1
|
Zeng L, Chen C, Xiong Y, Liu Y, Huang M, Ye J, Zhong J, Peng W. Acetylation of H3K18 activated by p300 promotes osteogenesis in human adipose-derived mesenchymal stem cells. Biochem Pharmacol 2025; 236:116901. [PMID: 40164340 DOI: 10.1016/j.bcp.2025.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Human adipose-derived mesenchymal stem cells (hAD-MSCs) have garnered significant interest as a viable alternative source of stem cells for applications in bone tissue engineering due to their high and ease availability. At present, the limited studies on potential epigenetic regulatory mechanism in hAD-MSCs greatly hinders its clinical application in bone repair. Histone acetylation has been identified as a critical regulator of the osteogenic differentiation of mesenchymal stem cells (MSCs), with increased levels of histone acetylation sites frequently correlating with enhanced osteogenic differentiation. However, their specific roles in MSCs osteogenesis remain unclear. In this study, we observed a significant up-regulation of H3K18 acetylation (H3K18ac) during the osteogenic induction of hAD-MSCs. This modification was notably enriched in the promoter regions of genes associated with osteogenesis, thereby facilitating osteogenic differentiation. Furthermore, the treatment of histone acetyltransferases p300 inhibitor A-485 in hAD-MSCs resulted in a reduction of H3K18 acetylation levels during the osteogenic differentiation, which corresponded with a diminished osteoblast phenotype and function. These results indicated that p300-mediated acetylation of H3K18 enhances the osteogenic differentiation of hAD-MSCs. It provides a novel insight into understanding the mechanism of osteogenic differentiation of hAD-MSCs and promoting its application in bone tissue engineering.
Collapse
Affiliation(s)
- Liping Zeng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Chen Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yafei Xiong
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Yinan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Miao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Junsong Ye
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Subcenter for Stem Cell Clinical Translation, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianing Zhong
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| | - Weijie Peng
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Pharmaceutics, Nanchang Medical College, Nanchang, 330000, China.
| |
Collapse
|
2
|
Wang Y, Li Q. Integrative bioinformatics analysis reveals STAT1, ORC2, and GTF2B as critical biomarkers in lupus nephritis with Monkeypox virus infection. Sci Rep 2025; 15:13589. [PMID: 40253531 PMCID: PMC12009413 DOI: 10.1038/s41598-025-97791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
The monkeypox virus (MPXV) is currently spreading rapidly around the world, but the mechanisms by which it interacts with lupus nephritis (LN) are unknown. The aim of this study was to investigate the role and mechanism of lupus nephritis combined with monkeypox virus infection. The data comes from GEO and GeneCards.Through Limma and Weighted Gene Co-expression Network Analysis (WGCNA) analysis, differential expression genes (DEGs) and module genes were identified, and KEGG and GO enrichment analysis was carried out.In addition, a protein-protein interaction (PPI) network was constructed and LASSO regression was used to screen genes related to senescence. The diagnostic effectiveness was evaluated using a Nomogram and the receiver operating characteristic (ROC) curve and verified using GSE99967.Immune infiltration and gene set enrichment analysis (GSEA) Were also included in the study.In the end, miRNet was used to construct a miRNA-mRNA-TF network and screen targeted drugs through DGIdb. 5707 DEGs were identified in the lupus nephritis and 737 in the monkeypox data. WGCNA and Lasso regression analyses screened for three important targets (STAT1, ORC2, and GTF2B) .Predictive modeling and ROC of STAT1, ORC2 and GTF2B by Nomogram showed good diagnostic value .Immune infiltration analysis showed immune cell disorders and related pathway activation.The miRNA-mRNA-TF network covers 516 miRNAs and 15 transcription factors, and enrichment analysis shows that it plays an important role in senescence and inflammation.Potential Target Drugs Screened Include Guttiferone K And Silicon Phthalocyanine 4. This study identifies STAT1, ORC2, and GTF2B as key factors in cellular senescence and immune dysregulation associated with lupus nephritis and monkeypox infection, suggesting they may serve as important predictive targets.
Collapse
Affiliation(s)
- Yaojun Wang
- Clinical Medical College, Affiliated Hospital, Hebei University, Baoding, 071000, Hebei, China.
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| |
Collapse
|
3
|
Seo MS, Baek J, Jeon MS. Role of the Aryl Hydrocarbon Receptor in the Self-Renewal, Differentiation, and Immunomodulation of Adult Stem Cells. Immune Netw 2025; 25:e1. [PMID: 40342843 PMCID: PMC12056294 DOI: 10.4110/in.2025.25.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 05/11/2025] Open
Abstract
Adult stem cells are a rare population of undifferentiated cells present in almost all body tissues. Depending on their location, stem cells can differentiate into various tissue types, primarily contributing to maintenance, repair, and immune system regulation. Stem cell therapies have significant potential in regenerative medicine and treatment of inflammatory diseases. However, many factors must be considered for successful clinical commercialization, including enhancing therapeutic potential, ensuring product differentiation, and optimizing the manufacturing process for large-scale production. The development of sophisticated regulatory mechanisms may enhance therapeutic applications. The aryl hydrocarbon receptor (AhR) is expressed in all adult stem cells, and its activation and function are tightly regulated. Understanding the role and regulation of AhR is crucial for developing effective stem cell therapies. This review examines the role of the AhR in regulating the fundamental characteristics of adult stem cells, which may contribute to advancing adult stem cell therapies.
