1
|
Gangadharan B, Schorsch F. Thyroid Hormone Imbalance in Pregnant Rats and its Impact on Neurodevelopment in Pups: A Minireview on Histopathological Endpoints. Toxicol Pathol 2025:1926233251335846. [PMID: 40448404 DOI: 10.1177/01926233251335846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Market authorization of a pesticide or biocide in Europe requires the hazard assessment of endocrine-disrupting properties, including the thyroid modality. Substances inducing thyroid histopathological and/or thyroid hormone effects in rodent studies need to be further investigated to rule out whether the substance can be considered as an endocrine disruptor for the thyroid pathway, including neurodevelopmental impact in pups and its relevance in humans. Histopathological assessment for identifying reliable biomarkers for assessing neurodevelopmental effects is an important aspect of this testing scheme in rats. Periventricular heterotopia in the corpus callosum and persistence of the external granular layer in the cerebellum have been proposed as potential histopathological biomarkers in the brain. The correlation in the cochlea for hearing impairment seen in rat pups derived from hypothyroid dams is another potential biomarker. Herein, we provide a brief overview of the histopathological endpoints. The technical challenges in correctly identifying these changes during brain development and their significance in detecting the impact of maternal hypothyroidism in rodents are discussed. This mini review is part of a scientific presentation by Dr Gangadharan during the developmental neurotoxicity (DNT) session at the 21st ESTP's Annual Congress (2024).
Collapse
|
2
|
Yamada T. [Chemical-induced perinatal thyroid hormone disruption and brain developmental adversity: status of efforts aimed at developing new evaluation methods]. Nihon Yakurigaku Zasshi 2025; 160:108-114. [PMID: 40024696 DOI: 10.1254/fpj.24058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Fetal thyroid hormones (THs), essential for brain development, largely depend on maternal supply. Clinical studies have shown that TH alterations in pregnant mothers can lead to permanent neurodevelopmental effects in their children, suggesting that chemicals causing maternal TH disruption may require regulation. However, the quantitative relationship between chemical-induced maternal TH reductions and fetal brain TH disruption, as well as fetal brain developmental abnormalities, is not fully understood. Thus, there is a need for methods that can precisely, rapidly, and quantitatively evaluate TH-disrupting effects of test chemicals that may cause brain abnormalities. Currently, multiple molecular initiating events (MIEs) in the adverse outcome pathways (AOPs) of TH disruption are known, and tests using New Approach Methodologies are being developed to investigate the effects of chemicals on these MIEs. Additionally, the Comparative Thyroid Assay (CTA) is expected to be utilized to comparatively evaluate the decrease in blood TH concentrations, commonly observed as a result of actions on multiple MIEs, in maternal rats along with their offspring. Recently, due to the increasing need for more precise and efficient evaluations and the reduction of animal testing, we have worked on improving the CTA. We proposed a modified CTA that adds new test items: brain TH concentrations and heterotopia (a histological marker of brain TH deficiency), while reducing the number of animals used by 50%. Feasibility studies confirmed that it can detect approximately 20-30% TH disruption in the offspring brain. This review outlines the current efforts to develop new evaluation methods for perinatal TH disruption effects.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| |
Collapse
|
3
|
Gilbert ME, Hawks MG, Bell KS, Oshiro W, Wood C, George BJ, Thomas R, Ford J. Iodine Deficiency Exacerbates Thyroidal and Neurological Effects of Developmental Perchlorate Exposure in the Neonatal and Adult Rat. TOXICS 2024; 12:842. [PMID: 39771057 PMCID: PMC11679215 DOI: 10.3390/toxics12120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring. We observed modest reductions in thyroxine (T4) in the serum of dams and no effect on T4 in pup serum in response to maternal exposure to 300 ppm of perchlorate in the drinking water. Likewise, serum T4 was reduced in ID dams, but, as with perchlorate, no effects were evident in the pup. However, when ID was coupled with perchlorate, reductions in pup serum THs and transcriptional alterations in the thyroid gland and pup brain were detected. These observations were accompanied by reductions in the number of cortical inhibitory interneurons containing the calcium-binding protein parvalbumin (Pvalb). Alterations in Pvalb expression in the neonatal brain were associated with deficits in the prepulse inhibition of acoustic startle in adult male offspring and enhanced fear conditioning in females. These findings support and extend structural defects in the brain previously reported in this model. Further, they underscore the critical need to consider additional non-chemical stressors in the determination of hazards and risks posed by environmental contaminants that affect the thyroid system.
Collapse
Affiliation(s)
- Mary E. Gilbert
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - MaryAnn G. Hawks
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Kiersten S. Bell
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Wendy Oshiro
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Carmen Wood
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Barbara Jane George
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Ryne Thomas
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Jermaine Ford
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
4
|
Clavel Rolland N, Graslin F, Schorsch F, Pourcher T, Blanck O. Investigating the mechanisms of action of thyroid disruptors: A multimodal approach that integrates in vitro and metabolomic analysis. Toxicol In Vitro 2024; 100:105911. [PMID: 39069214 DOI: 10.1016/j.tiv.2024.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The thyroid gland, a vital component of the endocrine system, plays a pivotal role in regulating metabolic processes, growth, and development. To better characterize thyroid system disrupting chemicals (TSDC), we followed the next-generation risk assessment approach, which further considers the mechanistic profile of xenobiotics. We combined targeted in vitro testing with untargeted metabolomics. Four known TSDC, propyl-thiouracil (PTU), sodium perchlorate, triclosan, and 5-pregnen-3β-ol-20-one-16α‑carbonitrile (PCN) were investigated using rat in vitro models, including primary hepatocytes, PCCL3 cells, thyroid microsomes, and three-dimensional thyroid follicles. We confirmed each compound's mode of action, PTU inhibited thyroperoxidase activity and thyroid hormones secretion in thyroid cells model, sodium perchlorate induced a NIS-mediated iodide uptake decrease as triclosan to a lesser extent, and PCN activated expression and activity of hepatic enzymes (CYPs and UGTs) involved in thyroid hormones metabolism. In parallel, we characterized intracellular metabolites of interest. We identified disrupted basal metabolic pathways, but also metabolites directly linked to the compound's mode of action as tyrosine derivates for sodium perchlorate and triclosan, bile acids involved in beta-oxidation, and precursors of cytochrome P450 synthesis for PCN. This pilot study has provided metabolomic fingerprinting of dedicated TSDC exposures, which could be used to screen and differentiate specific modes of action.
