1
|
Vicente JS, Valdés-Hernández J, Marco-Jiménez F. Transcriptomic Signatures of the Foetal Liver and Late Prenatal Development in Vitrified Rabbit Embryos. Vet Sci 2024; 11:347. [PMID: 39195801 PMCID: PMC11360234 DOI: 10.3390/vetsci11080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Assisted reproduction technologies (ARTs) are generally considered safe; however, emerging evidence highlights the need to evaluate potential risks in adulthood to improve safety further. ART procedures like rederivation of embryos by vitrification differ from natural conditions, causing significant disparities between in vitro and in vivo embryos, affecting foetal physiology and postnatal life. This study aims to investigate whether hepatic transcriptome and metabolome changes observed postnatally are already present in foetal livers at the end of gestation. This study compared fresh and vitrified rabbit embryos, finding differences between foetuses obtained by the transfer of fresh and vitrified embryos at 24 days of gestation. Rederived embryos had reduced foetal and liver weights and crown-rump length. However, the offspring of vitrified embryos tended to be born with higher weight, showing compensatory growth in the final week of gestation (59.2 vs. 49.8 g). RNA-Seq analysis revealed 43 differentially expressed genes (DEGs) in the foetal liver of vitrified embryos compared to the fresh group. Notably, downregulated genes included BRAT1, CYP4A7, CYP2B4, RPL23, RPL22L1, PPILAL1, A1BG, IFGGC1, LRRC57, DIPP2, UGT2B14, IRGM1, NUTF2, MPST, and PPP1R1B, while upregulated genes included ACOT8, ERICH3, UBXN2A, METTL9, ALDH3A2, DERPC-like, NR5A2-like, AP-1, COG8, INHBE, and PLA2G4C. Overall, a functional annotation of these DEGs indicated an involvement in lipid metabolism and the stress and inflammatory process or immune response. Thus, our results suggest that vitrification and embryo transfer manipulation induce an adaptive response that can be observed in the liver during the last week of gestation.
Collapse
Affiliation(s)
| | | | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (J.S.V.); (J.V.-H.)
| |
Collapse
|
2
|
Wills R, Shirke R, Hrncir H, Talbott JM, Sad K, Spangle JM, Gracz AD, Raj M. Tunable fluorescent probes for detecting aldehydes in living systems. Chem Sci 2024; 15:4763-4769. [PMID: 38550703 PMCID: PMC10966992 DOI: 10.1039/d4sc00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/30/2024] Open
Abstract
Aldehydes, pervasive in various environments, pose health risks at elevated levels due to their collective toxic effects via shared mechanisms. Monitoring total aldehyde content in living systems is crucial due to their cumulative impact. Current methods for detecting cellular aldehydes are limited to UV and visible ranges, restricting their analysis in living systems. This study introduces an innovative reaction-based trigger that leverages the exceptional selectivity of 2-aminothiophenol for aldehydes, leading to the production of dihydrobenzothiazole and activating a fluorescence response. Using this trigger, we developed a series of fluorescent probes for aldehydes by altering the fluorophore allowing for excitation and emission wavelengths across the visible to near-infrared spectral regions without compromising the reactivity of the bioorthogonal moiety. These probes exhibit remarkable aldehyde chemoselectivity, rapid kinetics, and high quantum yields, enabling the detection of diverse aldehyde types, both exogenous and endogenous, within complex biological contexts. Notably, we employed the most red-shifted near-infrared probe from this series to detect aldehydes in living systems, including biliary organoids and mouse organs. These probes provide valuable tools for exploring the multifaceted roles of aldehydes in biological functions and diseases within living systems, laying the groundwork for further investigations.