Collapse
Affiliation(s)
- Myeong-Seong Seo
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Jiyeon Baek
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- SCM Lifescience, Incheon 21999, Korea
| |
Collapse
|
4
|
Wang XM, Qin CM, Li D, Xu XR, Pan XJ, Xue H. Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117743. [PMID: 39823675 DOI: 10.1016/j.ecoenv.2025.117743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.5 and 12.5), and scanning and reconstructing the skulls at embryonic day 18.5 using microCT, we found that TCDD exposure at the earlier and later patterning stages induced variable craniofacial malformations, including premature fusion of metopic and coronal sutures, truncated palatal processes of maxillary and palatine bones, as well as opening oriented pterygoid processes. Further in vitro determination of the underlying mechanisms using human fetal palatal mesenchymal cells (hFPMCs) revealed that TCDD suppressed a wide variety of osteogenic genes responsible for osteoblast commitment and bone matrix synthesis and mineralization, through activating aryl hydrocarbon receptor (AhR) signaling and subsequently inhibiting estrogen signaling. The attenuation of AhR signaling significantly blocked the osteogenic toxicity, and partly restored the expressing level of estrogen receptor α (ERα). Additional treatment with ERα agonist (PPT) significantly relieved the activation of AhR and rescued the impairment of osteogenesis caused by TCDD. Together, our findings demonstrated that TCDD was teratogenic in numerous cranial neural crest cell-derived craniofacial bone development, and disrupted multiple genes for osteogenic differentiation via the TCDD-mediated AhR/ ERα signaling cross-talk.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Cai-Ming Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi 'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Dou Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Xin-Ran Xu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Xiao-Jing Pan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi 'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Hui Xue
- Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China.
| |
Collapse
|
5
|
Shi X, Fu Q, Mao J, Yang J, Chen Y, Lu J, Chen A, Lu N. Integration of single-cell and RNA-seq data to explore the role of focal adhesion-related genes in osteoporosis. J Cell Mol Med 2024; 28:e18271. [PMID: 38534087 PMCID: PMC10967139 DOI: 10.1111/jcmm.18271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Integrin-based focal adhesion is one of the major mechanosensory in osteocytes. The aim of this study was to mine the hub genes associated with focal adhesion and investigate their roles in osteoporosis based on the data of single-cell RNA sequencing and RNA-sequencing. Two hub genes (FAM129A and RNF24) with the same expression trend and AUC values greater than 0.7 in both GSE56815 and GSE56116 cohorts were uncovered. The nomogram was created to predict the risk of OP based on two hub genes. Subsequently, the competing endogenous RNA network was established based on two hub genes, 14 microRNAs and five long noncoding RNAs. Meanwhile, transcription factors-hub gene network was established based on two hub genes and 14 TFs. Finally, 73 drugs were predicted, of which there were 13 drugs targeting FAM129A and 66 drugs targeting RNF24. In both mouse and human blood samples, FAM129A expression was decreased in granulocytes and RNF24 expression was increased in monocytes. In the mouse experiment, FAM129A and anti-RNF24 were found to partially alleviate the progression of osteoporosis. In conclusion, two hub genes related to focal adhesion were identified by combined scRNA-seq and RNA-seq analyses, which might supply a new insight for the treatment and evaluation of OP.
Collapse
Affiliation(s)
- Xiaojian Shi
- Department of Orthopedic Trauma SurgeryHaimen People's HospitalNantongJiangsuChina
| | - Qiang Fu
- Department of Orthopedic Trauma SurgeryShanghai Changzheng HospitalShanghaiChina
| | - Jianyu Mao
- Department of Orthopedic Trauma SurgeryShanghai Changzheng HospitalShanghaiChina
| | - Jiajie Yang
- Department of Orthopedic Trauma SurgeryHaimen People's HospitalNantongJiangsuChina
| | - Ye Chen
- Department of Orthopedic Trauma SurgeryHaimen People's HospitalNantongJiangsuChina
| | - Jiajia Lu
- Department of Orthopedic Trauma SurgeryHaimen People's HospitalNantongJiangsuChina
- Department of Orthopedic Trauma SurgeryShanghai Changzheng HospitalShanghaiChina
- Department of Orthopedic Trauma SurgeryShanghai Fourth People’s Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Aimin Chen
- Department of Orthopedic Trauma SurgeryShanghai Changzheng HospitalShanghaiChina
- Department of Orthopedic Trauma SurgeryShanghai Fourth People’s Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Nan Lu
- Department of Orthopedic Trauma SurgeryShanghai Fourth People’s Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
6
|
Uwazie CC, Pirlot BM, Faircloth TU, Patel M, Parr RN, Zastre HM, Hematti P, Moll G, Rajan D, Chinnadurai R. Effects of Atrazine exposure on human bone marrow-derived mesenchymal stromal cells assessed by combinatorial assay matrix. Front Immunol 2023; 14:1214098. [PMID: 37588595 PMCID: PMC10426140 DOI: 10.3389/fimmu.2023.1214098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. Methods We here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. Results Our results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFNγ-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFNγ responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. Discussion The here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.
Collapse
Affiliation(s)
- Crystal C. Uwazie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Bonnie M. Pirlot
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Tyler U. Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Mihir Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Rhett N. Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Halie M. Zastre
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin Madison, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| |
Collapse
|