1
|
Characterization of New Gambierones Produced by Gambierdiscus balechii 1123M1M10. Mar Drugs 2022; 21:md21010003. [PMID: 36662176 PMCID: PMC9866745 DOI: 10.3390/md21010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The benthic dinoflagellate genus Gambierdiscus is the primary producer of toxins responsible for ciguatera poisoning (CP), a food intoxication endemic in tropical and subtropical areas of the world. We used high-performance liquid chromatography tandem high-resolution mass spectrometry (HPLC-HRMS) to investigate the toxin profile of Gambierdiscus balechii 1123M1M10, which was obtained from Marakei Island (2°01'N, 173°15'E), Republic of Kiribati, located in the central Pacific Ocean. Four new gambierone analogues including 12,13-dihydro-44-methylgambierone, 38-dehydroxy-12,13-dihydro-44-methylgambierone, 38-dehydroxy-44-methylgambierone, and desulfo-hydroxyl gambierone, and two known compounds, gambierone and 44-methylgambierone, were proposed by analyzing their fragmentation behaviors and pathways. Our findings provide new insights into the toxin profile of Gambierdiscus balechii 1123M1M10, which can be used as a biomarker for species identification, and lay the foundation for further toxin isolation and bioactivity studies of gambierones.
Collapse
|
2
|
Alzheimer’s Disease and Toxins Produced by Marine Dinoflagellates: An Issue to Explore. Mar Drugs 2022; 20:md20040253. [PMID: 35447926 PMCID: PMC9029327 DOI: 10.3390/md20040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
This paper examined the toxins naturally produced by marine dinoflagellates and their effects on increases in β-amyloid plaques along with tau protein hyperphosphorylation, both major drivers of Alzheimer’s disease (AD). This approach is in line with the demand for certain natural compounds, namely those produced by marine invertebrates that have the potential to be used in the treatment of AD. Current advances in AD treatment are discussed as well as the main factors that potentially affect the puzzling global AD pattern. This study focused on yessotoxins (YTXs), gymnodimine (GYM), spirolides (SPXs), and gambierol, all toxins that have been shown to reduce β-amyloid plaques and tau hyperphosphorylation, thus preventing the neuronal or synaptic dysfunction that ultimately causes the cell death associated with AD (or other neurodegenerative diseases). Another group of toxins described, okadaic acid (OA) and its derivatives, inhibit protein phosphatase activity, which facilitates the presence of phosphorylated tau proteins. A few studies have used OA to trigger AD in zebrafish, providing an opportunity to test in vivo the effectiveness of new drugs in treating or attenuating AD. Constraints on the production of marine toxins for use in these tests have been considered. Different lines of research are anticipated regarding the action of the two groups of toxins.
Collapse
|
3
|
Benoit E, Schlumberger S, Molgó J, Sasaki M, Fuwa H, Bournaud R. Gambierol Blocks a K+ Current Fraction without Affecting Catecholamine Release in Rat Fetal Adrenomedullary Cultured Chromaffin Cells. Toxins (Basel) 2022; 14:toxins14040254. [PMID: 35448863 PMCID: PMC9025636 DOI: 10.3390/toxins14040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gambierol inhibits voltage-gated K+ (KV) channels in various excitable and non-excitable cells. The purpose of this work was to study the effects of gambierol on single rat fetal (F19–F20) adrenomedullary cultured chromaffin cells. These excitable cells have different types of KV channels and release catecholamines. Perforated whole-cell voltage-clamp recordings revealed that gambierol (100 nM) blocked only a fraction of the total outward K+ current and slowed the kinetics of K+ current activation. The use of selective channel blockers disclosed that gambierol did not affect calcium-activated K+ (KCa) and ATP-sensitive K+ (KATP) channels. The gambierol concentration necessary to inhibit 50% of the K+ current-component sensitive to the polyether (IC50) was 5.8 nM. Simultaneous whole-cell current-clamp and single-cell amperometry recordings revealed that gambierol did not modify the membrane potential following 11s depolarizing current-steps, in both quiescent and active cells displaying repetitive firing of action potentials, and it did not increase the number of exocytotic catecholamine release events, with respect to controls. The subsequent addition of apamin and iberiotoxin, which selectively block the KCa channels, both depolarized the membrane and enhanced by 2.7 and 3.5-fold the exocytotic event frequency in quiescent and active cells, respectively. These results highlight the important modulatory role played by KCa channels in the control of exocytosis from fetal (F19–F20) adrenomedullary chromaffin cells.
Collapse
Affiliation(s)
- Evelyne Benoit
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, CEA, INRAE, ERL CNRS 9004, F-91191 Gif-sur-Yvette, France;
- CNRS, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR 9040, F-91198 Gif-sur-Yvette, France;
| | - Sébastien Schlumberger
- CNRS, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR 9040, F-91198 Gif-sur-Yvette, France;
| | - Jordi Molgó
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, CEA, INRAE, ERL CNRS 9004, F-91191 Gif-sur-Yvette, France;
- CNRS, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR 9040, F-91198 Gif-sur-Yvette, France;
- Correspondence: (J.M.); (R.B.)
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan;
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan;
| | - Roland Bournaud
- CNRS, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR 9040, F-91198 Gif-sur-Yvette, France;
- Correspondence: (J.M.); (R.B.)
| |
Collapse
|
4
|
Raposo-Garcia S, Louzao MC, Fuwa H, Sasaki M, Vale C, Botana LM. Determination of the toxicity equivalency factors for ciguatoxins using human sodium channels. Food Chem Toxicol 2022; 160:112812. [PMID: 35026329 DOI: 10.1016/j.fct.2022.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Ciguatoxins (CTXs) which are produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa and share a ladder-shaped polyether structure, are causative compounds of one of the most frequent foodborne illness disease known as ciguatera fish poisoning (CFP). CFP was initially found in tropical and subtropical areas but nowadays the dinoflagellates producers of ciguatoxins had spread to European coasts. Therefore, this raises the need of establishing toxicity equivalency factors for the different compounds that can contribute to ciguatera fish poisoning, since biological methods have been replaced by analytical techniques. Thus, in this work, the effects of six compounds causative of ciguatera, on their main target, the human voltage-gated sodium channels have been analyzed for the first time. The results presented here led to the conclusion that the order of potency was CTX1B, CTX3B, CTX4A, gambierol, gambierone and MTX3. Furthermore, the data indicate that the activation voltage of sodium channels is more sensitive to detect ciguatoxins than their effect on the peak sodium current amplitude.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan.