Collapse
Affiliation(s)
- Naïs Clavel Rolland
- Université Côte d'Azur, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Transporter in Imaging and Radiotherapy in Oncology Laboratory (TIRO), School of Medicine, Nice, France; Bayer Crop Science, Sophia Antipolis, France
| | - Fanny Graslin
- Université Côte d'Azur, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Transporter in Imaging and Radiotherapy in Oncology Laboratory (TIRO), School of Medicine, Nice, France; Centre Antoine Lacassagne, Nice, France
| | | | - Thierry Pourcher
- Université Côte d'Azur, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Transporter in Imaging and Radiotherapy in Oncology Laboratory (TIRO), School of Medicine, Nice, France.
| | | |
Collapse
|
5
|
Ogata K, Suto H, Sato A, Maeda K, Minami K, Tomiyama N, Kosaka T, Hojo H, Takahashi N, Aoyama H, Yamada T. Optimal testing time for cerebral heterotopia formation in the rat comparative thyroid assay, a downstream indicator for perinatal thyroid hormone insufficiency. J Toxicol Pathol 2024; 37:173-187. [PMID: 39359896 PMCID: PMC11442261 DOI: 10.1293/tox.2024-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024] Open
Abstract
In a past study, we proposed a modified Comparative Thyroid Assay (CTA) with additional examinations of brain thyroid hormone (TH) concentrations and brain histopathology but with smaller group sizes. The results showed that the modified CTA in Sprague Dawley rats detected 10 ppm 6-propylthiouracil (6-PTU)-induced significant suppressions of serum/brain TH concentrations in offspring. To confirm the reliability of qualitative brain histopathology and identify the optimal testing time for heterotopia (a cluster of ectopic neurons) in the modified CTA, brain histopathology together with serum/brain TH concentrations were assessed in GD20 fetuses and PND2, 4, 21, and 28 pups using a similar study protocol but with a smaller number of animals (N=3-6/group/time). Significant hypothyroidism was observed and brain histopathology revealed cerebral heterotopia formation in PND21 and PND28 pups, with likely precursor findings in PND2 and PND4 pups but not in GD20 fetuses. This study confirmed that the optimal testing time for cerebral heterotopia in rat CTA was PND21 and thereafter. These findings suggest that cerebral heterotopia assessment at appropriate times may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
- Current address: Registration & Regulatory Affairs
Department, AgroSolutions Division-International, Sumitomo Chemical Company, Ltd., Tokyo
Nihombashi Tower, 2-7-1 Nihonbashi, Chuo-ku, Tokyo 103-6020, Japan
| | - Akira Sato
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Maeda
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Naruto Tomiyama
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tadashi Kosaka
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hiroaki Aoyama
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
6
|
Wagenaars F, Cenijn P, Chen Z, Meima M, Scholze M, Hamers T. Two novel in vitro assays to screen chemicals for their capacity to inhibit thyroid hormone transmembrane transporter proteins OATP1C1 and OAT4. Arch Toxicol 2024; 98:3019-3034. [PMID: 38761188 PMCID: PMC11324666 DOI: 10.1007/s00204-024-03787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Early brain development depends on adequate transport of thyroid hormones (THs) from the maternal circulation to the fetus. To reach the fetal brain, THs have to cross several physiological barriers, including the placenta, blood-brain-barrier and blood-cerebrospinal fluid-barrier. Transport across these barriers is facilitated by thyroid hormone transmembrane transporters (THTMTs). Some endocrine disrupting chemicals (EDCs) can interfere with the transport of THs by THTMTs. To screen chemicals for their capacity to disrupt THTMT facilitated TH transport, in vitro screening assays are required. In this study, we developed assays for two THTMTs, organic anion transporter polypeptide 1C1 (OATP1C1) and organic anion transporter 4 (OAT4), both known to play a role in the transport of THs across barriers. We used overexpressing cell models for both OATP1C1 and OAT4, which showed an increased uptake of radiolabeled T4 compared to control cell lines. Using these models, we screened various reference and environmental chemicals for their ability to inhibit T4 uptake by OATP1C1 and OAT4. Tetrabromobisphenol A (TBBPA) was identified as an OATP1C1 inhibitor, more potent than any of the reference chemicals tested. Additionally perfluorooctanesulfonic acid (PFOS), perfluoroctanic acid (PFOA), pentachlorophenol and quercetin were identified as OATP1C1 inhibitors in a similar range of potency to the reference chemicals tested. Bromosulfophthalein, TBBPA, PFOA and PFOS were identified as potent OAT4 inhibitors. These results demonstrate that EDCs commonly found in our environment can disrupt TH transport by THTMTs, and contribute to the identification of molecular mechanisms underlying TH system disruption chemicals.
Collapse
Affiliation(s)
- Fabian Wagenaars
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Peter Cenijn
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Zhongli Chen
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Marcel Meima
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Martin Scholze
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
7
|
O'Shaughnessy KL, Bell KS, Sasser AL, Gilbert ME, Riutta C, Ford JL, McCord J, Wood CR. The pollutant perfluorohexane sulfonate (PFHxS) reduces serum thyroxine but does not alter thyroid action in the postnatal rat brain. ENVIRONMENT INTERNATIONAL 2024; 190:108838. [PMID: 38963985 PMCID: PMC11789536 DOI: 10.1016/j.envint.2024.108838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Known as "forever chemicals", per- and polyfluoroalkyl substances (PFAS) are synthetic compounds used in consumer goods but pose significant public health concerns, including disruption of the thyroid system. As thyroid hormones (THs) are required for normal brain development, PFAS may also be developmental neurotoxicants. However, this is not well understood. Here we examine the endocrine and neurodevelopmental consequences of perfluorohexane sulfonate (PFHxS) exposure in pregnant, lactating, and developing rats, and compare its effects to an anti-thyroid pharmaceutical (propylthiouracil, PTU) that induces thyroid-mediated developmental neurotoxicity. We show that PFHxS dramatically reduces maternal serum thyroxine (T4), nearly equivalently to PTU (-55 and -51%, respectively). However, only PTU increases thyroid stimulating hormone. The lactational transfer of PFHxS is significant and reduces pup serum T4 across the postnatal period. Surprisingly, brain THs are only minimally decreased by PFHxS, whereas PTU drastically diminishes them. Evaluation of brain TH action by phenotyping, RNA-Sequencing, and quantification of radial glia cell morphology supports that PTU interrupts TH signaling while PFHxS has limited to no effect. These data show that PFHxS induces abnormal serum TH profiles; however, there were no indications of hypothyroidism in the postnatal brain. We suggest the stark differences between the neurodevelopmental effects of PFHxS and a typical antithyroid agent may be due to its interaction with TH distributing proteins like transthyretin.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | - Kiersten S Bell
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Aubrey L Sasser
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Mary E Gilbert
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Cal Riutta