Collapse
Affiliation(s)
- Rachel Wills
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Rajendra Shirke
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Hannah Hrncir
- Department of Digestive Diseases, Department of Medicine, Emory University Atlanta GA 30322 USA
| | - John M Talbott
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Kirti Sad
- Department of Radiation Oncology, Winship Cancer Institute of Emory University School of Medicine Atlanta GA 30322 USA
| | - Jennifer M Spangle
- Department of Radiation Oncology, Winship Cancer Institute of Emory University School of Medicine Atlanta GA 30322 USA
| | - Adam D Gracz
- Department of Digestive Diseases, Department of Medicine, Emory University Atlanta GA 30322 USA
| | - Monika Raj
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| |
Collapse
|
3
|
Thamaraikani T, Karnam M, Velapandian C. In Silico Docking of Novel Phytoalkaloid Camalexin in the Management of Benomyl Induced Parkinson's Disease and its In Vivo Evaluation by Zebrafish Model. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:343-353. [PMID: 34477539 DOI: 10.2174/1871527320666210903091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Parkinson's Disease (PD) exhibits the extrapyramidal symptoms caused due to the dopaminergic neuronal degeneration in the substantia nigra of the brain and depletion of Aldehyde Dehydrogenase (ALDH) enzyme. OBJECTIVE This study was designed to enlighten the importance of the Aldehyde dehydrogenase enzyme in protecting the dopamine levels in a living system. Camalexin, a potentially active compound, has been evaluated for its dopamine enhancing and aldehyde dehydrogenase protecting role in pesticide-induced Parkinson's disease. METHODS AutoDock 4.2 software was employed to perform the docking simulations between the ligand camalexin and standard drugs Alda-1, Ropirinole with three proteins 4WJR, 3INL, 5AER. Consequently, the compound was evaluated for its in vivo neuroprotective role in the zebrafish model by attaining Institutional Animal Ethical Committee permission. The behavioral assessments and catecholamine analysis in zebrafish were performed. RESULTS The Autodock result shows that the ligand camalexin has a lower binding energy (-3.84) that indicates a higher affinity with the proteins when compared to the standard drug of proteins (-3.42). In the zebrafish model, behavioral studies provided evidence that camalexin helps in the improvement of motor functions and cognition. The catecholamine assay has proved that there is an enhancement in dopamine levels, as well as an improvement in aldehyde dehydrogenase enzyme. CONCLUSION The novel compound, camalexin, offers a protective role in Parkinson's disease model by its interaction with neurochemical proteins and also in alternative in vivo model.
Collapse
Affiliation(s)
- Tamilanban Thamaraikani
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India
| | - Manasa Karnam
- Department of Pharmacology, SRM College of Pharmacy,SRMIST, Kattankulathur-603203,Tamilnadu, India
| | - Chitra Velapandian
- Department of Pharmacology, SRM College of Pharmacy,SRMIST, Kattankulathur-603203,Tamilnadu, India
| |
Collapse
|
4
|
Lee S, Park YS. Effect of water-soluble propolis administration on the ethanol-induced hangover in rats. Food Sci Biotechnol 2021; 30:455-463. [PMID: 33868756 DOI: 10.1007/s10068-020-00869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
Water soluble propolis was prepared using β-cyclodextrin, and its effect on an ethanol-induced hangover was examined in Sprague-Dawley (SD) rats fed with ethanol. When SD rats were administrated with propolis 30 min after ethanol feeding, ethanol content in the rat serum decreased 2.1 times 1 h after ethanol feeding. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in rat liver increased 3.0 and 4.4 times, respectively, 1 h after ethanol feeding and administration of propolis 30 min after ethanol feeding. There were no differences in the expression of ADH and ALDH genes regardless of propolis administration. These results indicated that a decrease in ethanol content in the serum was not due to an increase in the expression of ADH or ALDH genes but rather, an increase in activities of ADH and ALDH.
Collapse
Affiliation(s)
- Sulhee Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea.,Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
5
|
Hedges L, Brown S, MacLeod AK, Moreau M, Yoon M, Creek MR, Osimitz TG, Lake BG. Metabolism of bifenthrin, β-cyfluthrin, λ-cyhalothrin, cyphenothrin and esfenvalerate by rat and human cytochrome P450 and carboxylesterase enzymes. Xenobiotica 2020; 50:1434-1442. [DOI: 10.1080/00498254.2020.1795745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Laura Hedges