| | - Carmen Vale
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| |
Collapse
|
5
|
L’Herondelle K, Talagas M, Mignen O, Misery L, Le Garrec R. Neurological Disturbances of Ciguatera Poisoning: Clinical Features and Pathophysiological Basis. Cells 2020; 9:E2291. [PMID: 33066435 PMCID: PMC7602189 DOI: 10.3390/cells9102291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ciguatera fish poisoning (CFP), the most prevalent seafood poisoning worldwide, is caused by the consumption of tropical and subtropical fish contaminated with potent neurotoxins called ciguatoxins (CTXs). Ciguatera is a complex clinical syndrome in which peripheral neurological signs predominate in the acute phase of the intoxication but also persist or reoccur long afterward. Their recognition is of particular importance in establishing the diagnosis, which is clinically-based and can be a challenge for physicians unfamiliar with CFP. To date, no specific treatment exists. Physiopathologically, the primary targets of CTXs are well identified, as are the secondary events that may contribute to CFP symptomatology. This review describes the clinical features, focusing on the sensory disturbances, and then reports on the neuronal targets and effects of CTXs, as well as the neurophysiological and histological studies that have contributed to existing knowledge of CFP neuropathophysiology at the molecular, neurocellular and nerve levels.
Collapse
Affiliation(s)
- Killian L’Herondelle
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| | - Matthieu Talagas
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Olivier Mignen
- University of Brest, School of Medicine, INSERM U1227, Lymphocytes B et auto-immunité, F-29200 Brest, France;
| | - Laurent Misery
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaele Le Garrec
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| |
Collapse
|
6
|
Konoki K, Baden DG, Scheuer T, Catterall WA. Molecular Determinants of Brevetoxin Binding to Voltage-Gated Sodium Channels. Toxins (Basel) 2019; 11:toxins11090513. [PMID: 31484365 PMCID: PMC6784055 DOI: 10.3390/toxins11090513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Brevetoxins are produced by dinoflagellates such as Karenia brevis in warm-water red tides and cause neurotoxic shellfish poisoning. They bind to voltage-gated sodium channels at neurotoxin receptor 5, making the channels more active by shifting the voltage-dependence of activation to more negative potentials and by slowing the inactivation process. Previous work using photoaffinity labeling identified binding to the IS6 and IVS5 transmembrane segments of the channel α subunit. We used alanine-scanning mutagenesis to identify molecular determinants for brevetoxin binding in these regions as well as adjacent regions IVS5-SS1 and IVS6. Most of the mutant channels containing single alanine substitutions expressed functional protein in tsA-201 cells and bound to the radioligand [42-3H]-PbTx3. Binding affinity for the great majority of mutant channels was indistinguishable from wild type. However, transmembrane segments IS6, IVS5 and IVS6 each contained 2 to 4 amino acid positions where alanine substitution resulted in a 2–3-fold reduction in brevetoxin affinity, and additional mutations caused a similar increase in brevetoxin affinity. These findings are consistent with a model in which brevetoxin binds to a protein cleft comprising transmembrane segments IS6, IVS5 and IVS6 and makes multiple distributed interactions with these α helices. Determination of brevetoxin affinity for Nav1.2, Nav1.4 and Nav1.5 channels showed that Nav1.5 channels had a characteristic 5-fold reduction in affinity for brevetoxin relative to the other channel isoforms, suggesting the interaction with sodium channels is specific despite the distributed binding determinants.
Collapse
Affiliation(s)
- Keiichi Konoki
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, USA.
| | - Daniel G Baden
- Center for Marine Science, University of North Carolina, Wilmington, NC 28409, USA
| | - Todd Scheuer
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
7
|
Molgó J, Schlumberger S, Sasaki M, Fuwa H, Louzao MC, Botana LM, Servent D, Benoit E. Gambierol Potently Increases Evoked Quantal Transmitter Release and Reverses Pre- and Post-Synaptic Blockade at Vertebrate Neuromuscular Junctions. Neuroscience 2019; 439:106-116. [PMID: 31255710 DOI: 10.1016/j.neuroscience.2019.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022]
Abstract
Gambierol is a marine polycyclic ether toxin, first isolated from cultured Gambierdiscus toxicus dinoflagellates collected in French Polynesia. The chemical synthesis of gambierol permitted the analyses of its mode of action which includes the selective inhibition of voltage-gated K+ (KV) channels. In the present study we investigated the action of synthetic gambierol at vertebrate neuromuscular junctions using conventional techniques. Gambierol was studied on neuromuscular junctions in which muscle nicotinic ACh receptors have been blocked with d-tubocurarine (postsynaptic block), or in junctions in which quantal ACh release has been greatly reduced by a low Ca2+-high Mg2+ medium or by botulinum neurotoxin type-A (BoNT/A) (presynaptic block). Results show that nanomolar concentrations of gambierol inhibited the fast K+ current and prolonged the duration of the presynaptic action potential in motor nerve terminals, as revealed by presynaptic focal current recordings, increased stimulus-evoked quantal content in junctions blocked by high Mg2+-low Ca2+ medium, and by BoNT/A, reversed the postsynaptic block produced by d-tubocurarine and increased the transient Ca2+ signals in response to nerve-stimulation (1-10 Hz) in nerve terminals loaded with fluo-3/AM. The results suggest that gambierol, which on equimolar basis is more potent than 3,4-diaminopyridine, can have potential application in pathologies in which it is necessary to antagonize pre- or post-synaptic neuromuscular block, or both. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Jordi Molgó
- CEA, Institut des sciences du vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines, Université Paris-Saclay, bâtiment 152, 91191 Gif sur Yvette, France; Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS / Université Paris-Sud, CNRS, Gif sur Yvette, France.
