1
|
Ravindranath AG, Muralidhar A, Gambhir NN, Chatterjee J. Investigating the neuroprotective effects of strawberry extract against diesel soot-induced motor dysfunction in Drosophila: an in-vivo and in-silico study. In Silico Pharmacol 2025; 13:58. [PMID: 40255255 PMCID: PMC12003239 DOI: 10.1007/s40203-025-00344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Environmental pollutants including diesel soot, have been known to contribute to neurological disorders. Previous studies highlight the neuroprotective effects of strawberry-derived compounds. This work explores the impacts of diesel soot and strawberry extract in movement-related disorders. In-silico analysis assessed compounds from HPLC/GCMS in the literature of soot and strawberry extract for ADME properties and blood-brain barrier permeability, selecting six compounds and four motor function-related proteins (SOD1, TARDBP, FUS, MAPT) with D. melanogaster orthologs. Homology modeling generated protein structures, molecular docking assessed binding affinities. MLSD examined combined interactions, with RMSD validating accuracy. Docking scores matched neuroprotective controls (quercetin, resveratrol), while differed for negative control (formaldehyde). Phenanthrene and anthocyanin strongly bound to FUS (- 7.60 ± 0.26 kcal/mol, - 7.1 ± 0.26 kcal/mol) and cocoon (- 6.5 ± 0.39 kcal/mol, - 7.23 ± 0.45 kcal/mol). MLSD yielded - 3.00 ± 0.24 kcal/mol and - 3.12 ± 0.11 kcal/mol respectively. In-vivo assays in D. melanogaster exhibited soot impaired movement (p = 0.0006), while strawberry improved it (p = 0.0003) with partial recovery in combined exposure (p = 0.0003). Strawberry enhanced cold stress recovery (p = 0.0048), climbing (p < 0.0001), and vortex recovery (p = 0.0003). One-way ANOVA confirmed significant effects on crawling in males (F (9,20) = 37.67, p < 0.0001, η 2 = 0.53) and female flies (F (9,20) = 70.10, p < 0.0001), with normality confirmed by Shapiro-Wilk test (p > 0.05). Toxicant exposure accelerated mortality, while strawberry improved thermotolerance. Combined exposure provided partial protection with minor sex differences. Findings highlight strawberries' neuroprotective role in counteracting diesel soot toxicity, even under combined exposure. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00344-2.
Collapse
Affiliation(s)
| | - Ananya Muralidhar
- Department of Biotechnology, PES University, Bangalore, 560085 India
| | | | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore, 560085 India
| |
Collapse
|
2
|
Fahey JW, Liu H, Batt H, Panjwani AA, Tsuji P. Sulforaphane and Brain Health: From Pathways of Action to Effects on Specific Disorders. Nutrients 2025; 17:1353. [PMID: 40284217 PMCID: PMC12030691 DOI: 10.3390/nu17081353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The brain accounts for about 2% of the body's weight, but it consumes about 20% of the body's energy at rest, primarily derived from ATP produced in mitochondria. The brain thus has a high mitochondrial density in its neurons because of its extensive energy demands for maintaining ion gradients, neurotransmission, and synaptic activity. The brain is also extremely susceptible to damage and dysregulation caused by inflammation (neuroinflammation) and oxidative stress. Many systemic challenges to the brain can be mitigated by the phytochemical sulforaphane (SF), which is particularly important in supporting mitochondrial function. SF or its biogenic precursor glucoraphanin, from broccoli seeds or sprouts, can confer neuroprotective and cognitive benefits via diverse physiological and biochemical mechanisms. SF is able to cross the blood-brain barrier as well as to protect it, and it mitigates the consequences of destructive neuroinflammation. It also protects against the neurotoxic effects of environmental pollutants, combats the tissue and cell damage wrought by advanced glycation end products (detoxication), and supports healthy glucose metabolism. These effects are applicable to individuals of all ages, from the developing brains in periconception and infancy, to cognitively, developmentally, and traumatically challenged brains, to those in later life as well as those who are suffering with multiple chronic conditions including Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Jed W. Fahey
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- iMIND Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - Hua Liu
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Holly Batt
- Anti-AGEs Foundation, Depew, NY 14043, USA;
| | - Anita A. Panjwani
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN 47907, USA
| | - Petra Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA;
| |
Collapse
|
3
|
Kwon D, Paul KC, Kusters C, Wu J, Bronstein JM, Lill CM, Ketzel M, Raachou-Nielsen O, Hansen J, Ritz B. Interaction Between Traffic-Related Air Pollution and Parkinson Disease Polygenic Risk Score. JAMA Netw Open 2025; 8:e250854. [PMID: 40094665 PMCID: PMC11915066 DOI: 10.1001/jamanetworkopen.2025.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025] Open
Abstract