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - James McCord
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, United States Environmental Protection Agency Research Triangle Park, NC 27709, USA
| | - Carmen R Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| |
Collapse
|
8
|
Song S, Li Y, Lv L, Dong M, Qin Z. Tetrabromobisphenol A exerts thyroid disrupting effects but has little overt impact on postnatal brain development and neurobehaviors in mice. J Environ Sci (China) 2024; 142:1-10. [PMID: 38527875 DOI: 10.1016/j.jes.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant. There is evidence showing that TBBPA can exert thyroid disrupting effects in mammals, but different results were also reported, along with inconsistent reports regarding its neurotoxicity. Here, we investigated thyroid disrupting effects and neurotoxicity of TBBPA (5, 50, 500 µg/(kg·day)) to male mice following maternal and direct exposure through drinking water, with the anti-thyroid drug propylthiouracil (PTU) as the positive control. On postnatal day (PND) 15, we expectedly observed severe thyroid compensatory hyperplasia and cerebellar developmental retardation in PTU-treated pups. The highest dose of TBBPA also caused thyroid histological alteration but had no effects on cerebellar development in terms of Purkinje cell morphology and the thickness of the internal granular layer and the molecular layer of the cerebellum. During puberty and adulthood, the thyroid morphological alterations became more pronounced in the TBBPA-treated animals, accompanied by decreased serum thyroid hormone levels. Furthermore, the 50 and 500 µg/(kg·day) TBBPA groups showed a significant decrease in the serum level of serotonin, a neurotransmitter associated with anxiety behaviors. Correspondingly, the highest dose group displayed anxiety-like behaviors in the elevated plus-maze test on PND 35, but this neurobehavioral alteration disappeared on PND 56. Moreover, no changes in neurobehavioral parameters tested were found in TBBPA-treated animals at puberty and adulthood. Altogether, all observations show that TBBPA can exert thyroid disrupting effects but has little overt impact on brain development and neurobehaviors in mice, suggesting that thyroid disruption does not necessarily cause overtly adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Shilin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Ramhøj L, Svingen T, Evrard B, Chalmel F, Axelstad M. Two thyroperoxidase-inhibiting chemicals induce shared transcriptional changes in hippocampus of developing rats. Toxicology 2024; 505:153822. [PMID: 38685447 DOI: 10.1016/j.tox.2024.153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Thyroid hormone (TH) system disrupting compounds can impair brain development by perturbing TH action during critical life stages. Human exposure to TH system disrupting chemicals is therefore of great concern. To better protect humans against such chemicals, sensitive test methods that can detect effects on the developing brain are critical. Worryingly, however, current test methods are not sensitive and specific towards TH-mediated effects. To address this shortcoming, we performed RNA-sequencing of rat brains developmentally exposed to two different thyroperoxidase (TPO) inhibiting compounds, the medical drug methimazole (MMI) or the pesticide amitrole. Pregnant and lactating rats were exposed to 8 and 16 mg/kg/day(d) MMI or 25 and 50 mg/kg/d amitrole from gestational day 7 until postnatal day 16. Bulk-RNA-seq was performed on hippocampus from the 16-day old male pups. MMI and amitrole caused pronounced changes to the transcriptomes; 816 genes were differentially expressed, and 425 gene transcripts were similarly affected by both chemicals. Functional terms indicate effects from key cellular functions to changes in cell development, migration and differentiation of several cell populations. Of the total number of DEGs, 106 appeared to form a consistent transcriptional fingerprint of developmental hypothyroidism as they were similarly and dose-dependently expressed across all treatment groups. Using a filtering system, we identified 20 genes that appeared to represent the most sensitive, robust and dose-dependent markers of altered TH-mediated brain development. These markers provide inputs to the adverse outcome pathway (AOP) framework where they, in the context of linking TPO inhibiting compounds to adverse cognitive function, can be used to assess altered gene expression in the hippocampus in rat toxicity studies.
Collapse
Affiliation(s)
- Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, F-35000, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, F-35000, France
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
10
|
Minami K, Sato A, Tomiyama N, Ogata K, Kosaka T, Hojo H, Takahashi N, Suto H, Aoyama H, Yamada T. Prenatal test cohort of a modified rat comparative thyroid assay adding brain thyroid hormone measurements and histology but lowering group size appears able to detect disruption by sodium phenobarbital. Curr Res Toxicol 2024; 6:100168. [PMID: 38693933 PMCID: PMC11061706 DOI: 10.1016/j.crtox.2024.100168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
The Comparative Thyroid Assay (CTA, USEPA) is a screening test for thyroid hormone (TH) disruption in peripheral blood of dams and offspring. Recently, we began investigating feasible improvements to the CTA by adding examination of offspring brain TH concentrations and brain histopathology. In addition, we hypothesize that the number of animals required could be reduced by 50 % while still maintaining sensitivity to characterize treatment related changes in THs. Previously, we showed that the prenatal test cohort of the modified CTA could detect 1000 ppm sodium phenobarbital (NaPB)-induced suppression of brain T3 (by 9 %) and T4 (by 33 %) with no significant changes in serum T3 and T4 (less than 8 %). In the current study we expanded the dose response in a prenatal test cohort. Pregnant SD rats (N = 10/group) were exposed to 0, 1000 or 1500 ppm NaPB in the diet from gestational days (GD) 6 to GD20. Serum THs concentrations in GD20 dams together with serum/brain THs concentrations and brain histopathology in the GD20 fetuses were examined. NaPB dose-dependently suppressed serum T3 (up to -26 %) and T4 (up to -44 %) in dams, with suppression of T3 in serum (up to -26 %) and brain (up to -18 %) and T4 in serum (up to -26 %) and brain (up to -29 %) of fetuses but without clear dose dependency. There were no remarkable findings that deviated significantly from controls in GD20 fetal brain by qualitative histopathology. Overall, the present study suggests that the prenatal test cohort of this modified CTA is able to detect the expected fetal TH disruptions by prenatal exposure to NaPB, while also reducing the number of animals used by 50 %, consistent with the results of our previous study. These findings add to the suggestion that lowering group sizes and adding endpoints may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Akira Sato
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Tadashi Kosaka
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroaki Aoyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
11
|
Gilbert ME, Hassan I, O'Shaughnessy KL, Wood C, Stoker TE, Riutta C, Ford JL. Ammonium perchlorate: serum dosimetry, neurotoxicity, and resilience of the neonatal rat thyroid system. Toxicol Sci 2024; 198:113-127. [PMID: 38145495 PMCID: PMC11588387 DOI: 10.1093/toxsci/kfad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.