| | - Sébastien Schlumberger
- Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS / Université Paris-Sud, CNRS, Gif sur Yvette, France
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Denis Servent
- CEA, Institut des sciences du vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines, Université Paris-Saclay, bâtiment 152, 91191 Gif sur Yvette, France
| | - Evelyne Benoit
- CEA, Institut des sciences du vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines, Université Paris-Saclay, bâtiment 152, 91191 Gif sur Yvette, France; Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS / Université Paris-Sud, CNRS, Gif sur Yvette, France
| |
Collapse
|
8
|
Mori Y. Development of New Synthetic Methods Using Oxiranyl Anions and Application in the Syntheses of Polycyclic Ether Marine Natural Products. Chem Pharm Bull (Tokyo) 2019; 67:1-17. [DOI: 10.1248/cpb.c18-00699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Mori
- Faculty of Pharmacy, Meijo University
| |
Collapse
|
9
|
Soliño L, Costa PR. Differential toxin profiles of ciguatoxins in marine organisms: Chemistry, fate and global distribution. Toxicon 2018; 150:124-143. [DOI: 10.1016/j.toxicon.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 01/03/2023]
|
10
|
Assunção J, Guedes AC, Malcata FX. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar Drugs 2017; 15:E393. [PMID: 29261163 PMCID: PMC5742853 DOI: 10.3390/md15120393] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale-with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth-even though shearing-related issues remain a major challenge.
Collapse
Affiliation(s)
- Joana Assunção
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| | - A Catarina Guedes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, P-4450-208 Matosinhos, Portugal.
| | - F Xavier Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| |
Collapse
|
11
|
Shmukler YB, Nikishin DA. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge. Mar Drugs 2017; 15:E232. [PMID: 28726749 PMCID: PMC5532674 DOI: 10.3390/md15070232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.
Collapse
Affiliation(s)
- Yuri B Shmukler
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| | - Denis A Nikishin
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| |
Collapse
|
12
|
Alonso E, Vieira AC, Rodriguez I, Alvariño R, Gegunde S, Fuwa H, Suga Y, Sasaki M, Alfonso A, Cifuentes JM, Botana LM. Tetracyclic Truncated Analogue of the Marine Toxin Gambierol Modifies NMDA, Tau, and Amyloid β Expression in Mice Brains: Implications in AD Pathology. ACS Chem Neurosci 2017; 8:1358-1367. [PMID: 28125211 DOI: 10.1021/acschemneuro.7b00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gambierol and its two, tetra- and heptacyclic, analogues have been previously proved as promising molecules for the modulation of Alzheimer's disease (AD) hallmarks in primary cortical neurons of 3xTg-AD fetuses. In this work, the effect of the tetracyclic analogue of gambierol was tested in vivo in 3xTg-AD mice (10 months old) after 1 month of weekly treatment with 50 μg/kg. Adverse effects were not reported throughout the whole treatment period and no pathological signs were observed for the analyzed organs. The compound was found in brain samples after intraperitoneal injection. The tetracyclic analogue of gambierol elicited a decrease of amyloid β1-42 levels and a dose-dependent inhibition of β-secretase enzyme-1 activity. Moreover, this compound also reduced the phosphorylation of tau at the 181 and 159/163 residues with an increase of the inactive isoform of the glycogen synthase kinase-3β. In accordance with our in vitro neuronal model, this compound produced a reduction in the N2A subunit of the N-methyl-d-aspartate (NMDA) receptor. The combined effect of this compound on amyloid β1-42 and tau phosphorylation represents a multitarget therapeutic approach for AD which might be more effective for this multifactorial and complex neurodegenerative disease than the current treatments.
Collapse
Affiliation(s)
- Eva Alonso
- Departamento
de Farmacología, §Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés C. Vieira
- Departamento
de Farmacología, §Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Inés Rodriguez
- Departamento
de Farmacología, §Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Rebeca Alvariño
- Departamento
de Farmacología, §Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Sandra Gegunde
- Departamento
de Farmacología, §Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Haruhiko Fuwa
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuto Suga
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Makoto Sasaki
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Amparo Alfonso
- Departamento
de Farmacología, §Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | - Luis M. Botana
- Departamento
de Farmacología, §Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
13
|
Onodera Y, Hirota K, Suga Y, Konoki K, Yotsu-Yamashita M, Sasaki M, Fuwa H. Diastereoselective Ring-Closing Metathesis as a Means to Construct Medium-Sized Cyclic Ethers: Application to the Synthesis of a Photoactivatable Gambierol Derivative. J Org Chem 2016; 81:8234-52. [DOI: 10.1021/acs.joc.6b01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Onodera
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Kazuaki Hirota
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Yuto Suga
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Keiichi Konoki
- Graduate
School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Mari Yotsu-Yamashita
- Graduate
School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Makoto Sasaki
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Haruhiko Fuwa
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
14
|
Gambierol and n-alkanols inhibit Shaker Kv channel via distinct binding sites outside the K(+) pore. Toxicon 2016; 120:57-60. [PMID: 27475861 DOI: 10.1016/j.toxicon.2016.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/14/2023]
Abstract
The marine polycyclic-ether toxin gambierol and 1-butanol (n-alkanol) inhibit Shaker-type Kv channels by interfering with the gating machinery. Competition experiments indicated that both compounds do not share an overlapping binding site but gambierol is able to affect 1-butanol affinity for Shaker through an allosteric effect. Furthermore, the Shaker-P475A mutant, which inverses 1-butanol effect, is inhibited by gambierol with nM affinity. Thus, gambierol and 1-butanol inhibit Shaker-type Kv channels via distinct parts of the gating machinery.
