1
|
Liu X, Wang J, Yang Z, Xie Q, Diao X, Yao X, Huang S, Chen R, Zhao Y, Li T, Jiang M, Lou Z, Huang C. Upregulated DNMT3a coupling with inhibiting p62-dependent autophagy contributes to NNK tumorigenicity in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117157. [PMID: 39393198 DOI: 10.1016/j.ecoenv.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
NNK, formally known as 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanoe, is a potent chemical carcinogen prevalent in cigarette smoke and is a key contributor to the development of human lung adenocarcinomas. On the other hand, autophagy plays a complex role in cancer development, acting as a "double-edged sword" whose impact varies depending on the cancer type and stage. Despite this, the relationship between autophagy and NNK-induced lung carcinogenesis remains largely unexplored. Our current study uncovers a marked reduction in p62 protein expression in both lung adenocarcinomas and lung tissues of mice exposed to cigarette smoke. Interestingly, this reduction appears to be contingent upon the activity of extrahepatic cytochrome P450 (CYP450), revealing that NNK metabolic activation by CYP450 enzyme escalates its potential to induce p62 downregulation. Further mechanistic investigations reveal that NNK suppresses autophagy by accelerating the degradation of p62 mRNA, thereby promoting the malignant transformation of human bronchial epithelial cells. This degradation process is facilitated by the hypermethylation of the Human antigen R (HuR) promoter, resulting in the transcriptional repression of HuR - a key regulator responsible for stabilizing p62 mRNA through direct binding. This hypermethylation is triggered by the activation of ribosomal protein S6, which is influenced by NNK exposure and subsequently amplifies the translation of DNA methyltransferase 3 alpha (DNMT3a). These findings provide crucial insights into the nature of p62 in both the development and potential treatment of tobacco-related lung cancer.
Collapse
Affiliation(s)
- Xuelei Liu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinqi Diao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Xiaoyan Yao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Shirui Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruifan Chen
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Tengda Li
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhefeng Lou
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China.
| |
Collapse
|
2
|
Crooks I, Clements J, Curren R, Guo X, Hollings M, Lloyd M, Smart D, Thorne D, Weber E, Moore M. Key Challenges for In Vitro Testing of Tobacco Products for Regulatory Applications: Recommendations for the In Vitro Mouse Lymphoma Assay. Altern Lab Anim 2024; 52:42-59. [PMID: 38055860 DOI: 10.1177/02611929231219153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across traditional tobacco and various tobacco and nicotine next-generation products (NGPs), including Heated Tobacco Products (HTPs) and Electronic Nicotine Delivery Systems (ENDS). This report was developed by a working group composed of attendees of the seventh IIVS workshop, 'Approaches and recommendations for conducting the mouse lymphoma gene mutation assay (MLA) and introduction to in vitro disease models', which was held virtually on 21-23 June 2022. This publication provides a background overview of the MLA, and includes the description of assay conduct and data interpretation, key challenges and recommended best practices for evaluating tobacco and nicotine products, with a focus on the evaluation of NGPs, and a summary of how the assay has been used to evaluate and compare tobacco and nicotine products.
Collapse
Affiliation(s)
- Ian Crooks
- B.A.T. (Investments) Limited, Southampton, UK
| | | | - Rodger Curren
- Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - Xiaoqing Guo
- National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Mel Lloyd
- Labcorp Early Development Services, Harrogate, UK
| | - Daniel Smart
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | | | - Elisabeth Weber
- Oekolab Ges. F. Umweltanalytik, A member of the JT International Group of Companies, Vienna, Austria
| | | |
Collapse
|
3
|
Miller-Holt J, Behrsing H, Crooks I, Curren R, Demir K, Gafner J, Gillman G, Hollings M, Leverette R, Oldham M, Simms L, Stankowski LF, Thorne D, Wieczorek R, Moore MM. Key challenges for in vitro testing of tobacco products for regulatory applications: Recommendations for dosimetry. Drug Test Anal 2023; 15:1175-1188. [PMID: 35830202 PMCID: PMC9897201 DOI: 10.1002/dta.3344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across tobacco and various next-generation products (NGPs) including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDSs). This publication was developed by a working group of the workshop members in conjunction with the sixth workshop in that series entitled "Dosimetry for conducting in vitro evaluations" and focuses on aerosol dosimetry for aerosol exposure to combustible cigarettes, HTP, and ENDS aerosolized tobacco products and summarizes the key challenges as well as documenting areas for future research.