- Concept Life Sciences (formerly CXR Biosciences Ltd.), Dundee, UK
| | - Susan Brown
- Concept Life Sciences (formerly CXR Biosciences Ltd.), Dundee, UK
| | | | | | - Miyoung Yoon
- ScitoVation, LLC, Research Triangle Park, NC, USA
| | - Moire R. Creek
- Moire Creek Toxicology Consulting Services, Lincoln, CA, USA
| | | | - Brian G. Lake
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
6
|
Population Life-course exposure to health effects model (PLETHEM): An R package for PBPK modeling. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2019.100115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
8
|
Alda-1 Prevents Pulmonary Epithelial Barrier Dysfunction following Severe Hemorrhagic Shock through Clearance of Reactive Aldehydes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2476252. [PMID: 31467875 PMCID: PMC6699483 DOI: 10.1155/2019/2476252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/09/2019] [Indexed: 01/11/2023]
Abstract
Severe hemorrhagic shock and resuscitation (HS/R) can lead to lung injury, resulting in respiratory insufficiency. We investigated whether treatment with Alda-1, an ALDH2 activator, decreased lung injury induced by severe HS/R in a rat model. Male Sprague-Dawley rats were randomized into three groups, hemorrhagic shock + placebo, hemorrhagic shock + Alda-1, and sham. All animals were heparinized, and then 50% of the total calculated blood volume was collected over 60 minutes. After 40 minutes of hemorrhagic shock, animals were reinfused with the shed blood over 40 minutes and then observed for an additional 2 hours. Concentrations of 4-HNE, TNF-α, IL-6, and ALDH2 activity were detected; lung injury and lung wet-to-dry weight ratios were assessed. Expression of occludin and ZO-1 proteins in lung tissues was also determined. At 2 hours after resuscitation, lung injury was significantly reduced and the wet-to-dry weight ratio was notably decreased in the Alda-1 group compared with placebo (P<0.05). Alda-1 treatment also significantly increased the activity of ALDH2 and decreased the levels of toxic 4-HNE (P<0.05). In the Alda-1 group, IL-6 and TNF-α were dramatically decreased compared with placebo-treated animals (P<0.05). Expression of occludin and ZO-1 proteins was significantly decreased in the placebo group compared with the Alda-1 group (P<0.05). Thus, in a rat model of severe HS/R, treatment with Alda-1 increased the activity of ALDH2, significantly accelerated the clearance of reactive aldehydes, and concomitantly alleviated lung injury through improvement of pulmonary epithelial barrier integrity resulting in decreased alveolar epithelial tissue permeability, lung edema, and diffuse infiltration of inflammatory cells.
Collapse
|
9
|
Song G, Moreau M, Efremenko A, Lake BG, Wu H, Bruckner JV, White CA, Osimitz TG, Creek MR, Hinderliter PM, Clewell HJ, Yoon M. Evaluation of Age-Related Pyrethroid Pharmacokinetic Differences in Rats: Physiologically-Based Pharmacokinetic Model Development Using In Vitro Data and In Vitro to In Vivo Extrapolation. Toxicol Sci 2019; 169:365-379. [DOI: 10.1093/toxsci/kfz042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Gina Song
- ScitoVation, LLC, Research Triangle Park, North Carolina, 27709
| | - Marjory Moreau
- ScitoVation, LLC, Research Triangle Park, North Carolina, 27709
| | - Alina Efremenko
- ScitoVation, LLC, Research Triangle Park, North Carolina, 27709
| | - Brian G Lake
- Centre for Toxicology, University of Surrey, Surrey, UK
| | - Huali Wu
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- Duke Medical Center, Durham, North Carolina 27705
| | | | | | | | - Moire R Creek
- Valent USA, LLC, Walnut Creek, California 94596
- Moire Creek Toxicology Consulting Services, Livermore, California 94550
| | | | - Harvey J Clewell
- ScitoVation, LLC, Research Triangle Park, North Carolina, 27709
- Ramboll, Research Triangle Park, North Carolina 27709
| | - Miyoung Yoon
- ScitoVation, LLC, Research Triangle Park, North Carolina, 27709
- ToxStrategies, Cary, North Carolina 27511
| |
Collapse
|
10
|
Mitochondrial Aldehyde Dehydrogenase in Myocardial Ischemic and Ischemia-Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:107-120. [PMID: 31368100 DOI: 10.1007/978-981-13-6260-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion (IR) injury during acute myocardial infarction or open-heart surgery would promote oxidative stress, leading to the accumulation of reactive aldehydes that cause cardiac damage. It has been well demonstrated that aldehyde dehydrogenase (ALDH)-2 is an important cardioprotective enzyme for its central role in the detoxification of reactive aldehydes. ALDH2 activation by small molecule activators is a promising approach for cardioprotection for myocardial IR injury.