Collapse
|
15
|
Fuwa H. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product. Mar Drugs 2016; 14:E65. [PMID: 27023567 PMCID: PMC4849069 DOI: 10.3390/md14040065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
Tetrahydropyrans are structural motifs that are abundantly present in a range of biologically important marine natural products. As such, significant efforts have been paid to the development of efficient and versatile methods for the synthesis of tetrahydropyran derivatives. Neopeltolide, a potent antiproliferative marine natural product, has been an attractive target compound for synthetic chemists because of its complex structure comprised of a 14-membered macrolactone embedded with a tetrahydropyran ring, and twenty total and formal syntheses of this natural product have been reported so far. This review summarizes the total and formal syntheses of neopeltolide and its analogues, highlighting the synthetic strategies exploited for constructing the tetrahydropyran ring.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
16
|
Kopljar I, Grottesi A, de Block T, Rainier JD, Tytgat J, Labro AJ, Snyders DJ. Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels. Neuropharmacology 2016; 107:160-167. [PMID: 26956727 DOI: 10.1016/j.neuropharm.2016.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/13/2016] [Accepted: 03/04/2016] [Indexed: 01/02/2023]
Abstract
Marine ladder-shaped polyether toxins are implicated in neurological symptoms of fish-borne food poisonings. The toxin gambierol, produced by the marine dinoflagellate Gambierdiscus toxicus, belongs to the group of ladder-shaped polyether toxins and inhibits Kv3.1 channels with nanomolar affinity through a mechanism of gating modification. Binding determinants for gambierol localize at the lipid-exposed interface of the pore forming S5 and S6 segments, suggesting that gambierol binds outside of the permeation pathway. To explore a possible involvement of the voltage-sensing domain (VSD), we made different chimeric channels between Kv3.1 and Kv2.1, exchanging distinct parts of the gating machinery. Our results showed that neither the electro-mechanical coupling nor the S1-S3a region of the VSD affect gambierol sensitivity. In contrast, the S3b-S4 part of the VSD (paddle motif) decreased gambierol sensitivity in Kv3.1 more than 100-fold. Structure determination by homology modeling indicated that the position of the S3b-S4 paddle and its primary structure defines the shape and∖or the accessibility of the binding site for gambierol, explaining the observed differences in gambierol affinity between the channel chimeras. Furthermore, these findings explain the observed difference in gambierol affinity for the closed and open channel configurations of Kv3.1, opening new possibilities for exploring the VSDs as selectivity determinants in drug design.
Collapse
Affiliation(s)
- Ivan Kopljar
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | | | - Tessa de Block
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | - Jon D Rainier
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Alain J Labro
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
17
|
Konoki K, Suga Y, Fuwa H, Yotsu-Yamashita M, Sasaki M. Evaluation of gambierol and its analogs for their inhibition of human Kv1.2 and cytotoxicity. Bioorg Med Chem Lett 2015; 25:514-8. [DOI: 10.1016/j.bmcl.2014.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/21/2023]
|
18
|
Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch Pharm Res 2014; 38:139-70. [PMID: 25348867 DOI: 10.1007/s12272-014-0503-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
Continuous increases in the incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain stroke demand the urgent development of therapeutics. Marine organisms are well-known producers of natural products with diverse structures and pharmacological activities. Therefore, researchers have endeavored to identify marine natural products with neuroprotective effects. In this regard, this review summarizes therapeutic targets for AD, PD, and ischemic brain stroke and marine natural products with pharmacological activities on the targets according to taxonomies of marine organisms. Furthermore, several marine natural products on the clinical trials for the treatment of neurological disorders are discussed.
Collapse
|
19
|
Cao Z, Cui Y, Busse E, Mehrotra S, Rainier JD, Murray TF. Gambierol inhibition of voltage-gated potassium channels augments spontaneous Ca2+ oscillations in cerebrocortical neurons. J Pharmacol Exp Ther 2014; 350:615-23. [PMID: 24957609 PMCID: PMC4152883 DOI: 10.1124/jpet.114.215319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/17/2014] [Indexed: 12/27/2022] Open
Abstract
Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebrocortical neurons. We found that gambierol produced both a concentration-dependent augmentation of spontaneous Ca(2+) oscillations, and an inhibition of Kv channel function with similar potencies. In addition, an array of selective as well as universal Kv channel inhibitors mimicked gambierol in augmenting spontaneous Ca(2+) oscillations in cerebrocortical neurons. These data are consistent with a gambierol blockade of Kv channels underlying the observed increase in spontaneous Ca(2+) oscillation frequency. We also found that gambierol produced a robust stimulation of phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). Gambierol-stimulated ERK1/2 activation was dependent on both inotropic [N-methyl-d-aspartate (NMDA)] and type I metabotropic glutamate receptors (mGluRs) inasmuch as MK-801 [NMDA receptor inhibitor; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], S-(4)-CGP [S-(4)-carboxyphenylglycine], and MTEP [type I mGluR inhibitors; 3-((2-methyl-4-thiazolyl)ethynyl) pyridine] attenuated the response. In addition, 2-aminoethoxydiphenylborane, an inositol 1,4,5-trisphosphate receptor inhibitor, and U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C inhibitor, both suppressed gambierol-induced ERK1/2 activation, further confirming the role of type I mGluR-mediated signaling in the observed ERK1/2 activation. Finally, we found that gambierol produced a concentration-dependent stimulation of neurite outgrowth that was mimicked by 4-aminopyridine, a universal potassium channel inhibitor. Considered together, these data demonstrate that gambierol alters both Ca(2+) signaling and neurite outgrowth in cerebrocortical neurons as a consequence of blockade of Kv channels.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Eric Busse
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Suneet Mehrotra
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Jon D Rainier
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Thomas F Murray
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| |
Collapse
|
20
|
Sasaki M, Fuwa H. Total synthesis and complete structural assignment of gambieric acid A, a large polycyclic ether marine natural product. CHEM REC 2014; 14:678-703. [PMID: 25092231 DOI: 10.1002/tcr.201402052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 12/30/2022]
Abstract
