1
|
Lin X, Chen C, Chen J, Zhu C, Zhang J, Su R, Chen S, Weng S, Chang X, Lin S, Chen Y, Li J, Lin L, Zhou J, Guo Z, Yu G, Shao W, Hu H, Wu S, Zhang Q, Li H, Zheng F. Long Noncoding RNA NR_030777 Alleviates Cobalt Nanoparticles-Induced Neurodegenerative Damage by Promoting Autophagosome-Lysosome Fusion. ACS NANO 2024; 18:24872-24897. [PMID: 39197041 PMCID: PMC11394346 DOI: 10.1021/acsnano.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, β-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.
Collapse
Affiliation(s)
- Xinpei Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Cheng Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinxiang Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Canlin Zhu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiajun Zhang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ruiqi Su
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shujia Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shucan Weng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public
Technology Service Center, Fujian Medical
University, Fuzhou, Fujian Province 350122, China
| | - Jinfu Zhou
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Medical
Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health
Hospital College of Clinical Medicine for Obstetrics & Gynecology
and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Zhenkun Guo
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department
of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qunwei Zhang
- Department
of Epidemiology and Population Health, School of Public Health and
Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, Kentucky 40292, United States
| | - Huangyuan Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
2
|
Zhang Y, Jiang Y, Yu Z, Li Y, Lin X, Weng Y, Guo Z, Hu H, Shao W, Yu G, Zheng F, Cai P, Li H, Wu S. VGluT2 neuron subtypes in the paraventricular thalamic nucleus regulate depression in paraquat-induced Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134559. [PMID: 38735189 DOI: 10.1016/j.jhazmat.2024.134559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease and approximately one third of patients with PD are estimated to experience depression. Paraquat (PQ) is the most widely used herbicide worldwide and PQ exposure is reported to induce PD with depression. However, the specific brain region and neural networks underlying the etiology of depression in PD, especially in the PQ-induced model, have not yet been elucidated. Here, we report that the VGluT2-positive glutamatergic neurons in the paraventricular thalamic nucleus (PVT) promote depression in the PQ-induced PD mouse model. Our results show that PVTVGluT2 neurons are activated by PQ and their activation increases the susceptibility to depression in PD mice. Conversely, inhibition of PVTVGluT2 neurons reversed the depressive-behavioral changes induced by PQ. Similar to the effects of intervention the soma of PVTVGluT2 neurons, stimulation of their projections into the central amygdaloid nucleus (CeA) also strongly influenced depression in PD mice. PQ induced malfunctioning of the glutamate system and changes in the dendritic and synaptic morphology in the CeA through its role on PVTVGluT2 neuronal activation. In summary, our results demonstrate that PVTVGluT2 neurons are key neuronal subtypes for depression in PQ-induced PD and promote depression processes through the PVTVGluT2-CeA pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yihua Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhen Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yali Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ping Cai
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
3
|
Wu J, Shao W, Liu X, Zheng F, Wang Y, Cai P, Guo Z, Hu H, Yu G, Guo J, Yao L, Wu S, Li H. Microglial exosomes in paraquat-induced Parkinson's disease: Neuroprotection and biomarker clues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124035. [PMID: 38670424 DOI: 10.1016/j.envpol.2024.124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The exact mechanisms underlying the initiation and exacerbation of Parkinson's disease (PD) by paraquat remain unclear. We have revealed that exosomes mediate neurotoxicity induced by low dose paraquat exposure by transmitting intercellular signaling. Exposure to 40 μM paraquat promoted exosome release from mouse microglia cells (BV2) in vitro. Paraquat exposure at 100 μM caused degeneration of mouse dopaminergic MN9D cells and inhibited microglia exosome uptake by fluorescently labeling exosomes. We established an incubation model for exosomes and dopaminergic neuron cells under PQ treatment. The results indicated that microglial exosomes alleviated degeneration, increasing proliferation and PD-related protein expression of dopaminergic neurons; however, paraquat reversed this effect. Then, through exosome high-throughput sequencing and qRT-PCR experiments, miR-92a-3p and miR-24-3p were observed to transfer from exosomes to dopaminergic neurons, inhibited by paraquat. The specificity of miR-92a-3p and miR-24-3p was verified in PD patients exosomes, indicating the potential diagnostic value of the exosomal miRNAs in paraquat-induced PD. These results suggest glia-neuron communication in paraquat-induced neurodegeneration and may identify stable paraquat-mediated PD biomarkers, offering clues for early recognition and prevention of pesticide-induced degenerative diseases.