Collapse
Affiliation(s)
- Mary E Gilbert
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Office of Air Quality, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Carmen Wood
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Tammy E Stoker
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Cal Riutta
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, USA
| | - Jermaine L Ford
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
12
|
Davidsen N, Ramhøj L, Ballegaard ASR, Rosenmai AK, Henriksen CS, Svingen T. Perfluorooctanesulfonic acid (PFOS) disrupts cadherin-16 in the developing rat thyroid gland. Curr Res Toxicol 2024; 6:100154. [PMID: 38352163 PMCID: PMC10861841 DOI: 10.1016/j.crtox.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Perfluorooctanesulfonic acid (PFOS) can disrupt the thyroid hormone (TH) system in rodents, potentially affecting perinatal growth and neurodevelopment. Some studies also suggest that gestational exposure to PFOS can lead to lower TH levels throughout life, indicating that PFOS may compromise thyroid gland development. To address this question, we utilized a rat thyroid gland ex vivo culture system to study direct effects of PFOS on the developing thyroid. No significant changes to follicular structure or size were observed with 1 µM or 10 µM PFOS exposure. However, the transcription factor Foxe1, together with Tpo and Lrp2, were upregulated, whereas the key transcription factor Pax8 and its downstream target gene Cdh16 were significantly downregulated at the transcript level, observed with both RT-qPCR and RNAscope. Notably, Cdh16 expression was not uniformly downregulated across Cdh16-postive cells, but instead displayed a patchy expression pattern across the thyroid gland. This is a significant change in expression pattern compared to control thyroids where Cdh16 is expressed relatively uniformly. The disrupted expression pattern was also seen at the protein level. This suggests that PFOS exposure can impact follicular growth and structure. Compromised follicle integrity, if irreversible, could help explain reduced TH synthesis postnatally. This view is supported by observed changes to Tpo and Lrp2 expression, two factors that play a role in TH synthesis.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | | | | | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
13
|
Forner-Piquer I, Baig AH, Kortenkamp A. Disruption of the thyroid hormone system and patterns of altered thyroid hormones after gestational chemical exposures in rodents - a systematic review. Front Endocrinol (Lausanne) 2024; 14:1323284. [PMID: 38352246 PMCID: PMC10863050 DOI: 10.3389/fendo.2023.1323284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Abstract
We present a comprehensive overview of changes in thyroxine (T4) and thyroid stimulating hormone (TSH) serum concentrations after pre-gestational, gestational and/or lactation exposures of rodents to various chemicals that affect the thyroid hormone system. We show that T4 and TSH changes consistent with the idealized view of the hypothalamic-pituitary-thyroid (HPT) feedback loop (T4 decrements accompanied by TSH increases) are observed with only a relatively small set of chemicals. Most substances affect concentrations of various thyroid hormones without increasing TSH. Studies of altered T4 concentrations after gestational exposures are limited to a relatively small set of chemicals in which pesticides, pharmaceuticals and industrial chemicals are under-represented. Our risk-of-bias analysis exposed deficits in T4/TSH analytics as a problem area. By relating patterns of T4 - TSH changes to mode-of-action (MOA) information, we found that chemicals capable of disrupting the HPT feedback frequently affected thyroid hormone synthesis, while substances that produced T4 serum decrements without accompanying TSH increases lacked this ability, but often induced liver enzyme systems responsible for the elimination of TH by glucuronidation. Importantly, a multitude of MOA leads to decrements of serum T4. The current EU approaches for identifying thyroid hormone system-disrupting chemicals, with their reliance on altered TH serum levels as indicators of a hormonal mode of action and thyroid histopathological changes as indicators of adversity, will miss chemicals that produce T4/T3 serum decreases without accompanying TSH increases. This is of concern as it may lead to a disregard for chemicals that produce developmental neurotoxicity by disrupting adequate T4/T3 supply to the brain, but without increasing TSH.
Collapse
Affiliation(s)
| | | | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
14
|
Hindrichs C, Walk T, Landsiedel R, Kamp H, Schneider S, Melching-Kollmuss S, Funk-Weyer D. Thyroid Hormone Metabolites Quantified in Pup and Adult Rat Cerebellum, Cortex and Whole-Brain Samples Using an Automated Online SPE-LC-MS/MS Method. Metabolites 2024; 14:61. [PMID: 38248864 PMCID: PMC10820277 DOI: 10.3390/metabo14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Changes in thyroid hormone (TH) levels in rat brain at early developmental stages are correlated with adverse effects on offspring development. To characterize the ability of substances to interfere with the TH concentrations in, e.g., rat brain, it is essential to know the mean TH concentrations in this tissue under control conditions. In this publication, an online solid-phase extraction (SPE) liquid chromatography (LC) tandem mass spectrometry (MS/MS) method was validated and used to measure TH metabolites (T4, T3, rT3, T2 and T1) in the brains of untreated rats. Data on TH concentrations in the whole brain and separate data from the cerebellum and the cortex are shown. The corresponding samples were gathered from young rats at postnatal days (PND) 4 and 21/22 and from adult rats. The results show inter alia the high accuracy and precision of the method, and LOQs of 0.02 ng/mL were determined for T1, T2 and rT3 and of 0.15 ng/mL for T3 and T4. Technical variability is low, as shown by the relative standard deviations of 7.5-20%. For our rat model, we found that T4, T3 and T2 concentrations rise from PND4 to PND21, whereas the rT3 concentration decreases; as well as there is no statistical difference between TH concentrations in the male and female rat brain. This method is suitable to analyze TH metabolites in the brain and build up a database of historical TH concentrations in control rats. Together, this yields a robust diagnostic tool to detect potentially adverse disturbances of TH homeostasis in the most vulnerable anatomic structure.
Collapse
Affiliation(s)
- Christiane Hindrichs
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589 Berlin, Germany; (C.H.); (T.W.)
- Department of Chemistry, Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Tilmann Walk
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589 Berlin, Germany; (C.H.); (T.W.)
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, Im Spitzenbusch 10, 67227 Frankenthal, Germany (S.S.)
- Pharmacology and Toxicology, Institute of Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589 Berlin, Germany; (C.H.); (T.W.)
| | - Steffen Schneider
- Experimental Toxicology and Ecology, BASF SE, Im Spitzenbusch 10, 67227 Frankenthal, Germany (S.S.)
| | | | - Dorothee Funk-Weyer
- Experimental Toxicology and Ecology, BASF SE, Im Spitzenbusch 10, 67227 Frankenthal, Germany (S.S.)