More than thirty years after the discovery of polycyclic ether marine natural products, they continue to receive intense attention from the chemical, biological, and pharmacological communities because of their potent biological activities and highly complex molecular architectures. Gambieric acids are intriguing polycyclic ethers that exhibit potent antifungal activity with minimal toxicity against mammals. Despite the recent advances in the synthesis of this class of natural products, gambieric acids remain unconquered due to their daunting structural complexity, which poses a formidable synthetic challenge to organic chemists. This paper reviews our long-term studies on the total synthesis, complete configurational reassignment, and structure-activity relationships of gambieric acid A over the last decade.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | |
Collapse
|
21
|
Martin V, Vale C, Antelo A, Hirama M, Yamashita S, Vieytes MR, Botana LM. Differential Effects of Ciguatoxin and Maitotoxin in Primary Cultures of Cortical Neurons. Chem Res Toxicol 2014; 27:1387-400. [DOI: 10.1021/tx5000969] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Masahiro Hirama
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shuji Yamashita
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | | | | |
Collapse
|
22
|
Abstract
This review covers the isolation, chemical structure, biological activity, structure activity relationships including synthesis of chemical probes, and pharmacological characterization of neuroactive marine natural products; 302 references are cited.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | |
Collapse
|
23
|
Nicolas J, Hendriksen PJM, Gerssen A, Bovee TFH, Rietjens IMCM. Marine neurotoxins: State of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood. Mol Nutr Food Res 2013; 58:87-100. [DOI: 10.1002/mnfr.201300520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Jonathan Nicolas
- Division of Toxicology; Wageningen University; Wageningen The Netherlands
- RIKILT; Institute of Food Safety; Wageningen The Netherlands
| | | | - Arjen Gerssen
- RIKILT; Institute of Food Safety; Wageningen The Netherlands
| | | | | |
Collapse
|
24
|
Kopljar I, Labro AJ, de Block T, Rainier JD, Tytgat J, Snyders DJ. The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state. ACTA ACUST UNITED AC 2013; 141:359-69. [PMID: 23401573 PMCID: PMC3581691 DOI: 10.1085/jgp.201210890] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure–function relationship studies in Kv channels and in drug design to modulate channel function.
Collapse
Affiliation(s)
- Ivan Kopljar
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Kumar-Roiné S, Taiana Darius H, Matsui M, Fabre N, Haddad M, Chinain M, Pauillac S, Laurent D. A review of traditional remedies of ciguatera fish poisoning in the Pacific. Phytother Res 2012; 25:947-58. [PMID: 21287650 DOI: 10.1002/ptr.3396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ciguatera fish poisoning (CFP) is an illness caused by eating tropical coral fish contaminated with ciguatoxins (CTXs). The clinical management of patients with CFP is generally supportive and symptomatic in nature as no antidote exists. Of the many drugs prescribed, several have been claimed to be efficient in small, uncontrolled studies, but the outcomes of treatments with these medicines are often contradictory. In New Caledonia, traditional remedies are commonly employed in the treatment of CFP and of the 90 plant species catalogued as useful in CFP, the most popular herbal remedy by far is a decoction prepared from the leaves of Heliotropium foertherianum Diane & Hilger (Boraginaceae). Other important plants used in the treatment of CFP include Euphorbia hirta L. (Euphorbiaceae) and Vitex L. sp. (Lamiaceae). This review focuses on the evidence for efficacy of these species and pharmacological studies which support their use. Other plants used in CFP and the conventional treatment of CFP are also discussed briefly.
Collapse
Affiliation(s)
- Shilpa Kumar-Roiné
- UMR 152-Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, 118 Rte de Narbonne, F-31062 Toulouse Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pérez S, Vale C, Alonso E, Fuwa H, Sasaki M, Konno Y, Goto T, Suga Y, Vieytes MR, Botana LM. Effect of Gambierol and Its Tetracyclic and Heptacyclic Analogues in Cultured Cerebellar Neurons: A Structure–Activity Relationships Study. Chem Res Toxicol 2012; 25:1929-37. [DOI: 10.1021/tx300242m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sheila Pérez
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carmen Vale
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Eva Alonso
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai,
Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai,
Japan
| | - Yu Konno
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai,
Japan
| | - Tomomi Goto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai,
Japan
| | - Yuto Suga
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai,
Japan
| | - Mercedes R. Vieytes
- Departamento de Fisiología,
Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
27
|
Alonso E, Fuwa H, Vale C, Suga Y, Goto T, Konno Y, Sasaki M, LaFerla FM, Vieytes MR, Giménez-Llort L, Botana LM. Design and synthesis of skeletal analogues of gambierol: attenuation of amyloid-β and tau pathology with voltage-gated potassium channel and N-methyl-D-aspartate receptor implications. J Am Chem Soc 2012; 134:7467-79. [PMID: 22475455 DOI: 10.1021/ja300565t] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gambierol is a potent neurotoxin that belongs to the family of marine polycyclic ether natural products and primarily targets voltage-gated potassium channels (K(v) channels) in excitable membranes. Previous work in the chemistry of marine polycyclic ethers has suggested the critical importance of the full length of polycyclic ether skeleton for potent biological activity. Although we have previously investigated structure-activity relationships (SARs) of the peripheral functionalities of gambierol, it remained unclear whether the whole polycyclic ether skeleton is needed for its cellular activity. In this work, we designed and synthesized two truncated skeletal analogues of gambierol comprising the EFGH- and BCDEFGH-rings of the parent compound, both of which surprisingly showed similar potency to gambierol on voltage-gated potassium channels (K(v)) inhibition. Moreover, we examined the effect of these compounds in an in vitro model of Alzheimer's disease (AD) obtained from triple transgenic (3xTg-AD) mice, which expresses amyloid beta (Aβ) accumulation and tau hyperphosphorylation. In vitro preincubation of the cells with the compounds resulted in significant inhibition of K(+) currents, a reduction in the extra- and intracellular levels of Aβ, and a decrease in the levels of hyperphosphorylated tau. In addition, pretreatment with these compounds reduced the steady-state level of the N-methyl-D-aspartate (NMDA) receptor subunit 2A without affecting the 2B subunit. The involvement of glutamate receptors was further suggested by the blockage of the effect of gambierol on tau hyperphosphorylation by glutamate receptor antagonists. The present study constitutes the first discovery of skeletally simplified, designed polycyclic ethers with potent cellular activity and demonstrates the utility of gambierol and its synthetic analogues as chemical probes for understanding the function of K(v) channels as well as the molecular mechanism of Aβ metabolism modulated by NMDA receptors.