Collapse
Affiliation(s)
- Jingwen Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fuzhou Center for Disease Control and Prevention, Fuzhou, 350200, China.
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Xu Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Yaping Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Ping Cai
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Jianhui Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Linlin Yao
- Affiliated Hospital of Jining Medical University, Jining, 272000, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
4
|
Chen N, Hu H, Tang J, Zheng F, Guo Z, Lin X, Aschner M, Shao W, Yu G, Cai P, Chou WC, Wu S, Li H. LncRNA NR_030777 promotes mitophagy by targeting CDK1-related mitochondrial fission and ATG12 to attenuate paraquat-induced Parkinson's disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123875. [PMID: 38548152 DOI: 10.1016/j.envpol.2024.123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
With the evidence emerging that abnormal expression of long noncoding RNAs (lncRNAs) are involved in onset of Parkinson's disease (PD), the role of NR_030777 contributing to this disease is of great interest. We recently found that a novel lncRNA "NR_030777" demonstrates protective effects on PQ-induced neurodegeneration. However, the underlying molecular mechanisms of NR_030777 in the regulation of mitochondrial fission and mitophagy involved in PQ-induced neuronal damage remain to be explored. NR_030777 brain conditional overexpressing mice as well as in vitro primary neuronal cells from cerebral cortex and Neuro2a cells were adopted. Immunofluorescence, Immunohistochemistry, qRT-PCR and Western blotting were used to evaluate the expression levels of RNA and proteins. RNA immunoprecipitation and RNA pulldown experiment were used to evaluate the interaction of NR_030777 with its target proteins. NR_030777 and mitophagy were increased, and tyrosine hydroxylase (TH) levels recovered after NR_030777 overexpression upon PQ treatment. The overexpression and knockdown of NR_030777 unveiled that NR_030777 positively regulated mitophagy such as the upregulation of LC3B-II:I, ATG12-ATG5, p62 and NBR1. Moreover, the application of mdivi-1, a DRP-1 inhibitor, in combination with NR_030777 genetic modified cells unveiled that NR_030777 promoted DRP1-mediated mitochondrial fission and mitophagy. Furthermore, NR_030777 were directly bound to CDK1 to increase p-DRP1 levels at the Ser616 site, leading to mitochondrial fission and mitophagy. On the other hand, NR_030777 acted directly on ATG12 within the ATG12-ATG5 complex in the 800-1400 nt region to modulate the membrane formation. Accordingly, NR_030777 deficiency in neuron cells compromised cell mitophagy. Finally, the above findings were confirmed using NR_030777-overexpressing mice. NR_030777 exerted a protective effect on PQ-exposed mice by enhancing mitophagy. Our data provide the first scientific evidence for the precise invention of PQ-induced PD. Our findings further propose a breakthrough for understanding the regulatory relationship between NR_030777, CDK1, ATG12 and mitophagy in PQ-induced PD.
Collapse
Affiliation(s)
- Nengzhou Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianping Tang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei-Chun Chou
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
5
|
Zhang B, Zhang Y, Zuo Z, Xiong G, Luo H, Song B, Zhao L, Zhou Z, Chang X. Paraquat-induced neurogenesis abnormalities via Drp1-mediated mitochondrial fission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114939. [PMID: 37087969 DOI: 10.1016/j.ecoenv.2023.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Neurogenesis is a fundamental process in the development and plasticity of the nervous system, and its regulation is tightly linked to mitochondrial dynamics. Imbalanced mitochondrial dynamics can result in oxidative stress, which has been implicated in various neurological disorders. Paraquat (PQ), a commonly used agricultural chemical known to be neurotoxic, induces oxidative stress that can lead to mitochondrial fragmentation. In this study, we investigated the effects of PQ on neurogenesis in primary murine neural progenitor cells (mNPCs) isolated from neonatal C57BL/6 mice. We treated the mNPCs with 0-40 μM PQ for 24 h and observed that PQ inhibited their proliferation, migration, and differentiation into neurons in a concentration-dependent manner. Moreover, PQ induced excessive mitochondrial fragmentation and upregulated the expression of Drp-1, p-Drp1, and Fis-1, while downregulating the expression of Mfn2 and Opa1. To confirm our findings, we used Mdivi-1, an inhibitor of mitochondrial fission, which reversed the adverse effects of PQ on neurogenesis, particularly differentiation into neurons and migration of mNPCs. Additionally, we found that Mito-TEMPO, a mitochondria-targeted antioxidant, ameliorated excessive mitochondrial fragmentation caused by PQ. Our study suggests that PQ exposure impairs neurogenesis by inducing excessive mitochondrial fission and abnormal mitochondrial fragmentation via oxidative stress. These findings identify mitochondrial fission as a potential therapeutic target for PQ-induced neurotoxicity. Further research is needed to elucidate the underlying mechanisms of mitochondrial dynamics and neurogenesis in the context of oxidative stress-induced neurological disorders.