Importance Genetic and environmental factors are linked to Parkinson disease (PD), but the role of genetic susceptibility in the association between traffic-related air pollution (TRAP) and PD remains unclear. Objective To assess the gene-environment interaction between the polygenic risk score (PRS) for PD and long-term TRAP exposure and to estimate the joint effect with PD risk. Design, Setting, and Participants This population-based case-control study used a meta-analytical assessment of studies conducted in central California and Denmark. The Parkinson Environment and Genes (PEG) study in California (June 1, 2000, to July 31, 2017) included 634 patients with PD and 733 controls; the Parkinson Disease in Denmark (PASIDA) study (January 1, 2006, to December 31, 2017) included 966 patients with PD and 1045 controls. Data were analyzed from July 1 to October 31, 2024. Exposures PRS was computed by summing the effect estimates of well-known risk alleles from an existing genome-wide association study's summary statistics using participants' genetic arrays. TRAP exposure was estimated using dispersion models to calculate long-term exposure (10- or 15-year means with a 5-year lag) to traffic-related pollutants (represented by carbon monoxide [CO] levels) at participants' residences. Main Outcomes and Measures The main outcome was diagnosis of PD. Using multivariable logistic regression, PD risk was estimated from interactions between PRS (per SD) and TRAP exposure (per IQR), with joint effects based on low (quartiles 1-3) and high (quartile 4) exposure levels. Results A total of 1600 patients with PD (mean [SD] age, 65.1 [9.9] years; 990 [61.9%] male) and 1778 controls (mean [SD] age, 64.5 [10.3] years; 992 [55.8%] male) were included. Meta-analytical estimates suggest that both higher PRS and increased TRAP exposure increased PD risk, with an interaction effect estimate of 1.06 (95% CI, 1.00-1.12). Joint effect analysis indicated that individuals with both high PRS and high TRAP exposure were at greatest risk of PD (odds ratio, 3.05; 95% CI, 2.23-4.19) compared with the reference group with a low PRS and low TRAP exposure, suggesting a synergistic effect. Conclusions and Relevance In this gene-environment interaction study, a combination of long-term air pollution exposure and genetic susceptibility strongly contributed to the risk of developing PD. Widespread exposure to air pollution makes TRAP an important modifiable risk factor affecting large populations globally, particularly individuals with genetic vulnerability.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| | - Cynthia Kusters
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles
| | - Jun Wu
- Department of Environmental and Occupational Health, School of Population and Public Health, University of California, Irvine
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| | - Christina M. Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, University of Surrey, Guildford, United Kingdom
| | - Ole Raachou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Johnni Hansen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| |
Collapse
|
4
|
Bagwell E, Shin M, Henkel N, Migliaccio D, Peng C, Larsen J. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated adult zebrafish as a model for Parkinson's Disease. Neurosci Lett 2024; 842:137991. [PMID: 39317270 DOI: 10.1016/j.neulet.2024.137991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter that works to regulate cognitive functions. Patients affected by Parkinson's Disease (PD) experience a loss of dopaminergic neurons and downregulated neural DA production. This leads to cognitive and physical decline that is the hallmark of PD for which no cure currently exists. Danio rerio, or zebrafish, have become an increasingly popular disease model used in PD pharmaceutical development. This model still requires extensive development to better characterize which PD features are adequately represented. Furthermore, the great majority of PD zebrafish models have been performed in embryos, which may not be relevant towards age-related human PD. As an improvement, mature D. rerio were treated with neurotoxic prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) through intraperitoneal injection to induce parkinsonism. Behavioral analysis confirmed disparities in movement between saline-injected control and the MPTP-injected experimental group, with swim distance and speed significantly lowered seven days after MPTP injection. Simultaneously, cognitive decline was apparent in MPTP-injected zebrafish, demonstrated by decreased alternation in a y-maze. RT-qPCR confirmed trends consistent with downregulation in Parkinsonian genetic markers, specifically DA transporter (DAT), MAO-B, PINK1. In summary, mature zebrafish injected with MPTP present with similar movement and cognitive decline as compared to human disease. Despite its benefits, this model does not appear to recapitulate pathophysiology of the disease with the full profile of expected gene downregulation. Because of this, it is important that researchers looking for pharmacological interventions for PD only use this zebrafish model when targeting the human-relevant PD symptoms and causes that are represented.
