts between gene and species trees decreased with both increasing taxon occupancy and bootstrap cutoffs applied to gene trees. Concordance between gene and species trees was lowest for short internodes and increased logarithmically with increasing edge length, suggesting that incomplete lineage sorting disproportionately affects species tree inference at short internodes, which are a common feature of the diatom phylogeny. Although species tree topologies were largely consistent across many data treatments, concatenation methods appeared to outperform summary-coalescent methods for sparse alignments. Our results underscore that approaches to species-tree inference based on few loci are likely to be misled by unrepresentative sampling of gene histories, particularly in lineages that may have diversified rapidly. In addition, phylogenomic studies of diatoms, and potentially other hyperdiverse groups, should maximize the number of gene trees with high taxon occupancy, though there is clearly a limit to how many of these genes will be available.
Collapse
Affiliation(s)
- Matthew B Parks
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Norman J Wickett
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| |
Collapse
|
15
|
Coates DJ, Byrne M, Moritz C. Genetic Diversity and Conservation Units: Dealing With the Species-Population Continuum in the Age of Genomics. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00165] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Bragg JG, Potter S, Afonso Silva AC, Hoskin CJ, Bai BYH, Moritz C. Phylogenomics of a rapid radiation: the Australian rainbow skinks. BMC Evol Biol 2018; 18:15. [PMID: 29402211 PMCID: PMC5800007 DOI: 10.1186/s12862-018-1130-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Background The application of target capture with next-generation sequencing now enables phylogenomic analyses of rapidly radiating clades of species. But such analyses are complicated by extensive incomplete lineage sorting, demanding the use of methods that consider this process explicitly, such as the multispecies coalescent (MSC) model. However, the MSC makes strong assumptions about divergence history and population structure, and when using the full Bayesian implementation, current computational limits mean that relatively few loci and samples can be analysed for even modest sized radiations. We explore these issues through analyses of an extensive (> 1000 loci) dataset for the Australian rainbow skinks. This group consists of 3 genera and 41 described species, which likely diversified rapidly in Australia during the mid-late Miocene to occupy rainforest, woodland, and rocky habitats with corresponding diversity of morphology and breeding colouration. Previous phylogenetic analyses of this group have revealed short inter-nodes and high discordance among loci, limiting the resolution of inferred trees. A further complication is that many species have deep phylogeographic structure – this poses the question of how to sample individuals within species for analyses using the MSC. Results Phylogenies obtained using concatenation and summary coalescent species tree approaches to the full dataset are well resolved with generally consistent topology, including for previously intractable relationships near the base of the clade. As expected, branch lengths at the tips are substantially overestimated using concatenation. Comparisons of different strategies for sampling haplotypes for full Bayesian MSC analyses (for one clade and using smaller sets of loci) revealed, unexpectedly, that combining haplotypes across divergent phylogeographic lineages yielded consistent species trees. Conclusions This study of more than 1000 loci provides a strongly-supported estimate of the phylogeny of the Australian rainbow skinks, which will inform future research on the evolution and taxonomy of this group. Our analyses suggest that species tree estimation with the MSC can be quite robust to violation of the assumption that the individuals representing a taxon are sampled from a panmictic population. Electronic supplementary material The online version of this article (10.1186/s12862-018-1130-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jason G Bragg
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, Australia. .,Herbarium of NSW, Royal Botanic Gardens & Domain Trust, Sydney, Australia.
| | - Sally Potter
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Ana C Afonso Silva
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, Australia.,cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Conrad J Hoskin
- College of Science & Engineering, James Cook University, Qld, Townsville, 4811, Australia
| | - Benjamin Y H Bai
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, Australia.,Present address: Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Craig Moritz
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| |
Collapse
|
17
|
Blom MPK, Horner P, Moritz C. Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards. Proc Biol Sci 2017; 283:rspb.2016.0181. [PMID: 27306048 DOI: 10.1098/rspb.2016.0181] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022] Open
Abstract
Recent radiations are important to evolutionary biologists, because they provide an opportunity to study the mechanisms that link micro- and macroevolution. The role of ecological speciation during adaptive radiation has been intensively studied, but radiations can arise from a diversity of evolutionary processes; in particular, on large continental landmasses where allopatric speciation might frequently precede ecological differentiation. It is therefore important to establish a phylogenetic and ecological framework for recent continental-scale radiations that are species-rich and ecologically diverse. Here, we use a genomic (approx. 1 200 loci, exon capture) approach to fit branch lengths on a summary-coalescent species tree and generate a time-calibrated phylogeny for a recent and ecologically diverse radiation of Australian scincid lizards; the genus Cryptoblepharus We then combine the phylogeny with a comprehensive phenotypic dataset for over 800 individuals across the 26 species, and use comparative methods to test whether habitat specialization can explain current patterns of phenotypic variation in ecologically relevant traits. We find significant differences in morphology between species that occur in distinct environments and convergence in ecomorphology with repeated habitat shifts across the continent. These results suggest that isolated analogous habitats have provided parallel ecological opportunity and have repeatedly promoted adaptive diversification. By contrast, speciation processes within the same habitat have resulted in distinct lineages with relatively limited morphological variation. Overall, our study illustrates how alternative diversification processes might have jointly stimulated species proliferation across the continent and generated a remarkably diverse group of Australian lizards.
