1
|
Feng X, Jin X, Zhou R, Jiang Q, Wang Y, Zhang X, Shang K, Zhang J, Yu C, Shou J. Deep learning approach identified a gene signature predictive of the severity of renal damage caused by chronic cadmium accumulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128795. [PMID: 35405588 DOI: 10.1016/j.jhazmat.2022.128795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Epidemiology studies have indicated that environmental cadmium exposure, even at low levels, will result in chronic cadmium accumulation in the kidney with profound adverse consequences and that the diabetic population is more susceptible. However, the underlying mechanisms are yet not fully understood. In the present study, we applied an animal model to study chronic cadmium exposure-induced renal injury and performed whole transcriptome profiling studies. Repetitive CdCl2 exposure resulted in cadmium accumulation and remarkable renal injuries in the animals. The diabetic ob/ob mice manifested increased severity of renal injury compared with the wild type C57BL/6 J littermate controls. RNA-Seq data showed that cadmium treatment induced dramatic gene expression changes in a dose-dependent manner. Among the differentially expressed genes include the apoptosis hallmark genes which significantly demarcated the treatment effects. Pathway enrichment and network analyses revealed biological oxidation (mainly glucuronidation) as one of the major stress responses induced by cadmium treatment. We next implemented a deep learning algorithm in conjunction with cloud computing and discovered a gene signature that can predict the degree of renal injury induced by cadmium treatment. The present study provided, for the first time, a comprehensive mechanistic understanding of chronic cadmium-induced nephrotoxicity in normal and diabetic populations at the whole genome level.
Collapse
Affiliation(s)
- Xuefang Feng
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xian Jin
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qian Jiang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Yanan Wang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xing Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China
| | - Ke Shang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Jianhua Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jianyong Shou
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China.
| |
Collapse
|
2
|
Tziastoudi M, Cholevas C, Theoharides TC, Stefanidis I. Meta-Analysis and Bioinformatics Detection of Susceptibility Genes in Diabetic Nephropathy. Int J Mol Sci 2021; 23:ijms23010020. [PMID: 35008447 PMCID: PMC8744540 DOI: 10.3390/ijms23010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
The latest meta-analysis of genome-wide linkage studies (GWLS) identified nine cytogenetic locations suggestive of a linkage with diabetic nephropathy (DN) due to type 1 diabetes mellitus (T1DM) and seven locations due to type 2 diabetes mellitus (T2DM). In order to gain biological insight about the functional role of the genes located in these regions and to prioritize the most significant genetic loci for further research, we conducted a gene ontology analysis with an over representation test for the functional annotation of the protein coding genes. Protein analysis through evolutionary relationships (PANTHER) version 16.0 software and Cytoscape with the relevant plugins were used for the gene ontology analysis, and the overrepresentation test and STRING database were used for the construction of the protein network. The findings of the over-representation test highlight the contribution of immune related molecules like immunoglobulins, cytokines, and chemokines with regard to the most overrepresented protein classes, whereas the most enriched signaling pathways include the VEGF signaling pathway, the Cadherin pathway, the Wnt pathway, the angiogenesis pathway, the p38 MAPK pathway, and the EGF receptor signaling pathway. The common section of T1DM and T2DM results include the significant over representation of immune related molecules, and the Cadherin and Wnt signaling pathways that could constitute potential therapeutic targets for the treatment of DN, irrespective of the type of diabetes.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece;
- Correspondence: ; Tel.: +30-2413501667; Fax: +30-2413501015
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | | | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece;
| |
Collapse
|
3
|
Yan LJ, Allen DC. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021; 11:1575. [PMID: 34827573 PMCID: PMC8615899 DOI: 10.3390/biom11111575] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cadmium is a nonessential metal that has heavily polluted the environment due to human activities. It can be absorbed into the human body via the gastrointestinal tract, respiratory tract, and the skin, and can cause chronic damage to the kidneys. The main site where cadmium accumulates and causes damage within the nephrons is the proximal tubule. This accumulation can induce dysfunction of the mitochondrial electron transport chain, leading to electron leakage and production of reactive oxygen species (ROS). Cadmium may also impair the function of NADPH oxidase, resulting in another source of ROS. These ROS together can cause oxidative damage to DNA, proteins, and lipids, triggering epithelial cell death and a decline in kidney function. In this article, we also reviewed evidence that the antioxidant power of plant extracts, herbal medicines, and pharmacological agents could ameliorate cadmium-induced kidney injury. Finally, a model of cadmium-induced kidney injury, centering on the notion that oxidative damage is a unifying mechanism of cadmium renal toxicity, is also presented. Given that cadmium exposure is inevitable, further studies using animal models are warranted for a detailed understanding of the mechanism underlying cadmium induced ROS production, and for the identification of more therapeutic targets.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | | |
Collapse
|