Collapse
Affiliation(s)
- Emmeline Bagwell
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Minhyun Shin
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Nicole Henkel
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | - Doris Migliaccio
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA; Department of Psychology, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
5
|
Crane BM, Moored KD, Donahue PT, Corrigan AE, Curriero FC, Shields TM, Desjardins MR, Richards EA, Rosso AL, Lovasi GS, Odden MC, Lopez OL, Biggs ML, Newman AB, Andrews RM, Carlson MC. Associations between toxicity-weighted concentrations and dementia risk: Results from the Cardiovascular Health Cognition Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173706. [PMID: 38866169 PMCID: PMC11262620 DOI: 10.1016/j.scitotenv.2024.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Air pollution is a modifiable risk factor for dementia. Yet, studies on specific sources of air pollution (i.e., toxic chemical emissions from industrial facilities) and dementia risk are scarce. We examined associations between toxicity-weighted concentrations of industrial pollution and dementia outcomes among a large, multi-site cohort of older adults. METHODS Participants (n = 2770) were ≥ 65 years old (Mean = 75.3, SD = 5.1 years) from the Cardiovascular Health Cognition Study (1992-1999). Toxicity-weighted concentrations were estimated using the Risk Screening Environmental Indicator (RSEI) model which incorporates total reported chemical emissions with toxicity, fate, and transport models. Estimates were aggregated to participants' baseline census tract, averaged across 1988-1992, and log2-transformed. Dementia status was clinically adjudicated in 1998-1999 and categorized by subtype (Alzheimer's, vascular, mixed). We assessed whether RSEI-estimated toxicity-weighted concentrations were associated with 1) odds of prevalent dementia and 2) incident dementia risk by subtype. RESULTS After adjusting for individual and census-tract level covariates, a doubling in toxicity-weighted concentrations was associated with 9 % higher odds of prevalent dementia (OR = 1.09, 95 % CI: 1.00, 1.19). In discrete-time survival models, each doubling in toxicity-weighted concentrations was associated with a 16 % greater hazard of vascular dementia (HR = 1.16, 95 % CI: 1.01, 1.34) but was not significantly associated with all-cause, Alzheimer's disease, or mixed dementia (p's > 0.05). DISCUSSION Living in regions with higher toxicity-weighted concentrations was associated with higher odds of prevalent dementia and a higher risk of incident vascular dementia in this large, community-based cohort of older adults. These findings support the need for additional studies to examine whether toxic chemical emissions from industrial and federal facilities may be a modifiable target for dementia prevention.
Collapse
Affiliation(s)
- Breanna M Crane
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America.
| | - Kyle D Moored
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Patrick T Donahue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Anne E Corrigan
- Spatial Science for Public Health Center and Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Frank C Curriero
- Spatial Science for Public Health Center and Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Timothy M Shields
- Spatial Science for Public Health Center and Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Michael R Desjardins
- Spatial Science for Public Health Center and Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Emily A Richards
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, United States of America
| | - Gina S Lovasi
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA 19104, United States of America
| | - Michelle C Odden
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States of America
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Mary Lou Biggs
- Department of Biostatistics, University of Washington, Seattle, WA 98115, United States of America
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, United States of America
| | - Ryan M Andrews
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States of America
| | - Michelle C Carlson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America.