Collapse
Affiliation(s)
- Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ohtubo Y, Iwamoto M, Yoshii K. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds. Eur J Neurosci 2012; 35:1661-71. [PMID: 22462540 DOI: 10.1111/j.1460-9568.2012.08068.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed.
Collapse
Affiliation(s)
- Yoshitaka Ohtubo
- Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | | |
Collapse
|
29
|
|
30
|
PIETRA FRANCESCO. COMPUTER SIMULATIONS OF THE INTERACTION OF CIGUATOXIN 3C, BREVENAL AND ent-BREVENAL LADDER POLYETHERS WITH A HOMOLOGY MODEL OF THE VOLTAGE-GATED Kv1.5 POTASSIUM CHANNEL. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s021963360900526x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interaction of ladder polyethers of marine origin, like ciguatoxin 3C and brevenal, as well as hypothetic ent-brevenal, with the human voltage-gated Kv1.5 potassium ion channel is investigated in this work using homology modeling, automated docking, and energy scoring from molecular dynamics (MD) simulations. A 3D homology model of the pore region of the Kv1.5 channel, previously developed from the 2.9 Å resolution crystal structure of the mammalian Kv1.2 channel — which has a very similar pore sequence — is used here. While ciguatoxin 3C did not enter the pore, both brevenal and ent-brevenal were found into the pore, the latter one with the best score. Binding is attended by notable strain in the ligands, and the corresponding energy increase was evaluated for ent-brevenal by self consistent field (SCF) and density functional theory (DFT) procedures. Egress of ent-brevenal from the pore, as a microscopical reversal of the ingress, was investigated by a smart form of biased MD simulations. While this study indicates ample room and attractive interactions for both brevenal and its enantiomer into the pore, whether these molecules will be found to inhibit voltage-gated potassium ion currents depends upon the barriers in the real system to access the pore, with their thermodynamic and kinetic requirements.
Collapse
Affiliation(s)
- FRANCESCO PIETRA
- Accademia Lucchese di Scienze, Lettere e Arti, Palazzo Ducale, 55100 Lucca, Italy
| |
Collapse
|
31
|
Cagide E, Louzao MC, Espiña B, Ares IR, Vieytes MR, Sasaki M, Fuwa H, Tsukano C, Konno Y, Yotsu-Yamashita M, Paquette LA, Yasumoto T, Botana LM. Comparative cytotoxicity of gambierol versus other marine neurotoxins. Chem Res Toxicol 2011; 24:835-42. [PMID: 21517028 DOI: 10.1021/tx200038j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many microalgae produce compounds that exhibit potent biological activities. Ingestion of marine organisms contaminated with those toxins results in seafood poisonings. In many cases, the lack of toxic material turns out to be an obstacle to make the toxicological investigations needed. In this study, we evaluate the cytotoxicity of several marine toxins on neuroblastoma cells, focusing on gambierol and its effect on cytosolic calcium levels. In addition, we compared the effects of this toxin with ciguatoxin, brevetoxin, and gymnocin-A, with which gambierol shares a similar ladder-like backbone, as well as with polycavernoside A analogue 5, a glycosidic macrolide toxin. For this purpose, different fluorescent dyes were used: Fura-2 to monitor variations in cytosolic calcium levels, Alamar Blue to detect cytotoxicity, and Oregon Green 514 Phalloidin to quantify and visualize modifications in the actin cytoskeleton. Data showed that, while gambierol and ciguatoxin were successful in producing a calcium influx in neuroblastoma cells, gymnocin-A was unable to modify this parameter. Nevertheless, none of the toxins induced morphological changes or alterations in the actin assembly. Although polycavernoside A analogue 5 evoked a sharp reduction of the cellular metabolism of neuroblastoma cells, gambierol scarcely reduced it, and ciguatoxin, brevetoxin, and gymnocin-A failed to produce any signs of cytotoxicity. According to this, sharing a similar polycyclic ether backbone is not enough to produce the same effects on neuroblastoma cells; therefore, more studies should be carried out with these toxins, whose effects may be being underestimated.
Collapse
Affiliation(s)
- E Cagide
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fuwa H, Ebine M, Sasaki M. Recent Applications of the Suzuki-Miyaura Cross-coupling to Complex Polycyclic Ether Synthesis. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.1251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Fuwa H. Total Synthesis of Structurally Complex Marine Oxacyclic Natural Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Schlumberger S, Ouanounou G, Girard E, Sasaki M, Fuwa H, Louzao MC, Botana LM, Benoit E, Molgó J. The marine polyether gambierol enhances muscle contraction and blocks a transient K+ current in skeletal muscle cells. Toxicon 2010; 56:785-91. [DOI: 10.1016/j.toxicon.2010.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 05/29/2010] [Accepted: 06/01/2010] [Indexed: 01/12/2023]
|
35
|
Dual action of a dinoflagellate-derived precursor of Pacific ciguatoxins (P-CTX-4B) on voltage-dependent K+ and Na+ channels of single myelinated axons. Toxicon 2010; 56:768-75. [DOI: 10.1016/j.toxicon.2009.06.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 06/28/2009] [Accepted: 06/29/2009] [Indexed: 11/21/2022]
|
36
|
Ujihara S, Oishi T, Mouri R, Tamate R, Konoki K, Matsumori N, Murata M, Oshima Y, Sugiyama N, Tomita M, Ishihama Y. Detection of Rap1A as a yessotoxin binding protein from blood cell membranes. Bioorg Med Chem Lett 2010; 20:6443-6. [PMID: 20943388 DOI: 10.1016/j.bmcl.2010.09.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
As is the case with other ladder-shaped polyether compounds, yessotoxin is produced by marine dinoflagellate, and possesses various biological activities beside potent toxicity. To gain a better understanding of the molecular mechanism for high affinity between these polyethers and their binding proteins, which accounts for their powerful biological activities, we searched for its binding proteins from human blood cells by using the biotin-conjugate of desulfated YTX as a ligand. By a protein pull-down protocol with use of streptavidin beads, a band of specifically binding proteins was detected in SDS-PAGE. HPLC-tandem mass spectrometry (MS/MS) indicated that Rap 1A, one of Ras superfamily proteins, binds to the YTX-linked resins. Western blotting and surface plasmon resonance experiments further confirmed that Rap1A specifically binds to YTX with the K(D) value around 4 μM.
