1
|
DeSantis AH, Buss K, Coker KM, Pasternak BA, Chi J, Patterson JS, Gu H, Jurutka PW, Sandrin TR. Multiomics-Based Profiling of the Fecal Microbiome Reveals Potential Disease-Specific Signatures in Pediatric IBD (PIBD). Biomolecules 2025; 15:746. [PMID: 40427639 PMCID: PMC12109367 DOI: 10.3390/biom15050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's Disease (CD) and Ulcerative Colitis (UC), is a chronic gastrointestinal (GI) disorder affecting 1 in 100 people in the United States. Pediatric IBD (PIBD) is estimated to impact 15 per 100,000 children in North America. Factors such as the gut microbiome (GM), genetic predisposition to the disease, and certain environmental factors are thought to be involved in pathogenesis. However, the pathophysiology of IBD is incompletely understood, and diagnostic biomarkers and effective treatments, particularly for PIBD, are limited. Recent work suggests that these factors may interact to influence disease development, and multiomic approaches have emerged as promising tools to elucidate the pathophysiology. We employed metagenomics, metabolomics- and metatranscriptomics-based approaches to examine the microbiome, its genetic potential, and its activity to identify factors associated with PIBD. Metagenomics-based analyses revealed pathways such as octane oxidation and glycolysis that were differentially expressed in UC patients. Additionally, metatranscriptomics-based analyses suggested enrichment of glycan degradation and two component systems in UC samples as well as protein processing in the endoplasmic reticulum, ribosome, and protein export in CD and UC samples. In addition, metabolomics-based approaches revealed patterns of differentially abundant metabolites between healthy and PIBD individuals. Interestingly, overall microbiome community composition (as measured by alpha and beta diversity indices) did not appear to be associated with PIBD. However, we observed a small number of differentially abundant taxa in UC versus healthy controls, including members of the Classes Gammaproteobacteria and Clostridia as well as members of the Family Rikenellaceae. Accordingly, when identifying potential biomarkers for PIBD, our results suggest that multiomics-based approaches afford enhanced potential to detect putative biomarkers for PIBD compared to microbiome community composition sequence data alone.
Collapse
Affiliation(s)
- Anita H. DeSantis
- School of Mathematical and Natural Sciences, Arizona State University, 4701 W. Thunderbird Rd, Glendale, AZ 85306, USA; (A.H.D.); (K.M.C.); (P.W.J.)
| | - Kristina Buss
- Biosciences Core, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA;
| | - Keaton M. Coker
- School of Mathematical and Natural Sciences, Arizona State University, 4701 W. Thunderbird Rd, Glendale, AZ 85306, USA; (A.H.D.); (K.M.C.); (P.W.J.)
| | - Brad A. Pasternak
- Phoenix Children’s Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA;
| | - Jinhua Chi
- College of Health Solutions, Health North Building, Arizona State University, 550 N. 3rd St, Suite 501, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (H.G.)
| | - Jeffrey S. Patterson
- College of Health Solutions, Health North Building, Arizona State University, 550 N. 3rd St, Suite 501, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (H.G.)
| | - Haiwei Gu
- College of Health Solutions, Health North Building, Arizona State University, 550 N. 3rd St, Suite 501, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (H.G.)
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, 4701 W. Thunderbird Rd, Glendale, AZ 85306, USA; (A.H.D.); (K.M.C.); (P.W.J.)
- College of Medicine, University of Arizona, 475 N. 5th St, Phoenix, AZ 85004, USA
| | - Todd R. Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, 4701 W. Thunderbird Rd, Glendale, AZ 85306, USA; (A.H.D.); (K.M.C.); (P.W.J.)