| |
Collapse
|
15
|
Suto H, Ogata K, Minami K, Sato A, Tomiyama N, Kosaka T, Hojo H, Takahashi N, Aoyama H, Yamada T. Perinatal maternal exposure to high-dose sodium phenobarbital in the modified Comparative Thyroid Assay: no significant reduction in thyroid hormones in pups despite notable effects in dams. J Toxicol Sci 2024; 49:509-529. [PMID: 39496387 DOI: 10.2131/jts.49.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We propose a modified Comparative Thyroid Assay (CTA, USEPA) utilizing a smaller number of Sprague-Dawley rats (N=10/group) that assesses brain thyroid hormone (TH) concentrations and periventricular heterotopia while maintaining assay sensitivity. Our recent findings demonstrated that a prenatal test cohort of the modified CTA detected a dose-dependent decrease in maternal serum T3 (up to -26%) and T4 (up to -44%) with sodium phenobarbital (NaPB) exposure at 1000 ppm and 1500 ppm, equivalent to intakes of 60 and 84 mg/kg/day, respectively. On gestation day (GD) 20, fetuses exhibited reduced serum (-26%) and brain (-29%) TH concentrations, although these reductions were not dose dependent. The present study expanded the treatment in a postnatal test cohort, with maternal exposure to NaPB (81-93 mg/kg/day) from GD6 to lactation day (LD) 21. We assessed serum and brain TH concentrations, and periventricular heterotopia in pups on postnatal days (PND) 4, 21, and 28. While LD21 dams showed significant reductions in serum T3 (up to -34%) and T4 (up to -54%), the pups did not exhibit significant TH suppression or periventricular heterotopia at any test point. Instead, a compensatory increase in T4 was observed in serum and brain of PND21 pups. The present study confirmed that perinatal maternal exposure to high doses of NaPB leads to a moderate decrease in maternal TH concentrations; however, the exposure of maternal rats to a similar dose of NaPB did not significantly reduce serum or brain TH concentrations in their postnatal offspring.
Collapse
Affiliation(s)
- Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
- Current address: Registration & Regulatory Affairs Dept. AgroSolutions Division - International, Sumitomo Chemical Company, Ltd
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Akira Sato
- The Institute of Environmental Toxicology
| | | | | | | | | | | | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| |
Collapse
|
16
|
Gilbert ME, O’Shaughnessy KL, Bell KS, Ford JL. Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate. TOXICS 2023; 11:1027. [PMID: 38133428 PMCID: PMC10747616 DOI: 10.3390/toxics11121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements induced by pharmaceuticals that reduce the hormone synthesis enzyme thyroperoxidase. In this report, we extend these observations to the environmental contaminant perchlorate, an agent that interferes with thyroid status by inhibiting iodine uptake into the thyroid gland. Pregnant rat dams were administered perchlorate in their drinking water (0, 30, 100, 300, 1000 ppm) from gestational day (GD) 6 until the weaning of pups on postnatal day (PN) 21. Serum T4 was reduced in dams and fetuses in late gestation and remained lower in lactating dams. Pup serum and brain T4, however, were not reduced beyond PN0, and small PVHs were evident in the brains of offspring when assessed on PN14. To emulate the developmental time window of the brain in humans, a second study was conducted in which pups from perchlorate-exposed dams were administered perchlorate orally from PN0 to PN6. This treatment reduced serum and brain T4 in the pup and resulted in large PVH. A third study extended the period of serum and brain TH suppression in pups by coupling maternal perchlorate exposure with maternal dietary iodine deficiency (ID). No PVHs were evident in the pups from ID dams, small PVHs were observed in the offspring of dams exposed to 300 ppm of perchlorate, and very large PVHs were present in the brains of pups born to dams receiving ID and perchlorate. These findings underscore the importance of the inclusion of serum hormone profiles in pregnant dams and fetuses in in vivo screens for thyroid-system-disrupting chemicals and indicate that chemical-induced decreases in fetal rat serum that resolve in the immediate postnatal period may still harbor considerable concern for neurodevelopment in humans.
Collapse
Affiliation(s)
- Mary E. Gilbert
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Katherine L. O’Shaughnessy
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Kiersten S. Bell
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jermaine L. Ford
- National Center for Computational Toxicology, Office of Research and Development, Environmental Protection Agency, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
17
|
Conley JM, Lambright CS, Evans N, Farraj AK, Smoot J, Grindstaff RD, Hill D, McCord J, Medlock-Kakaley E, Dixon A, Hines E, Gray LE. Dose additive maternal and offspring effects of oral maternal exposure to a mixture of three PFAS (HFPO-DA, NBP2, PFOS) during pregnancy in the Sprague-Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164609. [PMID: 37271399 PMCID: PMC10681034 DOI: 10.1016/j.scitotenv.2023.164609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aimen K Farraj
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacob Smoot
- ORISE Participant, U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Rachel D Grindstaff
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Erin Hines
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
18
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Liang Y, Li L, Zhang H, Dai Q, Xie G, Lei B, Yang Z, Cai Z. Long-term percutaneous triclosan exposure induces thyroid damage in mice: Interpretation of toxicity mechanism from metabolic and proteomic perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131532. [PMID: 37121033 DOI: 10.1016/j.jhazmat.2023.131532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
Triclosan (TCS) is an antiseptic incorporated in consumer goods and personal care products that can be absorbed via the skin, raising public health concerns for its continuous detection in human biofluids and tissues. Epidemiology has associated TCS exposure with thyroid function disturbances and decreasing serum thyroid hormone (TH) levels, but the underlying mechanism remains unclear. In this study, we revealed hypothyroidism and histological alternation in the thyroid of mice with chronic percutaneous exposure to TCS, indicating a TCS-caused thyroid impairment. Subsequently, multi-omics approaches were performed to investigate the molecular mechanism of the thyroid in response to long-term dermal TCS exposure. We discovered that TCS interfered with the TH synthesis as indicated by the changes in the levels of the synthetic materials for TH (iodide, Tg, and H2O2) and affected TH release by the downregulation of lysosomal enzymes. The upregulation of glycolysis, tricarboxylic acid cycle, fatty acid, amino acid metabolism, and adenine salvage in the thyroid was also observed after TCS exposure. All these changes led to the elevation of ATP, serving as a rescue for the decreasing thyroid functions. Together, our study demonstrated TCS-induced thyroid damage and identified the interrupted pathways, providing meaningful insight into the molecular mechanisms underpinning the potential health influence of TCS in humans.