| |
Collapse
|
6
|
Kwon D, Paul KC, Yu Y, Zhang K, Folle AD, Wu J, Bronstein JM, Ritz B. Traffic-related air pollution and Parkinson's disease in central California. ENVIRONMENTAL RESEARCH 2024; 240:117434. [PMID: 37858688 PMCID: PMC11232690 DOI: 10.1016/j.envres.2023.117434] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Prior studies suggested that air pollution exposure may increase the risk of Parkinson's Disease (PD). We investigated the long-term impacts of traffic-related and multiple sources of particulate air pollution on PD in central California. METHODS Our case-control analysis included 761 PD patients and 910 population controls. We assessed exposure at residential and occupational locations from 1981 to 2016, estimating annual average carbon monoxide (CO) concentrations - a traffic pollution marker - based on the California Line Source Dispersion Model, version 4. Additionally, particulate matter (PM2.5) concentrations were based on a nationwide geospatial chemical transport model. Exposures were assessed as 10-year averages with a 5-year lag time prior to a PD diagnosis for cases and an interview date for controls, subsequently categorized into tertiles. Logistic regression models were used, adjusting for various factors. RESULTS Traffic-related CO was associated with an increased odds ratio for PD at residences (OR for T3 vs. T1: 1.58; 95% CI: 1.20, 2.10; p-trend = 0.02) and workplaces (OR for T3 vs. T1: 1.91; 95% CI: 1.22, 3.00; p-trend <0.01). PM2.5 was also positively associated with PD at residences (OR for T3 vs. T1: 1.62; 95% CI: 1.22, 2.15; p-trend <0.01) and workplaces (OR for T3 vs. T1: 1.85; 95% CI: 1.21, 2.85; p-trend <0.01). Associations remained robust after additional adjustments for smoking status and pesticide exposure and were consistent across different exposure periods. CONCLUSION We found that long-term modeled exposure to local traffic-related air pollution (CO) and fine particulates from multiple sources (PM2.5) at homes and workplaces in central California was associated with an increased risk of PD.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Yu Yu
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; UCLA Center for Health Policy Research, University of California, Los Angeles, United States
| | - Keren Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Aline D Folle
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, United States
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
7
|
Gonzalez-Ramos S, Wang J, Cho JM, Zhu E, Park SK, In JG, Reddy ST, Castillo EF, Campen MJ, Hsiai TK. Integrating 4-D light-sheet fluorescence microscopy and genetic zebrafish system to investigate ambient pollutants-mediated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165947. [PMID: 37543337 PMCID: PMC10659062 DOI: 10.1016/j.scitotenv.2023.165947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 μm), PM10 (d ~10 μm), and ultrafine particles (UFP: d < 0.1 μm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.
Collapse
Affiliation(s)
- Sheila Gonzalez-Ramos
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jing Wang
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Julie G In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Eliseo F Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA; Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, California, USA.
| |
Collapse
|
8
|
Jami MS, Murata H, Barnhill LM, Li S, Bronstein JM. Diesel exhaust exposure alters the expression of networks implicated in neurodegeneration in zebrafish brains. Cell Biol Toxicol 2023; 39:641-655. [PMID: 34057650 PMCID: PMC10406705 DOI: 10.1007/s10565-021-09618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a major cause of disability in the world, but their etiologies largely remain elusive. Genetic factors can only account for a minority of risk for most of these disorders, suggesting environmental factors play a significant role in the development of these diseases. Prolonged exposure to air pollution has recently been identified to increase the risk of Alzheimer's and Parkinson's diseases, but the molecular mechanisms by which it acts are not well understood. Zebrafish embryos exposed to diesel exhaust particle extract (DEPe) lead to dysfunctional autophagy and neuronal loss. Here, we exposed zebrafish embryos to DEPe and performed high throughput proteomic and transcriptomic expression analyses from their brains to identify pathogenic pathways induced by air pollution. DEPe treatment altered several biological processes and signaling pathways relevant to neurodegenerative processes, including xenobiotic metabolism, phagosome maturation, and amyloid processing. The biggest induction of gene expression in brains was in Cyp1A (over 30-fold). The relevance of this expression change was confirmed by blocking induction using CRISPR/Cas9, which resulted in a dramatic increase in sensitivity to DEPe toxicity, confirming that Cyp1A induction was a compensatory protective mechanism. These studies identified disrupted molecular pathways that may contribute to the pathogenesis of neurodegenerative disorders. Ultimately, determining the molecular basis of how air pollution increases the risk of neurodegeneration will help in the development of disease-modifying therapies.
