1
|
Deng D, Liu X, Huang W, Yuan S, Liu G, Ai S, Fu Y, Xu H, Zhang X, Li S, Xu S, Bai X, Zhang Y. Osteoclasts control endochondral ossification via regulating acetyl-CoA availability. Bone Res 2024; 12:49. [PMID: 39198395 PMCID: PMC11358419 DOI: 10.1038/s41413-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.
Collapse
Affiliation(s)
- Daizhao Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenlan Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sirui Yuan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Genming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yijie Fu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haokun Xu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinyi Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Song Xu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Pedersen K, Watt J, Maimone C, Hang H, Denys A, Schroder K, Suva LJ, Chen JR, Ronis MJJ. Deletion of NADPH oxidase 2 in chondrocytes exacerbates ethanol-mediated growth plate disruption in mice without major effects on bone architecture or gene expression. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2233-2247. [PMID: 38151780 DOI: 10.1111/acer.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Excess reactive oxygen species generated by NADPH oxidase 2 (Nox2) in response to ethanol exposure mediate aspects of skeletal toxicity including increased osteoclast differentiation and activity. Because perturbation of chondrocyte differentiation in the growth plate by ethanol could be prevented by dietary antioxidants, we hypothesized that Nox2 in the growth plate was involved in ethanol-associated reductions in longitudinal bone growth. METHODS Nox2 conditional knockout mice were generated, where the essential catalytic subunit of Nox2, cytochrome B-245 beta chain (Cybb), is deleted in chondrocytes using a Cre-Lox model with Cre expressed from the collagen 2a1 promoter (Col2a1-Cre). Wild-type and Cre-Lox mice were fed an ethanol Lieber-DeCarli-based diet or pair-fed a control diet for 8 weeks. RESULTS Ethanol treatment significantly reduced the number of proliferating chondrocytes in the growth plate, enhanced bone marrow adiposity, shortened femurs, reduced body length, reduced cortical bone volume, and decreased mRNA levels of a number of osteoblast and chondrocyte genes. Conditional knockout of Nox2 enzymatic activity in chondrocytes did not consistently prevent any ethanol effects. Rather, knockout mice had fewer proliferating chondrocytes than wild-type mice in both the ethanol- and control-fed animals. Additional analysis of tibia samples from Nox4 knockout mice showed that loss of Nox4 activity also reduced the number of proliferating chondrocytes and altered chondrocyte size in the growth plate. CONCLUSIONS Although Nox enzymatic activity regulates growth plate development, ethanol-associated disruption of the growth plate morphology is independent of ethanol-mediated increases in Nox2 activity.
Collapse
Affiliation(s)
- K Pedersen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - J Watt
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - C Maimone
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - H Hang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - A Denys
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - K Schroder
- Institute of Physiology I, Goethe-University, Frankfurt, Germany
| | - L J Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - J-R Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - M J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| |
Collapse
|