Collapse
Affiliation(s)
- Yanshan Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai, China
| | - Leiguang Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Qingyuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai, China
| | - Guangshan Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Bo Lei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
20
|
Ramhøj L, Guyot R, Svingen T, Kortenkamp A, Flamant F, Axelstad M. Is periventricular heterotopia a useful endpoint for developmental thyroid hormone system disruption in mouse toxicity studies? Regul Toxicol Pharmacol 2023:105445. [PMID: 37414127 DOI: 10.1016/j.yrtph.2023.105445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, France
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, France
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
21
|
Ford J, Riutta C, Kosian PA, O'Shaughessy K, Gilbert M. Reducing uncertainties in quantitative adverse outcome pathways by analysis of thyroid hormone in the neonatal rat brain. Toxicol Sci 2023; 193:192-203. [PMID: 37099719 PMCID: PMC10732312 DOI: 10.1093/toxsci/kfad040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
A number of xenobiotics interfere with thyroid hormone (TH) signaling. Although adequate supplies of TH are necessary for normal brain development, regulatory reliance on serum TH as proxies for brain TH insufficiency is fraught with significant uncertainties. A more direct causal linkage to neurodevelopmental toxicity induced by TH-system disrupting chemicals is to measure TH in the target organ of most concern, the brain. However, the phospholipid-rich matrix of brain tissue presents challenges for TH extraction and measurement. We report optimized analytical procedures to extract TH in brain tissue of rats with recoveries >80% and low detection limits for T3, rT3, and T4 (0.013, 0.033, and 0.028 ng/g, respectively). Recovery of TH is augmented by enhancing phospholipid separation from TH using an anion exchange column coupled with a stringent column wash. Quality control measures incorporating a matrix-matched calibration procedure revealed excellent recovery and consistency across a large number of samples. Application of optimized procedures revealed age-dependent increases in neonatal brain T4, T3, and rT3 on the day of birth (postnatal day, PN0), PN2, PN6, and PN14. No sex-dependent differences in brain TH were observed at these ages, and similar TH levels were evident in perfused versus non-perfused brains. Implementation of a robust and reliable method to quantify TH in the fetal and neonatal rat brain will aid in the characterization of the thyroid-dependent chemical interference on neurodevelopment. A brain- in addition to a serum-based metric will reduce uncertainties in assessment of hazard and risk on the developing brain posed by thyroid system-disrupting chemicals.
Collapse
Affiliation(s)
- Jermaine Ford
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Cal Riutta
- Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830, USA
| | - Patricia A Kosian
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Katherine O'Shaughessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Mary Gilbert
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
22
|
Chen L, Xie Y, Li M, Mortimer M, Li F, Guo LH. Toxicological Mechanisms of Emerging Per-/poly-fluoroalkyl Substances: Focusing on Transcriptional Activity and Gene Expression Disruption. Toxicology 2023:153566. [PMID: 37263573 DOI: 10.1016/j.tox.2023.153566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Environmental and human monitoring studies have witnessed increasing occurrence of emerging per-/poly-fluoroalkyl substances (ePFASs) worldwide. Three classes of ePFASs, namely chlorinated polyfluoroalkylether sulfonic acids, hexafluoropropylene oxide homologues and short-chain perfluoroalkyl acids attracted the most attention. It is, therefore, the goal of this review to systematically and critically analyse the toxicity and toxicological mechanisms of these ePFASs based on the papers published between 2017 and 2022. The review summarized the main findings from both in vivo and in vitro studies, covering the hepatotoxicity of ePFASs and their interference with the endocrine system, including reproductive, developmental and thyroid toxicity. It also summarized the changes in gene expression in the hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonad axis of the model organisms after ePFASs exposure. The changes in gene expression in vitro and in vivo provide a clearer understanding of the toxicological mechanisms of ePFASs interference on hormonal levels (i.e., estradiol, testosterone, and thyroid hormones), developmental disturbance (e.g., swim bladder dysfunction) and lipid metabolism disruption (e.g., lipid droplet accumulation and hepatomegaly). In the end, future research directions on the toxicological mechanisms of ePFASs are suggested.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Yue Xie
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| |
Collapse
|
23
|
Stoker TE, Wang J, Murr AS, Bailey JR, Buckalew AR. High-Throughput Screening of ToxCast PFAS Chemical Library for Potential Inhibitors of the Human Sodium Iodide Symporter. Chem Res Toxicol 2023; 36:380-389. [PMID: 36821091 PMCID: PMC12050117 DOI: 10.1021/acs.chemrestox.2c00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Over the past decade, there has been increased concern for environmental chemicals that can target various sites within the hypothalamic-pituitary-thyroid axis to potentially disrupt thyroid synthesis, transport, metabolism, and/or function. One well-known thyroid target in both humans and wildlife is the sodium iodide symporter (NIS) that regulates iodide uptake into the thyroid gland, the first step of thyroid hormone synthesis. Our laboratory previously developed and validated a radioactive iodide uptake (RAIU) high-throughput assay in a stably transduced human NIS cell line (hNIS-HEK293T-EPA) to identify chemicals with potential for NIS inhibition. So far, we have tested over 2000 chemicals (US EPA's ToxCast chemical libraries PI_v2, PII, and e1K) and discovered a subset of chemicals that significantly inhibit iodide uptake in the hNIS assay. Here, we utilized this screening assay to test a set of 149 unique per- and polyfluoroalkyl substances (PFAS) (ToxCast PFAS library) for potential NIS inhibition. For this evaluation, the 149 blinded samples were screened in a tiered approach, first in an initial single-concentration (≤100 μM) RAIU assay and subsequent evaluation of the chemicals that produced ≥20% inhibition using multiconcentration (MC) response (0.001-100 μM) testing in parallel RAIU and cell viability assays. Of this set, 38 of the PFAS chemicals inhibited iodide uptake ≥20% in the MC testing with 25 displaying inhibition ≥50%. To prioritize the most potent PFAS NIS inhibitors in this set, chemicals were ranked based on outcomes of both iodide uptake and cytotoxicity and normalized to perchlorate, a known positive control. Consistent with previous findings, PFOS and PFHxS were again found to be potent NIS inhibitors, yet significant inhibition was also observed for several other screened PFAS chemicals. Although further studies are clearly warranted, this initial screening effort identifies NIS as a molecular target for potential thyroid disruption by this persistent and structurally diverse class of chemicals.
Collapse
Affiliation(s)
- Tammy E. Stoker
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Jun Wang
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN 37831, USA
| | - Ashley S. Murr
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Jarod R. Bailey
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN 37831, USA
| | - Angela R. Buckalew
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
24
|
Conley JM, Lambright CS, Evans N, Medlock-Kakaley E, Dixon A, Hill D, McCord J, Strynar MJ, Ford J, Gray LE. Cumulative maternal and neonatal effects of combined exposure to a mixture of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) during pregnancy in the Sprague-Dawley rat. ENVIRONMENT INTERNATIONAL 2022; 170:107631. [PMID: 36402036 PMCID: PMC9944680 DOI: 10.1016/j.envint.2022.107631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Jermaine Ford
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
25
|
Minami K, Suto H, Sato A, Ogata K, Kosaka T, Hojo H, Takahashi N, Tomiyama N, Fukuda T, Iwashita K, Aoyama H, Yamada T. Feasibility study for a downsized comparative thyroid assay with measurement of brain thyroid hormones and histopathology in rats: Case study with 6-propylthiouracil and sodium phenobarbital at high dose. Regul Toxicol Pharmacol 2022; 137:105283. [PMID: 36372265 DOI: 10.1016/j.yrtph.2022.105283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
Concern has been raised that thyroid hormone disruptors (THDs) may potentially interfere with the developing brain, but effects of mild suppression of maternal THs by environmental contaminants on neonatal brain development are not fully understood. The comparative thyroid assay (CTA) is a screening test for offspring THDs, but it requires several animals and is criticized that reliance on serum THs alone as predictive markers of brain malfunction is inadequate. To verify feasibility of the downsized CTA but additional examination of brain THs levels and histopathology, we commenced internal-validation studies. This paper presents the data of the study where 6-propylthiouracil (6-PTU, 10 ppm) and sodium phenobarbital (NaPB, 1000 ppm) were dosed by feeding from gestational days (GD)6-20, and from GD6 to lactation day 21. The modified CTA detected 6-PTU-induced severe (>70%) suppression of serum THs in dams, with >50% suppressed serum/brain TH levels in offspring and brain heterotopia in postnatal day 21 pups. The modified CTA also detected NaPB-induced mild (<35%) suppression of serum THs in dams, with mild (<35%) reduction of serum/brain TH levels in fetuses but not in pups. These findings suggest that the modified CTA may have a potential as a screening test for offspring THDs.