Collapse
|
11
|
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 2018; 53:156-167. [PMID: 30471331 DOI: 10.1016/j.semcancer.2018.11.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSC) possess abilities generally associated with embryonic or adult stem cells, especially self-renewal and differentiation. The CSC model assumes that this subpopulation of cells sustains malignant growth, which suggests a hierarchical organization of tumors in which CSCs are on top and responsible for the generation of intratumoral heterogeneity. Effective tumor therapy requires the eradication of CSC as they can support regrowth of the tumor resulting in recurrence. However, eradication of CSC is difficult because they frequently are therapy resistant. Therapy resistance is mediated by the acquisition of dormancy, increased DNA repair and drug efflux capacity, decreased apoptosis as well as the interaction between CSC and their supporting microenvironment, the CSC niche. This review highlights the role of CSC in chemo- and radiotherapy resistance as well as possible ways to overcome CSC mediated therapy resistance.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
12
|
Ma S, Wang C, Zhao B, Ren X, Tian S, Wang J, Zhang C, Shao Y, Qiu M, Wang X. Tandem mass tags labeled quantitative proteomics to study the effect of tobacco smoke exposure on the rat lung. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:496-506. [PMID: 29307719 DOI: 10.1016/j.bbapap.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND The causal link between tobacco smoke exposure (TSE) and numerous severe respiratory system diseases (RSD), including chronic bronchitis, chronic obstructive pulmonary disease, and lung cancer, is well established. However, the pathogenesis of TSE-induced RSD remains incompletely understood. This research aims to detect the pathogenetic mechanisms and potential therapeutic targets of TSE-induced RSD. METHODS This study employed TSE model which rats were exposed to a concentration of 60% tobacco smoke in a toxicant exposure system for four weeks. Tandem mass tags (TMT) labeled quantitative proteomics combined with off-line high pH reversed-phase fractionation, and nano-liquid chromatography-mass spectrometry method (off-line high pH RPF-nano-LC-MS/MS) were adopted to detect differentially expressed proteins (DEPs) in the lung tissues of the TSE model rats and to compare them with those in control. The accuracy of the results was verified by western blot. RESULTS Compared with the control group, 33 proteins in the TSE model group's lung tissues showed significant differential expression. Analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that, several biological pathways, such as the steroid biosynthesis pathway, were involved and played significant roles in the pathogenesis of the experimental group's TSE. CONCLUSIONS These findings make a crucial contribution to the search for a comprehensive understanding of TSE-induced RSD's pathogenesis, and furthermore provide guidance for the diagnosis and treatment of TSE-induced RSD.
Collapse
Affiliation(s)
- Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China; Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Chunguo Wang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolei Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Simin Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Juan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Chi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yuanyang Shao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Minyi Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
13
|
Richtwert für Propan-1,2-diol (Propylenglykol) in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:1298-1304. [DOI: 10.1007/s00103-017-2631-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Ginsberg G, Vulimiri SV, Lin YS, Kancherla J, Foos B, Sonawane B. A framework and case studies for evaluation of enzyme ontogeny in children's health risk evaluation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:569-593. [PMID: 28891786 PMCID: PMC8018602 DOI: 10.1080/15287394.2017.1369915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Knowledge of the ontogeny of Phase I and Phase II metabolizing enzymes may be used to inform children's vulnerability based upon likely differences in internal dose from xenobiotic exposure. This might provide a qualitative assessment of toxicokinetic (TK) variability and uncertainty pertinent to early lifestages and help scope a more quantitative physiologically based toxicokinetic (PBTK) assessment. Although much is known regarding the ontogeny of metabolizing systems, this is not commonly utilized in scoping and problem formulation stage of human health risk evaluation. A framework is proposed for introducing this information into problem formulation which combines data on enzyme ontogeny and chemical-specific TK to explore potential child/adult differences in internal dose and whether such metabolic differences may be important factors in risk evaluation. The framework is illustrated with five case study chemicals, including some which are data rich and provide proof of concept, while others are data poor. Case studies for toluene and chlorpyrifos indicate potentially important child/adult TK differences while scoping for acetaminophen suggests enzyme ontogeny is unlikely to increase early-life risks. Scoping for trichloroethylene and aromatic amines indicates numerous ways that enzyme ontogeny may affect internal dose which necessitates further evaluation. PBTK modeling is a critical and feasible next step to further evaluate child-adult differences in internal dose for a number of these chemicals.
