1
|
Yongkai W, Shuhui Z, Li M. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the immune system maternal-fetal interface during palatal development. J Mol Histol 2024; 56:60. [PMID: 39730832 PMCID: PMC11680613 DOI: 10.1007/s10735-024-10331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an important environmental pollutant that disturbs the immune balance of the maternal-fetal interface (MFI) and is also a common environmental factor for the formation of cleft palate (CP). Therefore, the purpose is to investigate whether TCDD can cause CP by disrupting the immune balance of the maternal-fetal interface. Fifteen C57BL/6J mice were randomly assigned to three groups: control group, TCDD group, and TCDD plus Freund's complete adjuvant (FCA) (TCDD + FCA) group. Peripheral blood, placentas, and palatal tissues were collected for H&E, flow cytometry, and ELISA. In the TCDD group, the placental diameter, the number of placental labyrinth vessels, and the area of sponge layer cells were all significantly reduced. At embryonic day (E) 17.0, there was a significant decrease in T-helper 1 (Th1) and Th2 cells in the peripheral blood of pregnant mice. Additionally, the levels of interferon-γ (IFN-γ) and interleukin-4 (IL-4), particularly IL-4, were significantly decreased. However, after treatment with FCA, the distance between the palatal shelves was reduced, and the placental weight, the number of labyrinth vessels, and the area of the cavernous cells in the placenta also increased. The number of Th1 and Th2 cells significantly increased, returning to the levels observed in the control group, with a more pronounced increase in the number of Th2 cells. In conclusion, TCDD may induce CP by disrupting the homeostasis of the MFI. The precise mechanisms by which TCDD impacts the immune system at the MFI require further investigation.2,3,7,8-- (TCDD) , (MFI) , (CP) 。, TCDD CP。 15 C57BL/6J 3 :、TCDD TCDD (FCA) (TCDD + FCA) 。、 H&E、 ELISA。TCDD 、。 17.0 (E) , T 1 (Th1) Th2 。,-γ (IFN-γ) -4 (IL-4), IL-4 。, FCA ,,、。Th1 Th2 ,,Th2 。,TCDD MFI CP。TCDD MFI 。.
Collapse
Affiliation(s)
- Wang Yongkai
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.51, Weiliu Road, Jinan, Shandong Province, 250021, China
- Stomatological College, Shandong First Medical University, Jinan, Shandong Province, China
| | - Zhang Shuhui
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.51, Weiliu Road, Jinan, Shandong Province, 250021, China
- Stomatological College, Shandong First Medical University, Jinan, Shandong Province, China
| | - Ma Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.51, Weiliu Road, Jinan, Shandong Province, 250021, China.
- Stomatological College, Shandong First Medical University, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Duan W, Wu Y, Zhang Y, Liu X. Identification of competing endogenous RNA networks associated with circRNA and lncRNA in TCDD-induced cleft palate development. Toxicol Lett 2024; 401:71-81. [PMID: 39270811 DOI: 10.1016/j.toxlet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD) is a teratogen that can induce cleft palate formation, a common birth defect. Competing endogenous RNAs (ceRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), indirectly regulate gene expression via sharing microRNAs (miRNAs). Nevertheless, the mechanism by which they act as ceRNAs to regulate palatal development remains to be explored in greater detail. Here, the cleft palate model of C57BL/6 N pregnant mice was constructed by gavage of TCDD (64 ug/kg) on gestation day (GD) 10.5, and the palatal shelves were taken on gestation day (GD) 14.5 for whole-transcriptome sequencing to investigate the underlying mechanisms of the roles of circRNAs and lncRNAs as ceRNAs in cleft palate. Sequencing results revealed that 293 lncRNA, 589 circRNA, 47 miRNA, and 138 messenger RNA (mRNA) were significantly dysregulated, and the cytochrome P450 (CYP) enzymes and the aryl hydrocarbon receptor (AhR) pathway play key roles in the induction of cleft palate upon exposure to TCDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the function of TCDD function was mainly related to the metabolic processes of intracellular compounds, including the metabolic processes of cellular aromatic compounds and the metabolism of exogenous drugs by cytochrome P450, etc. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks were hypothesized to be a hub involved in palatal development suggesting that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks may be critical for palatogenesis, setting the foundation for the investigation of cleft palate.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hexin Su
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Zhao X, Peng X, Wang Z, Zheng X, Wang X, Wang Y, Chen J, Yuan D, Liu Y, Du J. MicroRNAs in Small Extracellular Vesicles from Amniotic Fluid and Maternal Plasma Associated with Fetal Palate Development in Mice. Int J Mol Sci 2023; 24:17173. [PMID: 38139002 PMCID: PMC10743272 DOI: 10.3390/ijms242417173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cleft palate (CP) is a common congenital birth defect. Cellular and morphological processes change dynamically during palatogenesis, and any disturbance in this process could result in CP. However, the molecular mechanisms steering this fundamental phase remain unclear. One study suggesting a role for miRNAs in palate development via maternal small extracellular vesicles (SEVs) drew our attention to their potential involvement in palatogenesis. In this study, we used an in vitro model to determine how SEVs derived from amniotic fluid (ASVs) and maternal plasma (MSVs) influence the biological behaviors of mouse embryonic palatal mesenchyme (MEPM) cells and medial edge epithelial (MEE) cells; we also compared time-dependent differential expression (DE) miRNAs in ASVs and MSVs with the DE mRNAs in palate tissue from E13.5 to E15.5 to study the dynamic co-regulation of miRNAs and mRNAs during palatogenesis in vivo. Our results demonstrate that some pivotal biological activities, such as MEPM proliferation, migration, osteogenesis, and MEE apoptosis, might be directed, in part, by stage-specific MSVs and ASVs. We further identified interconnected networks and key miRNAs such as miR-744-5p, miR-323-5p, and miR-3102-5p, offering a roadmap for mechanistic investigations and the identification of early CP biomarkers.
Collapse
Affiliation(s)
- Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Dong Yuan
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China;
| | - Ying Liu
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China;
| |
Collapse
|