- Center for Health through Microbiomes, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Wang Y, Xu X, Liu Y, Huang Z, Wang H, Wang K, Huang Y, Yang X, Sun T, Wang J, Tan J, Yang X, Zhao M. Teratogenic effect evaluation of Monascus red oral exposure to pregnant rats and their gut microbiota. Reprod Toxicol 2025; 132:108843. [PMID: 39900205 DOI: 10.1016/j.reprotox.2025.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Monascus red (MR) is widely used as a natural food colorant and preservative in East Asia. However, the potential effects of MR during pregnancy remains unknown. In this study, MR was administrated to Sprague-Dawley (SD) rats at doses of 0, 0.50, 1.58, and 5.00 g/kg bw on gestational days 6-15 by oral gavage. In the maternal and embryo-fetal examinations, there were no marked toxicities in terms of general clinical signs, body weight, food consumption, serum endocrine indices, organ weights, thyroid histopathology, examinations of uterine contents and fetuses. In the gut microbiota analysis, the 5.00 g/kg bw dose of MR decreased the α diversity and slightly changed their community structure at the genus level. Yet no marked toxicities in maternal animals or embryo-fetal development were observed. The no-observed-adverse-effect-level (NOAEL) of the maternal and developmental toxicity through oral exposure to MR was 5.00 g/kg bw, the highest dose tested in rats.
Collapse
Affiliation(s)
- Yuenan Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, China; Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Xuedan Xu
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Yun Liu
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou 510440, China
| | - Zhenfeng Huang
- Center for Synthetic Biochemistry, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongxia Wang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Kexin Wang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Yayi Huang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Xinyu Yang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Tingting Sun
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Jieling Wang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China
| | - Jianbin Tan
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China.
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Min Zhao
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou 511430, China.
| |
Collapse
|
3
|
Wang W, Shi X, Feng J, Le Y, Jin L, Lu D, Zhang Q, Wang C. Perinatal exposure to PBEB aggravates liver injury via macrophage-derived TWEAK in male adult offspring mice under western diet. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135735. [PMID: 39241360 DOI: 10.1016/j.jhazmat.2024.135735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Liver injury and inflammation are the most commonly observed adverse outcomes following exposure to penta-brominated flame retardants (penta-BFRs). However, the role of inflammation in the development of liver injury in their alternatives has not yet been explored. Our study aimed to investigate the effects and the underlying mechanism of perinatal exposure to pentabromoethylbenzene (PBEB), a penta-BDE alternative, on liver injury in adult offspring mice under both chow and western diet in later life. Results showed that perinatal exposure to PBEB at 0.2 mg/kg or above led to liver injury in male offspring upon challenge with a western diet, but not in females. Utilizing the Olink immunology panel, our study specifically revealed an upregulation of tumor necrosis factor-related weak inducer of apoptosis (TWEAK) within the livers of male mice. This cytokine was further demonstrated to derive from the secretion by infiltrating macrophages in livers both in vivo and in vitro, which facilitated a shift towards M1 macrophage polarization. TWEAK further activated the hepatic NF-κB and NLRP3 inflammasome pathways, subsequently leading to hepatic pyroptosis in male mice of maternal PBEB exposure. Inhibition of TWEAK signaling mitigated macrophage polarization and inflammasome induction in a co-culture system of macrophages and liver cells. Our findings revealed that perinatal exposure to PBEB precipitated liver injury, partially through an inflammatory pathway mediated by macrophage-derived TWEAK, in male mice offspring under western diet.
Collapse
Affiliation(s)
- Wanyue Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaoliu Shi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lingbing Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
4
|
Lewis F, Shoieb D, Azmoun S, Colicino E, Jin Y, Chi J, Gu H, Placidi D, Padovani A, Pilotto A, Pepe F, Turla M, Crippa P, Wang X, Lucchini RG. Metabolomic and Lipidomic Analysis of Manganese-Associated Parkinsonism: a Case-Control Study in Brescia, Italy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313002. [PMID: 39281765 PMCID: PMC11398432 DOI: 10.1101/2024.09.04.24313002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background and Objectives Excessive Manganese (Mn) exposure is neurotoxic and can cause Mn-Induced Parkinsonism (MnIP), marked by cognitive and motor dysfunction. Although metabolomic and lipidomic research in Parkinsonism (PD) patients exists, it remains limited. This study hypothesizes distinct metabolomic and lipidomic profiles based on exposure status, disease diagnosis, and their interaction. Methods We used a case-control