1
|
Gill SK, Gomer RH. Translational Regulators in Pulmonary Fibrosis: MicroRNAs, Long Non-Coding RNAs, and Transcript Modifications. Cells 2025; 14:536. [PMID: 40214489 PMCID: PMC11988943 DOI: 10.3390/cells14070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Fibrosing disorders including idiopathic pulmonary fibrosis (IPF) are progressive irreversible diseases, often with poor prognoses, characterized by the accumulation of excessive scar tissue and extracellular matrix. Translational regulation has emerged as a critical aspect of gene expression control, and the dysregulation of key effectors is associated with disease pathogenesis. This review examines the current literature on translational regulators in IPF, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA transcript modifications including alternative polyadenylation and chemical modification. Some of these translational regulators potentiate fibrosis, and some of the regulators inhibit fibrosis. In IPF, some of the profibrotic regulators are upregulated, and some of the antifibrotic regulators are downregulated. Correcting these defects in IPF-associated translational regulators could be an intriguing avenue for therapeutics.
Collapse
Affiliation(s)
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
2
|
Liu H, Li R, Wang Z, Han W, Sun X, Dong X, Lou H, Xu R, Hu A, Baranenko D, Bai X, Xiao D, Lu W. Drug-likeness evaluation and inhibitory mechanism of the emodin derivative on cardiac fibrosis based on metastasis-associated protein 3. Br J Pharmacol 2025. [PMID: 40083252 DOI: 10.1111/bph.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND AND PURPOSE Emodin inhibits cardiac fibrosis through metastasis-associated protein 3 (MTA3), but its limited bioavailability hinders clinical application. To enhance emodin's clinical potential, a new derivative, emodin succinyl ethyl ester, was synthesised by modifying the 3'-OH position. This study assessed its drug-likeness, anti-fibrotic properties and molecular mechanisms involving MTA3. EXPERIMENTAL APPROACH Drug-likeness properties of the emodin derivative were evaluated using computational-aided drug design (CADD). Transverse aortic constriction (TAC)-induced cardiac fibrosis and Angiotensin II (Ang II)-stimulated cardiac fibroblasts were used in vivo and ex vivo, respectively, to determine the effects of the emodin derivative on cardiac fibrosis and fibroblast transdifferentiation. Bioinformatics analysis, CADD, chromatin immunoprecipitation (ChIP), luciferase reporter assays and functional experiments were employed to predict, identify and validate the relationship between MTA3 and its upstream transcription factors. KEY RESULTS The emodin derivative exhibited superior drug-likeness and anti-fibrotic effects compared to emodin by effectively inhibiting cardiac fibroblast transdifferentiation and restored MTA3 expression. E2F1 was identified and validated as a transcriptional regulator, promoting α-SMA and COL1A2 expression, and directly reducing MTA3 expression in cardiac fibroblasts. The emodin derivative demonstrated stronger binding to the E2F1 transcription site than emodin, reducing E2F1 expression and enhancing anti-fibrotic action. CONCLUSIONS AND IMPLICATIONS The emodin derivative shows improved drug-likeness and potent inhibition of cardiac fibrosis by targeting E2F1, disrupting its pro-fibrotic function, restoring MTA3 expression and halting fibrosis progression. This advances emodin derivative's potential as a clinical therapy for cardiac fibrosis and provides insights into its anti-fibrotic mechanisms.