Collapse
Affiliation(s)
- Satoru Ujihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Alonso E, Vale C, Sasaki M, Fuwa H, Konno Y, Perez S, Vieytes MR, Botana LM. Calcium oscillations induced by gambierol in cerebellar granule cells. J Cell Biochem 2010; 110:497-508. [PMID: 20336695 DOI: 10.1002/jcb.22566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gambierol is a marine polyether ladder toxin derived from the dinoflagellate Gambierdiscus toxicus. To date, gambierol has been reported to act either as a partial agonist or as an antagonist of sodium channels or as a blocker of voltage-dependent potassium channels. In this work, we examined the cellular effect of gambierol on cytosolic calcium concentration, membrane potential and sodium and potassium membrane currents in primary cultures of cerebellar granule cells. We found that at concentrations ranging from 0.1 to 30 microM, gambierol-evoked [Ca(2+)]c oscillations that were dependent on the presence of extracellular calcium, irreversible and highly synchronous. Gambierol-evoked [Ca(2+)]c oscillations were completely eliminated by the NMDA receptor antagonist APV and by riluzole and delayed by CNQX. In addition, the K(+) channel blocker 4-aminopyridine (4-AP)-evoked cytosolic calcium oscillations in this neuronal system that were blocked by APV and delayed in the presence of CNQX. Electrophysiological recordings indicated that gambierol caused membrane potential oscillations, decreased inward sodium current amplitude and decreased also outward IA and IK current amplitude. The results presented here point to a common mechanism of action for gambierol and 4-AP and indicate that gambierol-induced oscillations in cerebellar neurons are most likely secondary to a blocking action of the toxin on voltage-dependent potassium channels and hyperpolarization of sodium current activation.
Collapse
Affiliation(s)
- E Alonso
- Facultad de Veterinaria, Departamento de Farmacología, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Furuta H, Hasegawa Y, Hase M, Mori Y. Total Synthesis of Gambierol by Using Oxiranyl Anions. Chemistry 2010; 16:7586-95. [DOI: 10.1002/chem.201000497] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
|
40
|
Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. EXPERIENTIA SUPPLEMENTUM 2010; 100:65-122. [PMID: 20358682 DOI: 10.1007/978-3-7643-8338-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Abstract
The total synthesis of gambierol has been achieved utilizing an oxiranyl anion strategy in an iterative manner. Synthetic highlights of this route include direct carbon-carbon formation on epoxides, sulfonyl-assisted 6-endo cyclization, and expansion reaction of tetrahydropyranyl rings to oxepanes to forge the polycyclic architecture of the target molecule.
Collapse
Affiliation(s)
- Hiroki Furuta
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan
| | | | | |
Collapse
|
42
|
Sala GL, Bellocci M, Rossini GP. The Cytotoxic Pathway Triggered by Palytoxin Involves a Change in the Cellular Pool of Stress Response Proteins. Chem Res Toxicol 2009; 22:2009-16. [DOI: 10.1021/tx900297g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gian Luca Sala
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy
| | - Mirella Bellocci
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy
| | - Gian Paolo Rossini
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy
| |
Collapse
|
43
|
Morten CJ, Byers JA, Van Dyke AR, Vilotijevic I, Jamison TF. The development of endo-selective epoxide-opening cascades in water. Chem Soc Rev 2009; 38:3175-92. [PMID: 19847350 PMCID: PMC2805183 DOI: 10.1039/b816697h] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review traces the development of endo-regioselective epoxide-opening reactions in water. Templated, water-promoted epoxide-opening cyclization reactions can offer rapid access to subunits of the ladder polyethers, a fascinating and complex family of natural products. This review may be of interest to those curious about the ladder polyethers and their hypothesized biogenesis, about organic reactions in water, and about the development and application of cascade reactions in organic synthesis.
Collapse
Affiliation(s)
- Christopher J Morten
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
44
|
A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol. Proc Natl Acad Sci U S A 2009; 106:9896-901. [PMID: 19482941 DOI: 10.1073/pnas.0812471106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gambierol is a marine polycyclic ether toxin belonging to the group of ciguatera toxins. It does not activate voltage-gated sodium channels (VGSCs) but inhibits Kv1 potassium channels by an unknown mechanism. While testing whether Kv2, Kv3, and Kv4 channels also serve as targets, we found that Kv3.1 was inhibited with an IC(50) of 1.2 +/- 0.2 nM, whereas Kv2 and Kv4 channels were insensitive to 1 microM gambierol. Onset of block was similar from either side of the membrane, and gambierol did not compete with internal cavity blockers. The inhibition did not require channel opening and could not be reversed by strong depolarization. Using chimeric Kv3.1-Kv2.1 constructs, the toxin sensitivity was traced to S6, in which T427 was identified as a key determinant. In Kv3.1 homology models, T427 and other molecular determinants (L348, F351) reside in a space between S5 and S6 outside the permeation pathway. In conclusion, we propose that gambierol acts as a gating modifier that binds to the lipid-exposed surface of the pore domain, thereby stabilizing the closed state. This site may be the topological equivalent of the neurotoxin site 5 of VGSCs. Further elucidation of this previously undescribed binding site may explain why most ciguatoxins activate VGSCs, whereas others inhibit voltage-dependent potassium (Kv) channels. This previously undescribed Kv neurotoxin site may have wide implications not only for our understanding of channel function at the molecular level but for future development of drugs to alleviate ciguatera poisoning or to modulate electrical excitability in general.