Collapse
Affiliation(s)
- Gary Ginsberg
- Partnership in Pediatric and Environmental Health, Hartford, CT 06134, USA
| | - Suryanarayana V. Vulimiri
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460, USA
| | - Yu-Sheng Lin
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460, USA
| | - Jayaram Kancherla
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20740, USA
| | - Brenda Foos
- Office of Children’s Health Protection, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Babasaheb Sonawane
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460, USA
- Current Address: 13204 Moran Drive, North Potomac, MD 20878
| |
Collapse
|
15
|
Alda-1 Attenuates Lung Ischemia-Reperfusion Injury by Reducing 4-Hydroxy-2-Nonenal in Alveolar Epithelial Cells. Crit Care Med 2017; 44:e544-52. [PMID: 26757166 DOI: 10.1097/ccm.0000000000001563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Excessive oxidative stress is a main cause of lung ischemia-reperfusion injury, which often results in respiratory insufficiency after open-heart surgery for a cardiopulmonary bypass. Previous studies demonstrate that the activation of aldehyde dehydrogenase-2 could significantly reduce the oxidative stress mediated by toxic aldehydes and attenuate cardiac and cerebral ischemia-reperfusion injury. However, both the involvement of aldehydes and the protective effect of the aldehyde dehydrogenase-2 agonist, Alda-1, in lung ischemia-reperfusion injury remain unknown. DESIGN Prospective laboratory and animal investigation were conducted. SETTING State Key Laboratory of Cardiovascular Disease. SUBJECTS Primary human pulmonary alveolar epithelial cells, human pulmonary microvascular endothelial cells, and Sprague-Dawley rats. INTERVENTIONS A hypoxia/reoxygenation cell-culture model of human pulmonary alveolar epithelial cell, human pulmonary microvascular endothelial cell, and an isolated-perfused lung model were applied to mimic lung ischemia-reperfusion injury. We evaluated the effects of Alda-1 on aldehyde dehydrogenase-2 quantity and activity, on aldehyde levels and pulmonary protection. MEASUREMENTS AND MAIN RESULTS We have demonstrated that ischemia-reperfusion-induced pulmonary injury concomitantly induced aldehydes accumulation in human pulmonary alveolar epithelial cells and lung tissues, but not in human pulmonary microvascular endothelial cells. Moreover, Alda-1 pretreatment significantly elevated aldehyde dehydrogenase-2 activity, increased surfactant-associated protein C, and attenuated elevation of 4-hydroxy-2-nonenal, apoptosis, intercellular adhesion molecule-1, inflammatory response, and the permeability of pulmonary alveolar capillary barrier, thus alleviated injury. CONCLUSIONS Our study indicates that the accumulation of 4-hydroxy-2-nonenal plays an important role in lung ischemia-reperfusion injury. Alda-1 pretreatment can attenuate lung ischemia-reperfusion injury, possibly through the activation of aldehyde dehydrogenase-2, which in turn removes 4-hydroxy-2-nonenal in human pulmonary alveolar epithelial cells. Alda-1 pretreatment has clinical implications to protect lungs during cardiopulmonary bypass.
Collapse
|
16
|
Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats. Toxicol Appl Pharmacol 2015; 287:284-92. [PMID: 26111663 DOI: 10.1016/j.taap.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/08/2015] [Accepted: 06/20/2015] [Indexed: 11/22/2022]
Abstract
Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E2 modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5g/kg i.v.) 30-min after E2 (1μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dtmax) and systolic (SBP) and diastolic (DBP) blood pressures in E2-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E2 promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E2 for specific medical conditions.
Collapse
|
17
|
A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites. Chem Biol Interact 2015; 238:102-10. [PMID: 26079054 DOI: 10.1016/j.cbi.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 11/23/2022]
Abstract
1,3-Butadiene (BD), a volatile organic chemical (VOC), is used in synthetic rubber production and other industrial processes. It is detectable at low levels in ambient air as well as in tobacco smoke and gasoline vapors. Inhalation exposures to high concentrations of BD have been associated with lung cancer in both humans and experimental animals, although differences in species sensitivity have been observed. Metabolically active lung cells such as Pulmonary Type I and Type II epithelial cells and club cells (Clara cells)(1) are potential targets of BD metabolite-induced toxicity. Metabolic capacities of these cells, their regional densities, and distributions vary throughout the respiratory tract as well as between species and cell types. Here we present a physiologically based pharmacokinetic (PBPK) model for BD that includes a regional model of lung metabolism, based on a previous model for styrene, to provide species-dependent descriptions of BD metabolism in the mouse, rat, and human. Since there are no in vivo data on BD pharmacokinetics in the human, the rat and mouse models were parameterized to the extent possible on the basis of in vitro metabolic data. Where it was necessary to use in vivo data, extrapolation from rat to mouse was performed to evaluate the level of uncertainty in the human model. A kidney compartment and description of downstream metabolism were also included in the model to allow for eventual use of available urinary and blood biomarker data in animals and humans to calibrate the model for estimation of BD exposures and internal metabolite levels. Results from simulated inhalation exposures to BD indicate that incorporation of differential lung region metabolism is important in describing species differences in pulmonary response and that these differences may have implications for risk assessments of human exposures to BD.