Collapse
Affiliation(s)
- Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lina Zhao
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Wang J, Weng Y, Li Y, Zhang Y, Zhou J, Tang J, Lin X, Guo Z, Zheng F, Yu G, Shao W, Hu H, Cai P, Wu S, Li H. The interplay between lncRNA NR_030777 and SF3B3 in neuronal damage caused by paraquat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114804. [PMID: 36948007 DOI: 10.1016/j.ecoenv.2023.114804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) has been widely acknowledged as an environmental risk factor for Parkinson's disease (PD). However, the interaction between splicing factor and long non-coding RNA (lncRNA) in the process of PQ-induced PD has rarely been studied. Based on previous research, this study focused on splicing factor 3 subunit 3 (SF3B3) and lncRNA NR_030777. After changing the target gene expression level by lentiviral transfection technology, the related gene expression was detected by western blot and qRT-PCR. The expression of SF3B3 protein was reduced in Neuro-2a cells after PQ exposure, and the reactive oxygen species (ROS) scavenger N-acetylcysteine prevented this decline. Knockdown of SF3B3 reduced the PQ-triggered NR_030777 expression increase, and overexpression of NR_030777 reduced the transcriptional and translational level of Sf3b3. Then, knockdown of SF3B3 exacerbated the PQ-induced decrease in cell viability and aggravated the reduction of tyrosine hydroxylase (TH) protein expression. Overexpressing SF3B3 reversed the reduction of TH expression caused by PQ. Moreover, after intervention with the autophagy inhibitor Bafilomycin A1, LC3B-II protein expression was further increased in Neuro-2a cells with the knockdown of SF3B3, indicating that autophagy was enhanced. In conclusion, PQ modulated the interplay between NR_030777 and SF3B3 through ROS production, thereby impairing autophagic flux and causing neuronal damage.
Collapse
Affiliation(s)
- Junxiang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yali Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jianping Tang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
7
|
Zhang X, Luan N, Shi J. A novel LINC00943/miR-671-5p/ELAVL1 ceRNA crosstalk regulates MPP + toxicity in SK-N-SH cells. Metab Brain Dis 2022; 37:2349-2362. [PMID: 35779150 DOI: 10.1007/s11011-022-01034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
The competing endogenous RNA (ceRNA) activity of long non-coding RNAs (lncRNAs) has profound effects in pathological disorders, including Parkinson's disease. Here, we focused on the LINC00943-mediated ceRNA network for the regulation of LINC00943 in MPP+ toxicity in SK-N-SH cells. SK-N-SH cells were exposed to 1-methyl-4-phenylpyridinium (MPP+). LINC00943, miR-671-5p and ELAV like RNA binding protein 1 (ELAVL1) were quantified by real-time quantitative PCR (RT-qPCR) or western blot. Cell viability and apoptosis were gauged by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Direct relationship between miR-671-5p and LINC00943 or ELAVL1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data validated that LINC00943 regulated MPP+-evoked injury in SK-N-SH cells. LINC00943 regulated miR-671-5p expression by binding to miR-671-5p. Moreover, miR-671-5p was identified as a molecular mediator of LINC00943 in regulating SK-N-SH cell injury induced by MPP+. MiR-671-5p targeted and inhibited ELAVL1, and miR-671-5p-mediated inhibition of ELAVL1 impacted MPP+-evoked SK-N-SH cell injury. Furthermore, LINC00943 involved the post-transcriptional regulation of ELAVL1 through miR-671-5p competition. Our present study has established a novel mechanism, the LINC00943/miR-671-5p/ELAVL1 ceRNA crosstalk, for the regulation of LINC00943 on MPP+ toxicity in SK-N-SH cells.