Collapse
Affiliation(s)
| | - Holger Behrsing
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Ian Crooks
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Rodger Curren
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Kubilay Demir
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Jeremie Gafner
- Scientific & Regulatory Affairs, JT International SA, Geneva, Switzerland
| | - Gene Gillman
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Michael Hollings
- Genetic Toxicology, Labcorp Early Development Laboratories Ltd., Harrogate, UK
| | - Robert Leverette
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, North Carolina, USA
| | - Michael Oldham
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands, Bristol, UK
| | - Leon F. Stankowski
- Genetic and In Vitro Toxicology, Charles River Laboratories–Skokie, Skokie, Illinois, USA
| | - David Thorne
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Roman Wieczorek
- Group Science and Regulatory Affairs, Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Hamburg, Germany
| | | |
Collapse
|
4
|
Identification and validation of a cigarette smoke-related five-gene signature as a prognostic biomarker in kidney renal clear cell carcinoma. Sci Rep 2022; 12:2189. [PMID: 35140327 PMCID: PMC8828851 DOI: 10.1038/s41598-022-06352-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
Cigarette smoking greatly promotes the progression of kidney renal clear cell carcinoma (KIRC), however, the underlying molecular events has not been fully established. In this study, RCC cells were exposed to the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine) for 120 days (40 passages), and then the soft agar colony formation, wound healing and transwell assays were used to explore characteristics of RCC cells. RNA-seq was used to explore differentially expressed genes. We found that NNK promoted RCC cell growth and migration in a dose-dependent manner, and RNA-seq explored 14 differentially expressed genes. In TCGA-KIRC cohort, Lasso regression and multivariate COX regression models screened and constructed a five-gene signature containing ANKRD1, CYB5A, ECHDC3, MT1E, and AKT1S1. This novel gene signature significantly associated with TNM stage, invasion depth, metastasis, and tumor grade. Moreover, when compared with individual genes, the gene signature contained a higher hazard ratio and therefore had a more powerful value for the prognosis of KIRC. A nomogram was also developed based on clinical features and the gene signature, which showed good application. Finally, AKT1S1, the most crucial component of the gene signature, was significantly induced after NNK exposure and its related AKT/mTOR signaling pathway was dramatically activated. Our findings supported that NNK exposure would promote the KIRC progression, and the novel cigarette smoke-related five-gene signature might serve as a highly efficient biomarker to identify progression of KIRC patients, AKT1S1 might play an important role in cigarette smoke exposure-induced KIRC progression.
Collapse
|
5
|
Tellez CS, Juri DE, Phillips LM, Do K, Thomas CL, Willink R, Dye WW, Wu G, Zhou Y, Irshad H, Kishida S, Kiyono T, Belinsky SA. Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicol Sci 2021; 184:67-82. [PMID: 34390580 PMCID: PMC8557423 DOI: 10.1093/toxsci/kfab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiology studies link cigarillos and shisha tobacco (delivered through a hookah waterpipe) to increased risk for cardiopulmonary diseases. Here we performed a comparative chemical constituent analysis between 3 cigarettes, 3 cigarillos, and 8 shisha tobacco products. The potency for genotoxicity and oxidative stress of each product's generated total particulate matter (TPM) was also assessed using immortalized oral, lung, and cardiac cell lines to represent target tissues. Levels of the carcinogenic carbonyl formaldehyde were 32- to 95-fold greater, while acrolein was similar across the shisha aerosols generated by charcoal heating compared to cigarettes and cigarillos. Electric-mediated aerosol generation dramatically increased acrolein to levels exceeding those in cigarettes and cigarillos by up to 43-fold. Equivalent cytotoxic-mediated cell death and dose response for genotoxicity through induction of mutagenicity and DNA strand breaks was seen between cigarettes and cigarillos, while minimal to no effect was observed with shisha tobacco products. In contrast, increased potency of TPM from cigarillos compared to cigarettes for inducing oxidative stress via reactive oxygen radicals and lipid peroxidation across cell lines was evident, while positivity was seen for shisha tobacco products albeit at much lower levels. Together, these studies provide new insight into the potential harmful effects of cigarillos for causing tobacco-associated diseases. The high level of carbonyls in shisha products, that in turn is impacted by the heating mechanism, reside largely in the gas phase which will distribute throughout the respiratory tract and systemic circulation to likely increase genotoxic stress.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Loryn M Phillips
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Cindy L Thomas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Randy Willink
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Wendy W Dye
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Shosei Kishida
- Departments of Biochemistry and Genetics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|