Collapse
Affiliation(s)
- M Saeid Jami
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Hiromi Murata
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Lisa M Barnhill
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Sharon Li
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Liu Y, Xu J, Shi J, Zhang Y, Ma Y, Zhang Q, Su Z, Zhang Y, Hong S, Hu G, Chen Z, Jia G. Effects of short-term high-concentration exposure to PM 2.5 on pulmonary tissue damage and repair ability as well as innate immune events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121055. [PMID: 36632972 DOI: 10.1016/j.envpol.2023.121055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Short-term heavy air pollution still occurs frequently worldwide, especially during the winter heating period in some developing countries, which is usually accompanied by the temporary explosive growth of PM2.5. The pulmonary damage caused by PM2.5 exposure has been determined, but there have been few studies on the repair ability after the cessation of exposure and the important role of innate immune events. This study established a short-term (30 days) high-concentration (15 mg/kg body weight) PM2.5 exposure and recovery (15 days of exposure cessation) model by intratracheal instillation. The results showed that short-term PM2.5 exposure increased the content of collagen fiber in rat lung tissue, which was significantly repaired after recovery by 15 days of exposure cessation. Meanwhile, exposure to PM2.5 also caused changes in lung epithelial function, macrophage polarization and cell autophagy function. Most of these changes could be restored or reversed to a certain extent after recovery. However, there were also some biomarkers, including CLDN18.1, SP-A, SP-D, iNOS, CD206, Beclin1, p62 and LC3B, that were still significantly different between the exposure and control groups after recovery, suggesting that some toxic effects, especially epithelial function damage, were not completely repaired. In addition, there was a significant correlation between pulmonary fibrosis and innate immunity. The present study demonstrated that short-term high-concentration exposure to PM2.5 could cause temporary lung tissue damage and related innate immune events in rats, and the repair ability existed after the cessation of exposure, but part of the damage that required special attention still persisted.
Collapse
Affiliation(s)
- Yu Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Jiayu Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Guiping Hu
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| |
Collapse
|
10
|
Neurotoxicity of diesel exhaust extracts in zebrafish and its implications for neurodegenerative disease. Sci Rep 2022; 12:19371. [PMID: 36371460 PMCID: PMC9653411 DOI: 10.1038/s41598-022-23485-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term air pollution (AP) exposure, including diesel exhaust exposure, is increasingly being recognized as a major contributor to the development of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. How AP increases the risk of neurodegeneration is not well understood but might include direct neurotoxicity and CNS inflammation. We investigated the impact of diesel exhaust particulate extract (DEPe) exposure on the brain and the mechanisms by which microglia and astroglia might mediate neuronal changes. Zebrafish (ZF) were utilized to determine neuronal toxicity of and microglial response to DEPe and single cell RNA sequencing was employed to study cell type-specific transcriptomic responses within the ZF brain. DEPe exposure induced neuronal injury and microglial activation in vivo. However, preventing the development of microglia did not attenuate DEPe-induced neuron loss, leading us to investigate microglial, astroglial, and neuronal response to DEPe exposure at single-cell resolution. Differentially expressed genes and disease-relevant pathways were identified within glial and neuronal clusters after DEPe exposure. Microglia and astroglia existed in multiple states, some of which appear toxic and others protective to neurons. Neuronal transcriptomic analysis revealed that DEPe exposure reduced expression of autophagy-related genes consistent with direct neurotoxicity. In summary, DEPe exposure was neurotoxic in developing ZF larvae and induced neuroinflammation. The microglial inflammatory response did not contribute to neurotoxicity of DEPe and in fact, some glial clusters upregulated transcriptional pathways that are likely protective. Furthermore, DEPe exposure led to reduced expression of autophagy-related genes in neurons that likely contribute to its toxicity.