Collapse
Affiliation(s)
- Heng Liu
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Runze Li
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China
| | - Zhixia Wang
- Department of Pharmacy, the fourth people's hospital of Datong, Shanxi, China
| | - Weina Han
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinxin Dong
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Lou
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ange Hu
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Denis Baranenko
- School of Life Sciences, Faculty of Ecotechnologies, ITMO University, St. Petersburg, Russia
| | - Xue Bai
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University, Haikou, China
| | - Dan Xiao
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Entrenas-García C, Suárez-Cárdenas JM, Fernández-Rodríguez R, Bautista R, Claros MG, Garrido JJ, Zaldívar-López S. miR-215 Modulates Ubiquitination to Impair Inflammasome Activation and Autophagy During Salmonella Typhimurium Infection in Porcine Intestinal Cells. Animals (Basel) 2025; 15:431. [PMID: 39943201 PMCID: PMC11815736 DOI: 10.3390/ani15030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The host response to S. Typhimurium infection can be post-transcriptionally regulated by miRNAs. In this study, we investigated the role of miR-215 using both in vivo porcine infection models and in vitro intestinal epithelial cell lines. Several miRNAs were found to be dysregulated in the porcine ileum during infection with wild-type and SPI2-defective mutant strains of S. Typhimurium, with some changes being SPI2-dependent. Notably, miR-215 was significantly downregulated during infection. To explore its functional role, gain-of-function experiments were performed by transfecting porcine intestinal epithelial cells (IPEC-J2) with a miR-215-5p mimic, followed by label-free quantitative (LFQ) proteomic analysis. This analysis identified 157 proteins, of which 35 were downregulated in response to miR-215 overexpression, suggesting they are potential targets of this miRNA. Among these, E2 small ubiquitin-like modifier (SUMO)-conjugating enzyme UBC9 and E3 ubiquitin-ligase HUWE1 were identified as key targets, both of which are upregulated during S. Typhimurium infection. The miR-215-mediated downregulation of these proteins resulted in a significant decrease in overall ubiquitination, a process crucial for regulating inflammasome activation and autophagy. Consistently, inflammasome markers caspase 1 (CASP1) and apoptosis-associated speck-like protein containing a CARD (ASC), as well as autophagy markers microtubule-associated protein 1A/1B-light chain 3 (LC3B) and Ras-related protein Rab-11 (RAB11A), showed decreased expression in miR-215 mimic-transfected and infected IPEC-J2 cells. To further validate these findings, human intestinal epithelial cells (HT29) were used as a complementary model, providing additional insights into conserved immune pathways and extending the observations made in the porcine system. Overall, our findings demonstrate that miR-215 plays a significant role in modulating host inflammasome activation and autophagy by targeting proteins involved in ubiquitination during S. Typhimurium infection.
Collapse
Affiliation(s)
- Carmen Entrenas-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
| | - José M. Suárez-Cárdenas
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, 29590 Malaga, Spain
| | - M. Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, 29590 Malaga, Spain
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29590 Malaga, Spain
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
| | - Juan J. Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Sara Zaldívar-López
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| |
Collapse
|
4
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
5
|
Zhang M, Xue X, Lou Z, Lin Y, Li Q, Huang C. Exosomes from senescent epithelial cells activate pulmonary fibroblasts via the miR-217-5p/Sirt1 axis in paraquat-induced pulmonary fibrosis. J Transl Med 2024; 22:310. [PMID: 38532482 PMCID: PMC10964553 DOI: 10.1186/s12967-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. METHODS Cellular senescence was determined by immunohistochemistry and SA-β-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. RESULTS Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of β-catenin and Wnt signaling activation. CONCLUSION These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/β-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Xiang Xue
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Zhenshuai Lou
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Yanhong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Qian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Wang C, Yao S, Zhang T, Sun X, Bai C, Zhou P. RNA N6-Methyladenosine Modification in DNA Damage Response and Cancer Radiotherapy. Int J Mol Sci 2024; 25:2597. [PMID: 38473842 DOI: 10.3390/ijms25052597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The N6-methyladenosine (M6A) modification is the most common internal chemical modification of RNA molecules in eukaryotes. This modification can affect mRNA metabolism, regulate RNA transcription, nuclear export, splicing, degradation, and translation, and significantly impact various aspects of physiology and pathobiology. Radiotherapy is the most common method of tumor treatment. Different intrinsic cellular mechanisms affect the response of cells to ionizing radiation (IR) and the effectiveness of cancer radiotherapy. In this review, we summarize and discuss recent advances in understanding the roles and mechanisms of RNA M6A methylation in cellular responses to radiation-induced DNA damage and in determining the outcomes of cancer radiotherapy. Insights into RNA M6A methylation in radiation biology may facilitate the improvement of therapeutic strategies for cancer radiotherapy and radioprotection of normal tissues.