Collapse
Affiliation(s)
- Xuejie Zhang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ning Luan
- Department of Otolaryngology, Beijing Yanqing District Hospital, Beijing, China
| | - Jian Shi
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jian Shi, No.49, Section 2, Shanghai Road, Guta District, Jinzhou City, 121001, China.
| |
Collapse
|
8
|
Defining Specific Cell States of MPTP-Induced Parkinson's Disease by Single-Nucleus RNA Sequencing. Int J Mol Sci 2022; 23:ijms231810774. [PMID: 36142685 PMCID: PMC9504791 DOI: 10.3390/ijms231810774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with an impairment of movement execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing, we uncovered the PD-specific cells and revealed the changes in their cellular states, including astrocytosis and endothelial cells' absence, as well as a cluster of medium spiny neuron cells unique to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted candidate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally, we characterized the cell-cell communications of PD-specific cells and found that the overall communication strength was enhanced in PD compared with a matched control, especially the signaling pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of the MPTP-induced mouse brain.
Collapse
|
9
|
Wang W, Hu Y, Zhang Y. FTX Attenuates Cerebral Ischemia-Reperfusion Injury by Inhibiting Apoptosis and Oxidative Stress via miR-186-5p/MDM4 Pathway. Neurotox Res 2022; 40:542-552. [PMID: 35344194 DOI: 10.1007/s12640-022-00485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
LncRNA five prime to Xist (FTX) has been identified to exert a protective effect in multiple diseases. However, whether and how FTX attenuates cerebral ischemia-reperfusion injury (CI/RI) is still unclear. To simulate CI/RI, an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) HT22 cell model and an in vivo middle cerebral artery occlusion/reperfusion (MCAO/R) Sprague-Dawley rat model were respectively constructed. In CI/RI plasma samples, OGD/R-challenged HT22 cells, and brain tissues from MCAO/R rats, FTX and mouse double minute 4 (MDM4) expressions were substantially decreased while miR-186-5p abundance was evidently increased. It was also revealed that FTX obviously improved neuronal damage induced by OGD/R through increasing proliferation, reducing apoptosis, and alleviating oxidative stress in OGD/R-challenged HT22 cells. Additionally, FTX positively regulated MDM4 level in OGD/R-treated HT22 cells as a sponge of miR-186-5p. Moreover, miR-186-5p upregulation or MDM4 suppression restored the inhibitory effects of FTX upregulation on OGD/R-triggered neuronal damage in HT22 cells. Therefore, these results suggest that FTX might ameliorate CI/RI by regulating the miR-186-5p/MDM4 pathway, providing a new target for stroke impairment treatment.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Anesthesiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Tianning District, 29#, Xinglong Alley, Changzhou, Jiangsu, China
| | - Yimin Hu
- Department of Anesthesiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Tianning District, 29#, Xinglong Alley, Changzhou, Jiangsu, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Tianning District, 29#, Xinglong Alley, Changzhou, Jiangsu, China.
| |
Collapse
|
10
|
Tang J, Su Q, Guo Z, Zhou J, Zheng F, Yu G, Shao W, Hu H, Wu S, Li H. N6-methyladenosine(m 6A) demethylase FTO regulates cellular apoptosis following cobalt-induced oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118749. [PMID: 34968619 DOI: 10.1016/j.envpol.2021.118749] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Cobalt is an environmental toxicant that is known to damage human health. However, the molecular mechanisms underlying cobalt-induced neurotoxicity have not been elucidated in detail. In the present research, we used human neuroglioma H4 cells as an in vitro model. Cells were exposed to CoCl2 (0, 100, 200, 400 μM) for 24 h. We performed m6A sequencing techniques and constructed FTO-knockdown/FTO-overexpressing cells to investigate the role of FTO-mediated m6A modification in regulating apoptosis following CoCl2 induced oxidative stress. Our study has shown CoCl2 exposure led to the decrease of demethylase FTO as well as elevated oxidative stress. However, NAC treatment could partly reverse the reduction of FTO expression as well as the degree of ROS via eliminating oxidative stress. Meanwhile, MeRIP-seq and RNA-seq further revealed the potential function m6A modification in regulating apoptosis. More importantly, KEGG pathway and Gene ontology (GO) analyses further elucidated that the differentially m6A-modified genes were aggregated in apoptosis-related pathways. Mechanistic analysis indicated that knockdown of FTO facilitated CoCl2-induced apoptosis via caspase activation and G1/S cell cycle arrest. Nevertheless, overexpression of FTO partly attenuated the increased apoptosis following CoCl2 exposure. More notably, we observed that FTO regulated apoptosis in an m6A-dependent manner. Therefore, our findings reveal that CoCl2 induced ROS affected the m6A modification of apoptosis-related genes by decreasing the expression of FTO, thereby resulting in the activation of apoptosis. These findings provide important insights into CoCl2-induced apoptosis and m6A modification and propose a novel strategy for studying environmental toxicant-related neurodegeneration.