design with a 2×2 factorial framework to investigate the metabolomic and lipidomic alterations associated with Mn exposure and their link to PD. The study population of 97 individuals was divided into four groups: non-exposed controls (n=23), exposed controls (n=25), non-exposed with PD (n=26) and exposed with PD (n=23). Cases, defined by at least two cardinal PD features (excluding vascular, iatrogenic, and traumatic origins), were recruited from movement disorder clinics in four hospitals in Brescia, Northern Italy. Controls, free from neurological or psychiatric conditions, were selected from the same hospitals. Exposed subjects resided in metallurgic regions (Val Camonica and Bagnolo Mella) for at least 8 continuous years, while non-exposed subjects lived in low-exposure areas around Lake Garda and Brescia city. We conducted untargeted analyses of metabolites and lipids in whole blood samples using ultra-high-performance liquid chromatography (UHPLC) and mass spectrometry (MS), followed by statistical analyses including Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and Two-Way Analysis of Covariance (ANCOVA). Results Metabolomic analysis revealed modulation of alanine, aspartate, and glutamate metabolism (Impact=0.05, p=0.001) associated with disease effect; butanoate metabolism (Impact=0.03, p=0.004) with the exposure effect; and vitamin B6 metabolism (Impact=0.08, p=0.03) with the interaction effect. Differential relative abundances in 3-sulfoxy-L-Tyrosine (β=1.12, FDR p<0.001), glycocholic acid (β=0.48, FDR p=0.03), and palmitelaidic acid (β=0.30, FDR p<0.001) were linked to disease, exposure, and interaction effects, respectively. In the lipidome, ferroptosis (Pathway Lipids=11, FDR p=0.03) associated with the disease effect and sphingolipid signaling (Pathway Lipids=9, FDR p=0.04) associated with the interaction effect were significantly altered. Lipid classes triacylglycerols, ceramides, and phosphatidylethanolamines showed differential relative abundances associated with disease, exposure, and interaction effects, respectively. Discussion These findings suggest that PD and Mn exposure induce unique metabolomic and lipidomic changes, potentially serving as biomarkers for MnIP and warranting further study.
Collapse
Affiliation(s)
- Freeman Lewis
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Daniel Shoieb
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Somaiyeh Azmoun
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, New York, 10029, New York, USA
| | - Yan Jin
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Jinhua Chi
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Haiwei Gu
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy and Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy and Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Fulvio Pepe
- Clinic of Neurology, Poliambulanza Foundation, Brescia, Italy
| | - Marinella Turla
- Clinic of Neurology, Esine Hospital of Valcamonica, Brescia, Italy
| | | | - Xuexia Wang
- Department of Biostatistics, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Roberto G Lucchini
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Via Universitá, 4, Modena, 610101, Italy
| |
Collapse
|
5
|
Chen ST, Ran F, Shi WW, Liu CK, Wang PC, Luo HN, Yang ZM. Tryptophan in the mouse diet is essential for embryo implantation and decidualization. Front Endocrinol (Lausanne) 2024; 15:1356914. [PMID: 38752181 PMCID: PMC11094255 DOI: 10.3389/fendo.2024.1356914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Nutritional deficiency occurs frequently during pregnancy and breastfeeding. Tryptophan (Trp), an essential amino acid which is critical for protein synthesis, serves as the precursor for serotonin, melatonin, and kynurenine (Kyn). The imbalance between serotonin and kynurenine pathways in Trp metabolism is closely related to inflammation and depression. This study assessed the effects of Trp deficiency on mouse early pregnancy. Methods Embryo implantation and decidualization were analyzed after female mice had been fed diets containing 0.2% Trp (for the control group), 0.062% Trp (for the low Trp group) and 0% Trp (for the Trp-free group) for two months. The uteri of the mice were collected on days 4, 5, and 8 of pregnancy for further analysis. Results On day 8 of pregnancy, the number of implantation sites were found to be similar between the control and the low Trp groups. However, no implantation sites were detected in the Trp-free group. On day 5 of pregnancy, plane polarity- and decidualization-related molecules showed abnormal expression pattern in the Trp-free group. On day 4 of pregnancy, there was no significant difference in uterine receptivity molecules between the low-Trp group and the control group, but uterine receptivity was abnormal in the Trp-free group. At implantation sites of the Trp-free group, IDO and AHR levels were markedly elevated. This potentially increased levels of Kyn, 2-hydroxy estradiol, and 4-hydroxy estradiol to affect decidualization. Conclusions Trp-free diet may impair decidualization via the IDO-KYN-AHR pathway.
Collapse
Affiliation(s)
- Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Feng Ran
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cheng-Kan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024; 65:1729-1748. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|