Collapse
|
11
|
Windheim J, Colombo L, Battajni NC, Russo L, Cagnotto A, Diomede L, Bigini P, Vismara E, Fiumara F, Gabbrielli S, Gautieri A, Mazzuoli-Weber G, Salmona M, Colnaghi L. Micro- and Nanoplastics’ Effects on Protein Folding and Amyloidosis. Int J Mol Sci 2022; 23:ijms231810329. [PMID: 36142234 PMCID: PMC9499421 DOI: 10.3390/ijms231810329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
A significant portion of the world’s plastic is not properly disposed of and, through various processes, is degraded into microscopic particles termed micro- and nanoplastics. Marine and terrestrial faunae, including humans, inevitably get in contact and may inhale and ingest these microscopic plastics which can deposit throughout the body, potentially altering cellular and molecular functions in the nervous and other systems. For instance, at the cellular level, studies in animal models have shown that plastic particles can cross the blood–brain barrier and interact with neurons, and thus affect cognition. At the molecular level, plastics may specifically influence the folding of proteins, induce the formation of aberrant amyloid proteins, and therefore potentially trigger the development of systemic and local amyloidosis. In this review, we discuss the general issue of plastic micro- and nanoparticle generation, with a focus on their effects on protein folding, misfolding, and their possible clinical implications.
Collapse
Affiliation(s)
- Joseph Windheim
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Nora C. Battajni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20156 Milan, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
- National Institute of Neuroscience (INN), University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Silvia Gabbrielli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Gemma Mazzuoli-Weber
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-4818
| |
Collapse
|
12
|
Smoot J, Padilla S, Farraj AK. The utility of alternative models in particulate matter air pollution toxicology. Curr Res Toxicol 2022; 3:100077. [PMID: 35676914 PMCID: PMC9168130 DOI: 10.1016/j.crtox.2022.100077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Countless unique particulate matter (PM) samples with limited or no toxicity information. Alternative in vivo models offer greater throughput than traditional mammalian models. Use of zebrafish, fruit flies, and nematodes in PM toxicology lacks systematic review. Their utility in PM toxicity and mechanistic research and as screening tools is reviewed.
Exposure to particulate matter (PM) air pollution increases risk of adverse human health effects. As more attention is brought to bear on the problem of PM, traditional mammalian in vivo models struggle to keep up with the risk assessment challenges posed by the countless number of unique PM samples across air sheds with limited or no toxicity information. This review examines the utility of three higher throughput, alternative, in vivo animal models in PM toxicity research: Danio rerio (zebrafish), Caenorhabditis elegans (nematode), and Drosophila melanogaster (fruit fly). These model organisms vary in basic biology, ease of handling, methods of exposure to PM, number and types of available assays, and the degree to which they mirror human biology and responsiveness, among other differences. The use of these models in PM research dates back over a decade, with assessments of the toxicity of various PM sources including traffic-related combustion emissions, wildland fire smoke, and coal fly ash. This article reviews the use of these alternative model organisms in PM toxicity studies, their biology, the various assays developed, endpoints measured, their strengths and limitations, as well as their potential role in PM toxicity assessment and mechanistic research going forward.
Collapse
Affiliation(s)
- Jacob Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Stephanie Padilla
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, United States
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC, United States
- Corresponding author.