Collapse
Affiliation(s)
- Mozes P K Blom
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| | - Paul Horner
- Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin NT 0801, Australia
| | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
18
|
Edwards SV, Cloutier A, Baker AJ. Conserved Nonexonic Elements: A Novel Class of Marker for Phylogenomics. Syst Biol 2017; 66:1028-1044. [PMID: 28637293 PMCID: PMC5790140 DOI: 10.1093/sysbio/syx058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023] Open
Abstract
Noncoding markers have a particular appeal as tools for phylogenomic analysis because, at least in vertebrates, they appear less subject to strong variation in GC content among lineages. Thus far, ultraconserved elements (UCEs) and introns have been the most widely used noncoding markers. Here we analyze and study the evolutionary properties of a new type of noncoding marker, conserved nonexonic elements (CNEEs), which consists of noncoding elements that are estimated to evolve slower than the neutral rate across a set of species. Although they often include UCEs, CNEEs are distinct from UCEs because they are not ultraconserved, and, most importantly, the core region alone is analyzed, rather than both the core and its flanking regions. Using a data set of 16 birds plus an alligator outgroup, and ∼3600-∼3800 loci per marker type, we found that although CNEEs were less variable than bioinformatically derived UCEs or introns and in some cases exhibited a slower approach to branch resolution as determined by phylogenomic subsampling, the quality of CNEE alignments was superior to those of the other markers, with fewer gaps and missing species. Phylogenetic resolution using coalescent approaches was comparable among the three marker types, with most nodes being fully and congruently resolved. Comparison of phylogenetic results across the three marker types indicated that one branch, the sister group to the passerine + falcon clade, was resolved differently and with moderate (>70%) bootstrap support between CNEEs and UCEs or introns. Overall, CNEEs appear to be promising as phylogenomic markers, yielding phylogenetic resolution as high as for UCEs and introns but with fewer gaps, less ambiguity in alignments and with patterns of nucleotide substitution more consistent with the assumptions of commonly used methods of phylogenetic analysis.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| | - Allan J. Baker
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| |
Collapse
|
19
|
Panzera A, Leaché AD, D'Elía G, Victoriano PF. Phylogenomic analysis of the Chilean clade of Liolaemus lizards (Squamata: Liolaemidae) based on sequence capture data. PeerJ 2017; 5:e3941. [PMID: 29085750 PMCID: PMC5660876 DOI: 10.7717/peerj.3941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/27/2017] [Indexed: 01/19/2023] Open
Abstract
The genus Liolaemus is one of the most ecologically diverse and species-rich genera of lizards worldwide. It currently includes more than 250 recognized species, which have been subject to many ecological and evolutionary studies. Nevertheless, Liolaemus lizards have a complex taxonomic history, mainly due to the incongruence between morphological and genetic data, incomplete taxon sampling, incomplete lineage sorting and hybridization. In addition, as many species have restricted and remote distributions, this has hampered their examination and inclusion in molecular systematic studies. The aims of this study are to infer a robust phylogeny for a subsample of lizards representing the Chilean clade (subgenus Liolaemus sensu stricto), and to test the monophyly of several of the major species groups. We use a phylogenomic approach, targeting 541 ultra-conserved elements (UCEs) and 44 protein-coding genes for 16 taxa. We conduct a comparison of phylogenetic analyses using maximum-likelihood and several species tree inference methods. The UCEs provide stronger support for phylogenetic relationships compared to the protein-coding genes; however, the UCEs outnumber the protein-coding genes by 10-fold. On average, the protein-coding genes contain over twice the number of informative sites. Based on our phylogenomic analyses, all the groups sampled are polyphyletic. Liolaemus tenuis tenuis is difficult to place in the phylogeny, because only a few loci (nine) were recovered for this species. Topologies or support values did not change dramatically upon exclusion of L. t. tenuis from analyses, suggesting that missing data did not had a significant impact on phylogenetic inference in this data set. The phylogenomic analyses provide strong support for sister group relationships between L. fuscus, L. monticola, L. nigroviridis and L. nitidus, and L. platei and L. velosoi. Despite our limited taxon sampling, we have provided a reliable starting hypothesis for the relationships among many major groups of the Chilean clade of Liolaemus that will help future work aimed at resolving the Liolaemus phylogeny.