Collapse
|
18
|
Ibrahim BM, Fan M, Abdel-Rahman AA. Oxidative stress and autonomic dysregulation contribute to the acute time-dependent myocardial depressant effect of ethanol in conscious female rats. Alcohol Clin Exp Res 2014; 38:1205-15. [PMID: 24754626 DOI: 10.1111/acer.12363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/23/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND The molecular mechanisms of the acute hypotensive and indirectly assessed cardiac depressant effect of ethanol (EtOH)-evoked myocardial depression and hypotension in female rats are not known. We tested the hypothesis that a time-dependent myocardial depression caused by EtOH is initiated by its direct and indirect (cardiac vagal dominance) effects and is exacerbated by gradual development of oxidative stress. METHODS In conscious female rats, we directly measured left ventricular developed pressure (LVDP), the maximal rise of ventricular pressure over time (dP/dtmax ), blood pressure (BP), heart rate (HR), and sympathovagal activity following intragastric EtOH (1 g/kg) or water over 90 minutes. Catalytic activity of acetaldehyde (ACA)-generating (alcohol dehydrogenase [ADH] and catalase) and eliminating aldehyde dehydrogenase [ALDH2] enzymes along with mediators of oxidative stress were measured in myocardial tissues collected at 30, 60, or 90 minutes after EtOH or water. RESULTS EtOH reduced myocardial function (LVDP and dP/dtmax ) within 5 to 10 minutes before the steady fall in BP in conscious proestrus rats. Further, EtOH shifted the sympathovagal balance, analyzed by spectral analysis of high frequency and low frequency of interbeat intervals, toward vagal dominance. Prior vagal blockade (atropine) or antioxidant (tempol) treatment attenuated EtOH-evoked myocardial depression and hypotension. Ex vivo studies revealed time-dependent: (i) enhancement of ADH, but not ALDH2 activity (indicative of elevated ACA levels), (ii) increases in phosphorylated Akt and ERK1/2, NADPH-oxidase activity, reactive oxygen species, malondialdehyde, and 4-hydroxy-2-nonenal-modified proteins. These molecular responses along with reduced myocardial catalase activity were most evident at 90 minutes post-EtOH when the reductions in cardiac function and BP reached their nadir. CONCLUSIONS Vagal dominance and time-dependent myocardial oxidative stress along with the accumulation of cardiotoxic aldehydes mediate EtOH-evoked myocardial dysfunction and hypotension in conscious proestrus female rats.
Collapse
Affiliation(s)
- Badr M Ibrahim
- Department of Pharmacology and Toxicology (BMI, MF, AAR-R), Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | |
Collapse
|
19
|
Méndez L, Pazos M, Molinar-Toribio E, Sánchez-Martos V, Gallardo JM, Rosa Nogués M, Torres JL, Medina I. Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects. J Nutr Biochem 2014; 25:1243-53. [PMID: 25282656 DOI: 10.1016/j.jnutbio.2014.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 01/16/2023]
Abstract
The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague-Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed.
Collapse
Affiliation(s)
- Lucía Méndez
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain.
| | - Manuel Pazos
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain
| | - Eunice Molinar-Toribio
- Instituto de Química Avanzada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Vanesa Sánchez-Martos
- Unidad de Farmacología. Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, E-43201 Reus, Spain
| | - José M Gallardo
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain
| | - M Rosa Nogués
- Unidad de Farmacología. Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, E-43201 Reus, Spain
| | - Josep L Torres
- Instituto de Química Avanzada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain
| |
Collapse
|
20
|
Lumjuan N, Wicheer J, Leelapat P, Choochote W, Somboon P. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism. PLoS One 2014; 9:e102746. [PMID: 25047125 PMCID: PMC4105619 DOI: 10.1371/journal.pone.0102746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/23/2014] [Indexed: 12/03/2022] Open
Abstract
Background Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH) has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism. Methodology/Principal Findings Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald), to phenoxybenzoic acid (PBacid). Conclusions/Significance ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.
Collapse
Affiliation(s)
- Nongkran Lumjuan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| | - Jureeporn Wicheer
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Posri Leelapat
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Wej Choochote
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Campbell JL, Andersen ME, Clewell HJ. A hybrid CFD-PBPK model for naphthalene in rat and human with IVIVE for nasal tissue metabolism and cross-species dosimetry. Inhal Toxicol 2014; 26:333-44. [PMID: 24666369 DOI: 10.3109/08958378.2014.896059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A PBPK model for naphthalene in the rat and human that incorporates a hybrid CFD-PBPK description of the upper respiratory tract was developed to support cross-species dosimetry comparisons of naphthalene concentrations and tissue normalized rate of metabolism in the nasal respiratory and olfactory epithelium, lung and liver. In vitro measurements of metabolic rates from microsomal incubations published for rat and monkey (surrogate for human) were scaled to the specific tissue based on the tissue microsomal content and volume of tissue. The model reproduces time courses for naphthalene blood concentrations from intravenous and inhalation exposures in rats and upper respiratory tract extraction data in both naïve rats and rats pre-treated to inhibit nasal metabolism. This naphthalene model was applied to estimate human equivalent inhalation concentrations (HECs) corresponding to several NOAELs or LOAELs for the non-cancer effects of naphthalene in rats. Two approaches for cross-species extrapolation were compared: (1) equivalence based on tissue naphthalene concentration and (2) equivalence based on amount metabolized per minute (normalized to tissue volume). At the NOAEL of 0.1 ppm, the regional gas dosimetry ratio (RGDR) based on naphthalene concentration was 0.18 for the dorsal olfactory region; however, the RGDR rises to 5.4 when based on the normalized amount metabolized due to the lower of expression of CYP isozymes in the nasal epithelium of primates and humans. The resulting HEC is 0.12 ppm (0.63 mg/m(3)) continuous exposure at the rat NOAEL of 0.1 ppm (6 h/day, 5 days/week).