| |
Collapse
|
13
|
Murata H, Barnhill LM, Bronstein JM. Air Pollution and the Risk of Parkinson's Disease: A Review. Mov Disord 2022; 37:894-904. [PMID: 35043999 PMCID: PMC9119911 DOI: 10.1002/mds.28922] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease, as well as other neurodegenerative disorders, are primarily characterized by pathological accumulation of proteins, inflammation, and neuron loss. Although there are some known genetic risk factors, most cases cannot be explained by genetics alone. Therefore, it is important to determine the environmental factors that confer risk and the mechanisms by which they act. Recent epidemiological studies have found that exposure to air pollution is associated with an increased risk for development of Parkinson's disease, although not all results are uniform. The variability between these studies is likely due to differences in what components of air pollution are measured, timing and methods used to determine exposures, and correction for other variables. There are several potential mechanisms by which air pollution could act to increase the risk for development of Parkinson's disease, including direct neuronal toxicity, induction of systemic inflammation leading to central nervous system inflammation, and alterations in gut physiology and the microbiome. Taken together, air pollution is an emerging risk factor in the development of Parkinson's disease. A number of potential mechanisms have been implicated by which it promotes neuropathology providing biological plausibility, and these mechanisms are likely relevant to the development of other neurodegenerative disorders such as Alzheimer's disease. This field is in its early stages, but a better understanding of how environmental exposures influence the pathogenesis of neurodegeneration is essential for reducing the incidence of disease and finding disease-modifying therapies. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Jeff M. Bronstein
- David Geffen School of Medicine at UCLA, Department of Neurology and Molecular Toxicology, 710 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
14
|
Luderer U, Lim J, Ortiz L, Nguyen JD, Shin JH, Allen BD, Liao LS, Malott K, Perraud V, Wingen LM, Arechavala RJ, Bliss B, Herman DA, Kleinman MT. Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM 2.5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice. Part Fibre Toxicol 2022; 19:5. [PMID: 34996492 PMCID: PMC8740366 DOI: 10.1186/s12989-021-00445-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. RESULTS Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. CONCLUSIONS These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.
Collapse
Affiliation(s)
- Ulrike Luderer
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Jinhwan Lim
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Laura Ortiz
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Johnny D. Nguyen
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Joyce H. Shin
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Barrett D. Allen
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Lisa S. Liao
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Kelli Malott
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA
| | - Veronique Perraud
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Lisa M. Wingen
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Rebecca J. Arechavala
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Bishop Bliss
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - David A. Herman
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Michael T. Kleinman
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| |
Collapse
|
15
|
De Miranda BR, Goldman SM, Miller GW, Greenamyre JT, Dorsey ER. Preventing Parkinson's Disease: An Environmental Agenda. JOURNAL OF PARKINSONS DISEASE 2021; 12:45-68. [PMID: 34719434 PMCID: PMC8842749 DOI: 10.3233/jpd-212922] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fueled by aging populations and continued environmental contamination, the global burden of Parkinson's disease (PD) is increasing. The disease, or more appropriately diseases, have multiple environmental and genetic influences but no approved disease modifying therapy. Additionally, efforts to prevent this debilitating disease have been limited. As numerous environmental contaminants (e.g., pesticides, metals, industrial chemicals) are implicated in PD, disease prevention is possible. To reduce the burden of PD, we have compiled preclinical and clinical research priorities that highlight both disease prediction and primary prevention. Though not exhaustive, the "PD prevention agenda" builds upon many years of research by our colleagues and proposes next steps through the lens of modifiable risk factors. The agenda identifies ten specific areas of further inquiry and considers the funding and policy changes that will be necessary to help prevent the world's fastest growing brain disease.
Collapse
Affiliation(s)
- Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama atBirmingham, Birmingham, AL, USA
| | - Samuel M Goldman
- Division of Occupational and Environmental Medicine, San Francisco VeteransAffairs Health Care System, School of Medicine, University ofCalifornia-San Francisco, San Francisco, CA, USA
| | - Gary W Miller
- Department of Environmnetal Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Universityof Pittsburgh, Pittsburgh, PA, USA
| | - E Ray Dorsey
- Center for Health+Technology and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
16
|
Lilach S, Hagai B, Zvi I, Hermona S, Wael M. MicroRNA expression changes in Parkinson's disease (PD) patients' leukocytes prior to and following deep brain stimulation (DBS). AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2021; 10:28-33. [PMID: 34327050 PMCID: PMC8310831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
The second most prevalent neurodegenerative disorder worldwide in the elderly is Parkinson's disease (PD). It is a major risk factor for aging. Objectives: Currently the involvement of miRNAs in the disease is mainly unclear. Additionally, the disease aetiology is complex and there are no available disease-modifying medications. Therefore, more evidence is required concerning its pathogenesis and developing new treatment modalities. Methods: Here, we studied the expression profiles of about 900 miRNAs in PD patients prior to and following deep brain stimulation (DBS) both on and following 1 hour off electrical stimulation and as compared with age and gender matched healthy control (HC) donor samples, using Affymetrix miRNA microarrays. We analysed statistically the data using Affymetrix expression console software. Results: We detected significantly altered miRNAs pre and post DBS treatment. Conclusions: Our findings indicate the involvement of miRNAs in PD. Future studies can enlarge the number of samples and use RNA sequencing platform to quantify further miRNAs in PD samples. We may also use the expression levels of miRNAs as biomarkers for PD in the blood.