Collapse
Affiliation(s)
- Jianping Tang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Qianqian Su
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jinfu Zhou
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Guangxia Yu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wenya Shao
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Hong Hu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
11
|
Yu G, Su Q, Chen Y, Wu L, Wu S, Li H. Epigenetics in neurodegenerative disorders induced by pesticides. Genes Environ 2021; 43:55. [PMID: 34893084 PMCID: PMC8662853 DOI: 10.1186/s41021-021-00224-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are becoming major socio-economic burdens. However, most of them still have no effective treatment. Growing evidence indicates excess exposure to pesticides are involved in the development of various forms of neurodegenerative and neurological diseases through trigger epigenetic changes and inducing disruption of the epigenome. This review summaries studies on epigenetics alterations in nervous systems in relation to different kinds of pesticides, highlighting potential mechanism in the etiology, precision prevention and target therapy of various neurodegenerative diseases. In addition, the current gaps in research and future areas for study were also discussed.
Collapse
Affiliation(s)
- Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qianqian Su
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yao Chen
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingyan Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
12
|
Bhattacharyya N, Pandey V, Bhattacharyya M, Dey A. Regulatory role of long non coding RNAs (lncRNAs) in neurological disorders: From novel biomarkers to promising therapeutic strategies. Asian J Pharm Sci 2021; 16:533-550. [PMID: 34849161 PMCID: PMC8609388 DOI: 10.1016/j.ajps.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/12/2023] Open
Abstract
Long non coding RNAs (lncRNAs) are non-protein or low-protein coding transcripts that contain more than 200 nucleotides. They representing a large share of the cell's transcriptional output, demonstrate functional attributes viz. tissue-specific expression, determination of cell fate, controlled expression, RNA processing and editing, dosage compensation, genomic imprinting, conserved evolutionary traits etc. These long non coding variants are well associated with pathogenicity of various diseases including the neurological disorders like Alzheimer's disease, schizophrenia, Huntington's disease, Parkinson's disease etc. Neurological disorders are widespread and there knowing the underlying mechanisms become crucial. The lncRNAs take part in the pathogenesis by a plethora of mechanisms like decoy, scaffold, mi-RNA sequestrator, histone modifiers and in transcriptional interference. Detailed knowledge of the role of lncRNAs can help to use them further as novel biomarkers for therapeutic aspects. Here, in this review we discuss regulation and functional roles of lncRNAs in eight neurological diseases and psychiatric disorders, and the mechanisms by which they act. With these, we try to establish their roles as potential markers and viable diagnostic tools in these disorders.