Collapse
Affiliation(s)
- Jerry L Campbell
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences , Research Triangle Park, NC , USA
| | | | | |
Collapse
|
22
|
Differential hepatic protein tyrosine nitration of mouse due to aging - effect on mitochondrial energy metabolism, quality control machinery of the endoplasmic reticulum and metabolism of drugs. Biochem Biophys Res Commun 2012; 430:231-5. [PMID: 23159622 DOI: 10.1016/j.bbrc.2012.10.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/28/2012] [Indexed: 11/22/2022]
Abstract
Aging is the inevitable fate of life which leads to the gradual loss of functions of different organs and organelles of all living organisms. The liver is no exception. Oxidative damage to proteins and other macromolecules is widely believed to be the primary cause of aging. One form of oxidative damage is tyrosine nitration of proteins, resulting in the potential loss of their functions. In this study, the effect of age on the nitration of tyrosine in mouse liver proteins was examined. Liver proteins from young (19-22 weeks) and old (24 months) C57/BL6 male mice were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose membranes. Proteins undergoing tyrosine nitration were identified using anti-nitrotyrosine antibody. Three different protein bands were found to contain significantly increased levels of nitrotyrosine in old mice (Wilconxon rank-sum test, p<0.05). Electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) was used to identify the proteins in these bands, which included aldehyde dehydrogenase 2, Aldehyde dehydrogenase family 1, subfamily A1, ATP synthase, H(+) transporting, mitochondrial F1 complex, β subunit, selenium-binding protein 2, and protein disulfide-isomerase precursor. The possible impairment of their functions can lead to altered hepatic activity and have been discussed.
Collapse
|
23
|
Tayama Y, Sugihara K, Sanoh S, Miyake K, Kitamura S, Ohta S. Developmental Changes of Aldehyde Oxidase Activity and Protein Expression in Human Liver Cytosol. Drug Metab Pharmacokinet 2012; 27:543-7. [DOI: 10.2133/dmpk.dmpk-11-nt-124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Ivan FX, Rajapakse JC, Welsch RE, Rozen SG, Narasaraju T, Xiong GM, Engelward BP, Chow VT. Differential pulmonary transcriptomic profiles in murine lungs infected with low and highly virulent influenza H3N2 viruses reveal dysregulation of TREM1 signaling, cytokines, and chemokines. Funct Integr Genomics 2011; 12:105-17. [PMID: 21874528 DOI: 10.1007/s10142-011-0247-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/22/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022]
Abstract
Investigating the relationships between critical influenza viral mutations contributing to increased virulence and host expression factors will shed light on the process of severe pathogenesis from the systems biology perspective. We previously generated a mouse-adapted, highly virulent influenza (HVI) virus through serial lung-to-lung passaging of a human influenza H3N2 virus strain that causes low virulent influenza (LVI) in murine lungs. This HVI virus is characterized by enhanced replication kinetics, severe lung injury, and systemic spread to major organs. Our gene microarray investigations compared the host transcriptomic responses of murine lungs to LVI virus and its HVI descendant at 12, 48, and 96 h following infection. More intense expression of genes associated with cytokine activity, type 1 interferon response, and apoptosis was evident in HVI at all time-points. We highlighted dysregulation of the TREM1 signaling pathway (an amplifier of cytokine production) that is likely to be upregulated in infiltrating neutrophils in HVI-infected lungs. The cytokine gene expression changes were corroborated by elevated levels of multiple cytokine and chemokine proteins in the bronchoalveolar lavage fluid of infected mice, especially at 12 h post-infection. Concomitantly, the downregulation of genes that mediate proliferative, developmental, and metabolic processes likely contributed to the lethality of HVI as well as lack of lung repair. Overall, our comparative transcriptomic study provided insights into key host factors that influence the dynamics, pathogenesis, and outcome of severe influenza.