Collapse
Affiliation(s)
- Cui Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shibo Yao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tinghui Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoya Sun
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
7
|
Wierzbicka A, Pawlina-Tyszko K, Świątkiewicz M, Szmatoła T, Oczkowicz M. Changes in miRNA expression in the lungs of pigs supplemented with different levels and forms of vitamin D. Mol Biol Rep 2023; 51:8. [PMID: 38085380 PMCID: PMC10716066 DOI: 10.1007/s11033-023-08940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- β pathway and pathways related to metabolism and synthesis of glycan.
Collapse
Affiliation(s)
- Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, Kraków, 30 248, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland.
| |
Collapse
|
8
|
Lu H, Zhang R, Zhang S, Li Y, Liu Y, Xiong Y, Yu X, Lan T, Li X, Wang M, Liu Z, Zhang G, Li J, Chen S. HSC-derived exosomal miR-199a-5p promotes HSC activation and hepatocyte EMT via targeting SIRT1 in hepatic fibrosis. Int Immunopharmacol 2023; 124:111002. [PMID: 37804655 DOI: 10.1016/j.intimp.2023.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Exosomes have been implicated in inflammation-related diseases, such as hepatic fibrosis (HF) and renal fibrosis, via transferring bioactive cargoes to recipient cells. This study aimed to investigate the possible effect of hepatic stellate cell (HSC)-derived exosomes on the initiation and development of HF by delivering microRNA (miR)-199a-5p. In HF rats with cholestasis induced by ligating the common bile duct, miR-199a-5p was upregulated while SIRT1 was downregulated in liver tissues from bile duct ligation (BDL) rats compared with that of sham rats. Furthermore, miR-199a-5p expression was upregulated, but the mRNA and protein expression levels of SIRT1 were downregulated in TGF-β1-activated LX-2. miR-199a-5p promoted the proliferation and further activation of LX-2 and enhanced the expression levels of the HF markers COL1A1 and α-SMA. Subsequently, the binding of miR-199a-5p to the 3'UTR of SIRT1 mRNA was predicted by bioinformatics websites and evidenced by fluorescent reporter assay. Knocking down SIRT1 enhanced the abilities of LX-2 cell proliferation, migration, and colony formation and increased the expression levels of the HF markers α-SMA and COL1A1. LX-2-derived exosomal miR-199a-5p transferred to LX-2 and THLE-2, inhibited the proliferation of THLE-2, and promoted the epithelial mesenchymal transition (EMT) and senescence of THLE-2. Furthermore, in vivo results suggested that miR-199a-5p overexpression aggravated HF in BDL rats; increased miR-199a-5p, α-SMA, and COL1A1 expression levels; and significantly upregulated the serum ALT, AST, TBA, and TBIL levels. However, reverse results were obtained with inhibited miR-199a-5p expression. In conclusion, HSC-derived exosomal miR-199a-5p may promote HF by accelerating HSC activation and hepatocyte EMT by targeting SIRT1, suggesting that miR-199a-5p and SIRT1 may serve as potential therapeutic targets for HF.
Collapse
Affiliation(s)
- Hongjian Lu
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ronghua Zhang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Shukun Zhang
- Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Yufeng Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China
| | - Yankun Liu
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China
| | - Yanan Xiong
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaohan Yu
- North China University of Science and Technology Affiliated Hospital, School of Public Health, Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Tao Lan
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Xin Li
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Meimei Wang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiyong Liu
- Health Science Center, North China University of Science and Technology, Tangshan 063210, China
| | - Guangling Zhang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Jingwu Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China.
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China.
| |
Collapse
|