Collapse
Affiliation(s)
- Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Akira Sato
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Tadashi Kosaka
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Hitoshi Hojo
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Naofumi Takahashi
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Naruto Tomiyama
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Takako Fukuda
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Katsumasa Iwashita
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Hiroaki Aoyama
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan.
| |
Collapse
|
26
|
Ramhøj L, Svingen T, Mandrup K, Hass U, Lund SP, Vinggaard AM, Hougaard KS, Axelstad M. Developmental exposure to the brominated flame retardant DE-71 reduces serum thyroid hormones in rats without hypothalamic-pituitary-thyroid axis activation or neurobehavioral changes in offspring. PLoS One 2022; 17:e0271614. [PMID: 35853081 PMCID: PMC9295973 DOI: 10.1371/journal.pone.0271614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants for which human exposure remains ubiquitous. This is of concern since these chemicals can perturb development and cause adverse health effects. For instance, DE-71, a technical mixture of PBDEs, can induce liver toxicity as well as reproductive and developmental toxicity. DE-71 can also disrupt the thyroid hormone (TH) system which may induce developmental neurotoxicity indirectly. However, in developmental toxicity studies, it remains unclear how DE-71 exposure affects the offspring’s thyroid hormone system and if this dose-dependently relates to neurodevelopmental effects. To address this, we performed a rat toxicity study by exposing pregnant dams to DE-71 at 0, 40 or 60 mg/kg/day during perinatal development from gestational day 7 to postnatal day 16. We assessed the TH system in both dams and their offspring, as well as potential hearing and neurodevelopmental effects in prepubertal and adult offspring. DE-71 significantly reduced serum T4 and T3 levels in both dams and offspring without a concomitant upregulation of TSH, thus inducing a hypothyroxinemia-like effect. No discernible effects were observed on the offspring’s brain function when assessed in motor activity boxes and in the Morris water maze, or on offspring hearing function. Our results, together with a thorough review of the literature, suggest that DE-71 does not elicit a clear dose-dependent relationship between low serum thyroxine (T4) and effects on the rat brain in standard behavioral assays. However, low serum TH levels are in themselves believed to be detrimental to human brain development, thus we propose that we lack assays to identify developmental neurotoxicity caused by chemicals disrupting the TH system through various mechanisms.
Collapse
Affiliation(s)
- Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karen Mandrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulla Hass
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Søren Peter Lund
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Davidsen N, Ramhøj L, Lykkebo CA, Kugathas I, Poulsen R, Rosenmai AK, Evrard B, Darde TA, Axelstad M, Bahl MI, Hansen M, Chalmel F, Licht TR, Svingen T. PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119340. [PMID: 35460815 DOI: 10.1016/j.envpol.2022.119340] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Claus Asger Lykkebo
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Rikke Poulsen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | | | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | - Frederic Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
28
|
Gilbert ME, Hassan I, Wood C, O'Shaughnessy KL, Spring S, Thomas S, Ford J. Gestational Exposure to Perchlorate in the Rat: Thyroid Hormones in Fetal Thyroid Gland, Serum, and Brain. Toxicol Sci 2022; 188:117-130. [PMID: 35385113 PMCID: PMC10732305 DOI: 10.1093/toxsci/kfac038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iodine is essential for the production of thyroid hormones. Perchlorate is an environmental contaminant that interferes with iodine uptake into the thyroid gland to reduce thyroid hormone synthesis. As thyroid hormones are critical for brain development, exposure to perchlorate during pregnancy is of concern for the developing fetal brain. In this study, we (1) define profiles of thyroid hormone in the maternal and fetal compartments of pregnant rats in response to inhibition of the sodium-iodide symporter (NIS) by perchlorate and (2) expand inquiry previously limited to serum to include fetal thyroid gland and brain. Perchlorate was added to the drinking water (0, 1, 30, 300, and 1000 ppm) of pregnant rat dams from gestational days (GD) 6-20. On GD20, blood, thyroid gland, and brain were collected from the fetus and dam for thyroid hormone and molecular analyses. Thyroid gland and serum thyroid hormones were dose-dependently reduced, with steeper declines evident in the fetus than in the dam. The thyroid gland revealed perturbations of thyroid hormone-action with greater sensitivity in the fetus than the dam. Thyroid hormones and thyroid hormone-responsive gene expression were reduced in the fetal cortex portending effects on brain development. These findings are the first quantitative assessments of perchlorate-induced deficits in the fetal thyroid gland and fetal brain. We provide a conceptual framework to develop a quantitative NIS adverse outcome pathway for serum thyroid hormone deficits and the potential to impact the fetal brain. Such a framework may also serve to facilitate the translation of in vitro bioactivity to the downstream in vivo consequences of NIS inhibition in the developing fetus.