Collapse
Affiliation(s)
| | | | - Israel Zvi
- The Hebrew University of JerusalemIsrael
| | | | - Mohamed Wael
- BMS Department, KOM, IIUMMalaysia
- Department of Clinical Pharmacology, Menoufia Medical School, Menoufia UniversityEgypt
| |
Collapse
|
17
|
Jiang M, Li D, Piao J, Li Y, Chen L, Li J, Yu D, Pi J, Zhang R, Chen R, Chen W, Zheng Y. Nrf2 modulated the restriction of lung function via impairment of intrinsic autophagy upon real-ambient PM 2.5 exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124903. [PMID: 33373951 DOI: 10.1016/j.jhazmat.2020.124903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/28/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Compelling studies approve that fine particle matter (PM2.5) exposure was associated with high risk of respiratory disorders. However, the available data assessing the detailed influence of PM2.5 on lung was limited. To overcome the difficulty of inhalational PM2.5 exposure, the real-ambient PM2.5 exposure system was constructed. The mice were exposed to filtered air (FA) or real-ambient PM2.5 (PM2.5), and the adverse effect on lung was determined. Nuclear factor E2-related factor 2 (Nrf2) as a transcription factor, was reported to affect autophagy. Autophagy was proposed as a two-edge sword in respiratory disorders. Here, our data presented that PM2.5 exposure dramatically reduced the lung function of WT mice rather than Nrf2-/- mice. Consistently, thickened alveolar walls was observed in WT mice in PM2.5 exposure group, whereas the histological phenotype of Nrf2-/- mice exhibited no obvious alteration. Furthermore, PM2.5 exposure triggered low-grade production of inflammatory profile in WT and Nrf2-/- mice. Moreover, the protein levels of p62, Beclin1 and LC3B of WT mice rather than Nrf2-/- mice were also altered in PM2.5 exposure group. Taken together, the present study applied the real-ambient exposure system, revealed the adverse effect of air pollution on lung, and proposed the underlying mechanism.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
18
|
Ding X, Lv J, Luan J, Zhang J. Calycosin may Alleviate Ang II-Induced Pro-proliferative Effects on Glomerular Mesangial Cells via Partially Inhibiting Autophagy and ERK Signaling Pathway. Biol Pharm Bull 2020; 43:1893-1898. [DOI: 10.1248/bpb.b20-00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaohuan Ding
- Department of Integrated Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine
| | - Jing Lv
- Department of Nephrology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine
| | - Jia Luan
- Department of Integrated Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine
| | - Jun Zhang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine
| |
Collapse
|
19
|
Barnhill LM, Murata H, Bronstein JM. Studying the Pathophysiology of Parkinson's Disease Using Zebrafish. Biomedicines 2020; 8:E197. [PMID: 32645821 PMCID: PMC7399795 DOI: 10.3390/biomedicines8070197] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disorder leading to severe disability. The clinical features reflect progressive neuronal loss, especially involving the dopaminergic system. The causes of Parkinson's disease are slowly being uncovered and include both genetic and environmental insults. Zebrafish have been a valuable tool in modeling various aspects of human disease. Here, we review studies utilizing zebrafish to investigate both genetic and toxin causes of Parkinson's disease. They have provided important insights into disease mechanisms and will be of great value in the search for disease-modifying therapies.
Collapse
Affiliation(s)
| | | | - Jeff M. Bronstein
- David Geffen School of Medicine at UCLA, Department of Neurology and Molecular Toxicology Program, 710 Westwood Plaza, Los Angeles, CA 90095, USA; (L.M.B.); (H.M.)
| |
Collapse
|