Collapse
Affiliation(s)
- Alejandra Panzera
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Programa de Doctorado en Sistemática y Biodiversidad, Universidad de Concepción, Concepción, Chile
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, United States of America
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Pedro F Victoriano
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
20
|
Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements. Genome Biol Evol 2017; 9:2308-2321. [PMID: 28934378 PMCID: PMC5604124 DOI: 10.1093/gbe/evx168] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
The phylogeny of eutherian mammals contains some of the most recalcitrant nodes in the tetrapod tree of life. We combined comprehensive taxon and character sampling to explore three of the most debated interordinal relationships among placental mammals. We performed in silico extraction of ultraconserved element loci from 72 published genomes and invitro enrichment and sequencing of ultraconserved elements from 28 additional mammals, resulting in alignments of 3,787 loci. We analyzed these data using concatenated and multispecies coalescent phylogenetic approaches, topological tests, and exploration of support among individual loci to identify the root of Eutheria and the sister groups of tree shrews (Scandentia) and horses (Perissodactyla). Individual loci provided weak, but often consistent support for topological hypotheses. Although many gene trees lacked accepted species-tree relationships, summary coalescent topologies were largely consistent with inferences from concatenation. At the root of Eutheria, we identified consistent support for a sister relationship between Xenarthra and Afrotheria (i.e., Atlantogenata). At the other nodes of interest, support was less consistent. We suggest Scandentia is the sister of Primatomorpha (Euarchonta), but we failed to reject a sister relationship between Scandentia and Glires. Similarly, we suggest Perissodactyla is sister to Cetartiodactyla (Euungulata), but a sister relationship between Perissodactyla and Chiroptera remains plausible.
Collapse
Affiliation(s)
- Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Carl H. Oliveros
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Mark T. Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Brant C. Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
21
|
Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements. Genome Biol Evol 2017. [PMID: 28934378 DOI: 10.1093/gbe/evx168)] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The phylogeny of eutherian mammals contains some of the most recalcitrant nodes in the tetrapod tree of life. We combined comprehensive taxon and character sampling to explore three of the most debated interordinal relationships among placental mammals. We performed in silico extraction of ultraconserved element loci from 72 published genomes and invitro enrichment and sequencing of ultraconserved elements from 28 additional mammals, resulting in alignments of 3,787 loci. We analyzed these data using concatenated and multispecies coalescent phylogenetic approaches, topological tests, and exploration of support among individual loci to identify the root of Eutheria and the sister groups of tree shrews (Scandentia) and horses (Perissodactyla). Individual loci provided weak, but often consistent support for topological hypotheses. Although many gene trees lacked accepted species-tree relationships, summary coalescent topologies were largely consistent with inferences from concatenation. At the root of Eutheria, we identified consistent support for a sister relationship between Xenarthra and Afrotheria (i.e., Atlantogenata). At the other nodes of interest, support was less consistent. We suggest Scandentia is the sister of Primatomorpha (Euarchonta), but we failed to reject a sister relationship between Scandentia and Glires. Similarly, we suggest Perissodactyla is sister to Cetartiodactyla (Euungulata), but a sister relationship between Perissodactyla and Chiroptera remains plausible.
Collapse
Affiliation(s)
- Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Carl H Oliveros
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Mark T Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
22
|
Genome-wide data delimits multiple climate-determined species ranges in a widespread Australian fish, the golden perch (Macquaria ambigua). Mol Phylogenet Evol 2017; 111:65-75. [DOI: 10.1016/j.ympev.2017.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 01/08/2023]
|