Collapse
Affiliation(s)
- Mary E Gilbert
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Iman Hassan
- Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carmen Wood
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Katherine L O'Shaughnessy
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Stephanie Spring
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
- Oak Ridge Institute for Student Education, Oak Ridge, Tennessee, USA
| | - Susan Thomas
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
- Oak Ridge Institute for Student Education, Oak Ridge, Tennessee, USA
| | - Jermaine Ford
- National Center for Computational Toxicology, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA
| |
Collapse
|
29
|
Renko K, Kerp H, Pape J, Rijntjes E, Burgdorf T, Führer D, Köhrle J. Tentative Application of a Streamlined Protocol to Determine Organ-Specific Regulations of Deiodinase 1 and Dehalogenase Activities as Readouts of the Hypothalamus-Pituitary-Thyroid-Periphery-Axis. FRONTIERS IN TOXICOLOGY 2022; 4:822993. [PMID: 35387426 PMCID: PMC8978789 DOI: 10.3389/ftox.2022.822993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
In animal studies, both in basic science and in toxicological assessment of potential endocrine disruptors, the state of the thyroid hormone (TH) axis is often described and defined exclusively by the concentrations of circulating THs and TSH. Although it is known that the local, organ-specific effects of THs are also substantially regulated by local mechanisms such as TH transmembrane transport and metabolism of TH by deiodinases, such endpoint parameters of the axis are rarely assessed in these experiments. Currently developed in vitro assays utilize the Sandell-Kolthoff reaction, a photometric method of iodide determination, to test the effect of chemicals on iodotyrosine and iodothyronine deiodinases. Furthermore, this technology offers the possibility to determine the iodine content of various sample types (e.g., urine, ex vivo tissue) in a simple way. Here, we measured deiodinase type 1 and iodotyrosine dehalogenase activity by means of the Sandell-Kolthoff reaction in ex vivo samples of hypo- and hyperthyroid mice of two age groups (young; 3 months and old; 20 months). In thyroid, liver and kidney, organ-specific regulation patterns emerged across both age groups, which, based on this pilot study, may serve as a starting point for a deeper characterization of the TH system in relevant studies in the future and support the development of Integrated Approach for Testing and Assessment (IATA).
Collapse
Affiliation(s)
- Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
- *Correspondence: Kostja Renko,
| | - Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Janina Pape
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Eddy Rijntjes
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Tanja Burgdorf
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Josef Köhrle
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| |
Collapse
|
30
|
Sun M, Cao X, Wu Y, Shen L, Wei G. Prenatal exposure to endocrine-disrupting chemicals and thyroid function in neonates: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113215. [PMID: 35065506 DOI: 10.1016/j.ecoenv.2022.113215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Thyroid hormone homeostasis is essential for normal brain development in fetuses and infants. Exposure to endocrine-disrupting chemicals (EDCs) during pregnancy is associated with compromised maternal thyroid homeostasis, and thus may lead to adverse neurodevelopmental outcomes in newborns. However, evidence regarding the association of prenatal EDC exposure and thyroid hormones in newborns is controversial. Therefore, a meta-analysis to elucidate the relationship between maternal exposure to EDCs and neonatal THs was performed. A systematic search of PubMed, EMBASE, and the Cochrane Library (CENTRAL) for relevant published studies that provided quantitative data on the association between prenatal EDC exposure and neonatal thyroid hormones was conducted in August 2021. To calculate the overall estimates, we pooled the adjusted β regression coefficients with 95% confidence intervals (CIs) from each study by the inverse variance method. The pooling results indicated that prenatal EDC exposure had no significant influence on neonatal TSH, TT3, FT3, TT4 or FT4 level in the global assessment. However, in the specific exposure and outcome assessment, we found that prenatal exposure to organochlorine (β coefficient, -0.022; 95% CI, -0.04 to -0.003) and PFAS (β coefficient, -0.017; 95% CI, -0.033 to 0) was negatively associated with neonatal TT4 level. In conclusion, prenatal exposure to organochlorine and PFAS may be associated with lower neonatal TT4 level.
Collapse
Affiliation(s)
- Mang Sun
- Ministry of Education Key Laboratory of Child Development and Disorders; International Science and Technology Cooperation Base of Child Development and Critical Disorders; National Clinical Research Center for Child Health and Disorders; Chongqing Key Laboratory of Pediatrics; Department of Urology, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xining Cao
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhao Wu
- Ministry of Education Key Laboratory of Child Development and Disorders; International Science and Technology Cooperation Base of Child Development and Critical Disorders; National Clinical Research Center for Child Health and Disorders; Chongqing Key Laboratory of Pediatrics; Department of Urology, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| | - Lianju Shen
- Ministry of Education Key Laboratory of Child Development and Disorders; International Science and Technology Cooperation Base of Child Development and Critical Disorders; National Clinical Research Center for Child Health and Disorders; Chongqing Key Laboratory of Pediatrics; Department of Urology, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders; International Science and Technology Cooperation Base of Child Development and Critical Disorders; National Clinical Research Center for Child Health and Disorders; Chongqing Key Laboratory of Pediatrics; Department of Urology, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| |
Collapse
|
31
|
Conley JM, Lambright CS, Evans N, Medlock-Kakaley E, Hill D, McCord J, Strynar MJ, Wehmas LC, Hester S, MacMillan DK, Gray LE. Developmental toxicity of Nafion byproduct 2 (NBP2) in the Sprague-Dawley rat with comparisons to hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) and perfluorooctane sulfonate (PFOS). ENVIRONMENT INTERNATIONAL 2022; 160:107056. [PMID: 34952357 PMCID: PMC8821375 DOI: 10.1016/j.envint.2021.107056] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 05/04/2023]
Abstract
Nafion byproduct 2 (NBP2) is a polyfluoroalkyl ether sulfonic acid that was recently detected in surface water, drinking water, and human serum samples from monitoring studies in North Carolina, USA. We orally exposed pregnant Sprague-Dawley rats to NBP2 from gestation day (GD) 14-18 (0.1-30 mg/kg/d), GD17-21, and GD8 to postnatal day (PND) 2 (0.3-30 mg/kg/d) to characterize maternal, fetal, and postnatal effects. GD14-18 exposures were also conducted with perfluorooctane sulfonate (PFOS) for comparison to NBP2, as well as data previously published for hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). NBP2 produced stillbirth (30 mg/kg), reduced pup survival shortly after birth (10 mg/kg), and reduced pup body weight (10 mg/kg). Histopathological evaluation identified reduced glycogen stores in newborn pup livers and hepatocyte hypertrophy in maternal livers at ≥ 10 mg/kg. Exposure to NBP2 from GD14-18 reduced maternal serum total T3 and cholesterol concentrations (30 mg/kg). Maternal, fetal, and neonatal liver gene expression was investigated using RT-qPCR pathway arrays, while maternal and fetal livers were also analyzed using TempO-Seq transcriptomic profiling. Overall, there was limited alteration of genes in maternal or F1 livers from NBP2 exposure with significant changes mostly occurring in the top dose group (30 mg/kg) associated with lipid and carbohydrate metabolism. Metabolomic profiling indicated elevated maternal bile acids for NBP2, but not HFPO-DA or PFOS, while all three reduced 3-indolepropionic acid. Maternal and fetal serum and liver NBP2 concentrations were similar to PFOS, but ∼10-30-fold greater than HFPO-DA concentrations at a given maternal oral dose. NBP2 is a developmental toxicant in the rat, producing neonatal mortality, reduced pup body weight, reduced pup liver glycogen, reduced maternal thyroid hormones, and altered maternal and offspring lipid and carbohydrate metabolism similar to other studied PFAS, with oral toxicity for pup loss that is slightly less potent than PFOS but more potent than HFPO-DA.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Leah C Wehmas
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - Susan Hester
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - Denise K MacMillan
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|