Collapse
Affiliation(s)
| | - Vedansh Pandey
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
13
|
Yuan L, Xu H, Guo R, Lu T, Li X. Long non-coding RNA ZFAS1 alleviates bupivacaine-induced neurotoxicity by regulating the miR-421/zinc finger protein564 (ZNF564) axis. Bioengineered 2021; 12:5231-5240. [PMID: 34414857 PMCID: PMC8806570 DOI: 10.1080/21655979.2021.1960776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This research aimed to explore the biological role of long non-coding RNA (lncRNA) ZFAS1 in bupivacaine-induced neurotoxicity. The levels of lncRNA ZFAS1, miR-421, and zinc finger protein 564 (ZNF564) were detected by RT-qPCR. MTT and TUNEL assays were utilized to evaluate cell viability and apoptosis, respectively. Caspase-3 activity was measured by the caspase-3 activity assay kit. The binding ability between miR-421 and ZFAS1 or ZNF564 was confirmed by Rip and dual-luciferase reporter assays. In this study, it was found that the levels of ZFAS1 and ZNF564 were gradually upregulated and miR-421 expression was downregulated with increasing concentrations of bupivacaine. Functional assays indicated that the silencing of ZFAS1 suppressed cell viability and facilitated cell apoptosis of SH-SY5Y cells, while overexpression of ZFAS1 had the opposite effects. Moreover, it was identified that miR-421 was a target of ZFAS1, and ZFAS1 regulated the bupivacaine-induced neurotoxicity via miR-421. In addition, we confirmed that ZNF564 was a downstream target of miR-421. The upregulation of miR-421 decreased the cell viability, and increased the cell apoptosis rate and caspase-3 activity, while the upregulation of ZND564 partially abolished these effects. Finally, it was demonstrated that ZFAS1 could upregulate the expression of ZNF564 by targeting miR-421. In conclusion, our results demonstrated that ZFAS1 alleviated bupivacaine-induced neurotoxicity through the miR-421/ZNF564 axis, suggesting a new strategy for the amelioration of bupivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Liuqing Yuan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Houren Xu
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Rui Guo
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Ting Lu
- Department of Anesthesiology, Jiangsu Province Hospital, Nanjing, Jiangsu, P.R. China
| | - Xiaoling Li
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
14
|
Abstract
Epigenetics is one of the most rapidly expanding fields in biology, which plays important roles in environmental pollutant-induced neurotoxicity. Analyses of epigenetic modification is of great significance in providing more accurate information for the risk assessment and management of harmful factors. However, few studies have systematically summarized the analysis and detection methods for epigenetic modification. In this chapter, we summarized several popular methods for analyses of epigenetic modifications, including Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) for genome-wide DNA methylation analyses, Quantitative Methylation Specific PCR (qMSP) for genome-specific DNA methylation analyses, methylated RNA immunoprecipitation sequencing (MeRIP-seq) for genome-wide RNA methylation analyses, MeRIP-qPCR for genome-specific RNA methylation analyses, qRT-PCR for the non-coding RNA, and western blot for the histone modification analyses. It could be helpful to the research about environmental epigenetic toxicology.
Collapse
|
15
|
Chen N, Guo Z, Luo Z, Zheng F, Shao W, Yu G, Cai P, Wu S, Li H. Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116413. [PMID: 33422762 DOI: 10.1016/j.envpol.2020.116413] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Paraquat (PQ) is one of the most widely used herbicides in the world due to its excellent weed control effects. Accumulating evidence has revealed that long-term exposure to PQ can significantly increase the risk of Parkinson's disease (PD). However, the underlying molecular mechanisms are yet to be fully understood. Hence, we investigated the potential role of reactive oxygen species (ROS) and dynamin-related protein 1 (DRP1) in PQ-induced mitophagy, aiming to elaborate on possible molecular mechanisms involved in PQ-triggered neurotoxicity. Our results showed that ROS were increased, mitochondrial membrane potential was decreased at 100, 200, and 300 μM PQ concentrations, and autophagy pathways were activated at a concentration of 100 μM in neuronal cells. In addition, excessive mitophagy was observed in neurons exposed to 300 μM PQ for 24 h. Then, ROS-mediated mitochondrial fission was found to contribute to PQ-induced excessive mitophagy. Moreover, all aforementioned changes were significantly ameliorated by mdivi-1. Thus, our findings provide a novel neurotoxic mechanism and reveal the DRP1-mitochondrial fission pathway as a potential target for treatments of PQ-induced excessive mitophagy, serving as an alternative target for the prevention and treatment of Parkinson's disease. Because harmful substances are transmitted and enriched in the food chain, the toxic effect of environmental paraquat is nonnegligible, and more investigations are needed.
Collapse
Affiliation(s)
- Nengzhou Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhousong Luo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
16
|
Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, May P, Devaux Y. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson's Disease. Int J Mol Sci 2020; 21:E6513. [PMID: 32899928 PMCID: PMC7555192 DOI: 10.3390/ijms21186513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data.
Collapse
Affiliation(s)
- Shubhra Acharya
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Andrew I. Lumley
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| |
Collapse
|