Collapse
|
45
|
Sala GL, Ronzitti G, Sasaki M, Fuwa H, Yasumoto T, Bigiani A, Rossini GP. Proteomic Analysis Reveals Multiple Patterns of Response in Cells Exposed to a Toxin Mixture. Chem Res Toxicol 2009; 22:1077-85. [DOI: 10.1021/tx900044p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Gian Luca Sala
- Centro Interdisciplinare di Scienze e Tecnologie per la Qualità e Sicurezza degli Alimenti, Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, I-41100 Modena, Italy, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan, and Okinawa Science and Technology Promotion Center, Okinawa, 904-2234, Japan
| | - Giuseppe Ronzitti
- Centro Interdisciplinare di Scienze e Tecnologie per la Qualità e Sicurezza degli Alimenti, Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, I-41100 Modena, Italy, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan, and Okinawa Science and Technology Promotion Center, Okinawa, 904-2234, Japan
| | - Makoto Sasaki
- Centro Interdisciplinare di Scienze e Tecnologie per la Qualità e Sicurezza degli Alimenti, Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, I-41100 Modena, Italy, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan, and Okinawa Science and Technology Promotion Center, Okinawa, 904-2234, Japan
| | - Haruhiko Fuwa
- Centro Interdisciplinare di Scienze e Tecnologie per la Qualità e Sicurezza degli Alimenti, Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, I-41100 Modena, Italy, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan, and Okinawa Science and Technology Promotion Center, Okinawa, 904-2234, Japan
| | - Takeshi Yasumoto
- Centro Interdisciplinare di Scienze e Tecnologie per la Qualità e Sicurezza degli Alimenti, Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, I-41100 Modena, Italy, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan, and Okinawa Science and Technology Promotion Center, Okinawa, 904-2234, Japan
| | - Albertino Bigiani
- Centro Interdisciplinare di Scienze e Tecnologie per la Qualità e Sicurezza degli Alimenti, Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, I-41100 Modena, Italy, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan, and Okinawa Science and Technology Promotion Center, Okinawa, 904-2234, Japan
| | - Gian Paolo Rossini
- Centro Interdisciplinare di Scienze e Tecnologie per la Qualità e Sicurezza degli Alimenti, Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, I-41100 Modena, Italy, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan, and Okinawa Science and Technology Promotion Center, Okinawa, 904-2234, Japan
| |
Collapse
|
46
|
Marine Toxins Potently Affecting Neurotransmitter Release. MARINE TOXINS AS RESEARCH TOOLS 2009; 46:159-86. [DOI: 10.1007/978-3-540-87895-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Fusetani N, Kem W. Marine toxins: an overview. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 46:1-44. [PMID: 19184583 DOI: 10.1007/978-3-540-87895-7_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oceans provide enormous and diverse space for marine life. Invertebrates are conspicuous inhabitants in certain zones such as the intertidal; many are soft-bodied, relatively immobile and lack obvious physical defenses. These animals frequently have evolved chemical defenses against predators and overgrowth by fouling organisms. Marine animals may accumulate and use a variety of toxins from prey organisms and from symbiotic microorganisms for their own purposes. Thus, toxic animals are particularly abundant in the oceans. The toxins vary from small molecules to high molecular weight proteins and display unique chemical and biological features of scientific interest. Many of these substances can serve as useful research tools or molecular models for the design of new drugs and pesticides. This chapter provides an initial survey of these toxins and their salient properties.
Collapse
Affiliation(s)
- Nobuhiro Fusetani
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate 041-8611, Japan.
| | | |
Collapse
|
48
|
Pietra F. Binding of ciguatera toxins to the voltage-gated Kv1.5 potassium channel in the open state. Docking of gambierol and molecular dynamics simulations of a homology model. J PHYS ORG CHEM 2008. [DOI: 10.1002/poc.1413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Interaction of ladder-shaped polyethers with transmembrane alpha-helix of glycophorin A as evidenced by saturation transfer difference NMR and surface plasmon resonance. Bioorg Med Chem Lett 2008; 18:6115-8. [PMID: 18947999 DOI: 10.1016/j.bmcl.2008.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 09/27/2008] [Accepted: 10/04/2008] [Indexed: 11/22/2022]
Abstract
Ladder-shaped polyether (LSP) compounds are thought to interact with transmembrane alpha-helices, but direct evidence has scarcely obtained for these interactions. We adopted a transmembrane alpha-helix of glycophorin A, and quantitatively evaluated its interaction with LSPs such as yessotoxin (YTX), desulfated YTX and artificial LSPs, using surface plasmon resonance and saturation transfer difference NMR. As a result, dissociation constants (K(D)) of YTX and desulfated YTX to a transmembrane domain peptide of glycophorin A were determined to be in the submillimolar range. Furthermore, in saturation transfer difference NMR, the signals at the polyene side chain and the angular methyl groups of YTX were significantly attenuated, which probably comprised an interacting interface of LSPs with a transmembrane alpha-helix. These results suggest that hydrophobic interaction plays an important role in molecular recognition of the alpha-helix peptide by LSPs.
Collapse
|
50
|
Sasaki M, Fuwa H. Convergent strategies for the total synthesis of polycyclic ether marine metabolites. Nat Prod Rep 2008; 25:401-26. [PMID: 18389143 DOI: 10.1039/b705664h] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine polycyclic ether natural products continue to fascinate chemists and biologists due to their exceptionally large and complex molecular architectures and potent and diverse biological activities. Tremendous progress has been made over the past decade toward the total synthesis of marine polycyclic ether natural products. In this area, a convergent strategy for assembling small fragments into an entire molecule always plays a key role in successful total synthesis. This review describes our efforts to develop convergent strategies for the synthesis of polycyclic ethers and their application to the total synthesis of gambierol, gymnocin-A, and brevenal, and to the partial synthesis of the central part of ciguatoxins and the nonacyclic polyether skeleton of gambieric acids.
Collapse
Affiliation(s)
- Makoto Sasaki
- Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, 1-1 Tsutsumidori-amamiya, Aoba-ku, Sendai 981-8555, Japan.
| | | |
Collapse
|