Collapse
Affiliation(s)
- Fransiskus X Ivan
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Berger MJ, Minnerath SR, Adams SD, Tigges BM, Sprague SL, McKenna DH. Gene expression changes with differentiation of cord blood stem cells to respiratory epithelial cells: a preliminary observation. Stem Cell Res Ther 2011; 2:19. [PMID: 21489244 PMCID: PMC3226290 DOI: 10.1186/scrt60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/17/2011] [Accepted: 04/13/2011] [Indexed: 12/12/2022] Open
Abstract
Introduction Owing to wide availability, low cost and avoidance of ethical concerns, umbilical cord blood (UCB) provides an attractive source of stem cells for investigational and therapeutic uses. In this study, we sought to characterize the gene expression changes as stem cells from UCB differentiate toward alveolar type II pneumocytes (ATII). Methods Control and experimental cells were cultured in maintenance medium (mesenchymal stem cell growth medium) or differentiation medium (small airway growth medium (SAGM)), respectively, for 8 days. Total RNA was isolated from control and experimental groups for gene expression profiling and real-time polymerase chain reaction assay. Results Analysis of only mixed cell lines (n = 2) with parameters including a P value of 0.01 and an intergroup gap of 2.0 yielded a set of 373 differentially expressed genes. Prominently upregulated genes included several genes associated with ATII cells and also lung cancers: ALDH3A1, VDR and CHKA. Several upregulated genes have been shown to be integral or related to ATII functioning: SGK1, HSD17B11 and LEPR. Finally, several upregulated genes appear to play a role in lung cancers, including FDXR and GP96. Downregulated genes appear to be associated with bone, muscle and central nervous system tissues as well as other widespread tissues. Conclusions To the best of our knowledge, this accounting of the gene expression changes associated with the differentiation of a human UCB-derived stem cell toward an ATII cell represents the first such effort. Dissecting which components of SAGM affect specific gene regulation events is warranted.
Collapse
Affiliation(s)
- Michael J Berger
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, MMC609, Minneapolis, MN 5545, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Douville J, Beaulieu R, Balicki D. ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev 2010; 18:17-25. [PMID: 18573038 DOI: 10.1089/scd.2008.0055] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells have now been described in a variety of tissues, even in those where the cells' turn over rate is slow, such as the brain and the resting mammary gland. There is also accumulating evidence that tumors are derived from and are maintained by a rare population of dysregulated stem cells. However, discrepancies in the markers used and reported have slowed down the functional characterization of these somatic stem cells. To circumvent this challenging issue, universal stem cell markers with properties common to all stem cell types must be discovered and exploited. In line with this idea, the measurement of aldehyde dehydrogenase isoform 1 (ALDH1) activity shows promising potential as a universal marker for the identification and isolation of stem cells from multiple sources. Herein, we review the available data reporting utilization of ALDH1 activity as a means to identify and isolate stem cells and cancer stem cells, with a special focus on the mammary gland and breast cancer.
Collapse
Affiliation(s)
- Julie Douville
- Research Centre (CRCHUM) and Department of Medicine, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
27
|
Dani D, Shimokawa I, Komatsu T, Higami Y, Warnken U, Schokraie E, Schnölzer M, Krause F, Sugawa MD, Dencher NA. Modulation of oxidative phosphorylation machinery signifies a prime mode of anti-ageing mechanism of calorie restriction in male rat liver mitochondria. Biogerontology 2009; 11:321-34. [PMID: 19894137 DOI: 10.1007/s10522-009-9254-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
Abstract
Mitochondria being the major source and target of reactive oxygen species (ROS) play a crucial role during ageing. We analyzed ageing and calorie restriction (CR)-induced changes in abundance of rat liver mitochondrial proteins to understand key aspects behind the age-retarding mechanism of CR. The combination of blue-native (BN) gel system with fluorescence Difference Gel Electrophoresis (DIGE) facilitated an efficient analysis of soluble and membrane proteins, existing as monomers or multi-protein assemblies. Changes in abundance of specific key subunits of respiratory chain complexes I, IV and V, critical for activity and/or assembly of the complexes were identified. CR lowered complex I assembly and complex IV activity, which is discussed as a molecular mechanism to minimize ROS production at mitochondria. Notably, the antioxidant system was found to be least affected. The GSH:GSSG couple could be depicted as a rapid mean to handle the fluctuations in ROS levels led by reversible metabolic shifts. We evaluated the relative significance of ROS generation against quenching. We also observed parallel and unidirectional changes as effect of ageing and CR, in subunits of ATP synthase, cytochrome P450 and glutathione S-transferase. This is the first report on such 'putatively hormetic' ageing-analogous effects of CR, besides the age-retarding ones.
Collapse
Affiliation(s)
- Diksha Dani
- Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt, Petersenstrasse 22, Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Elbarbry F, Alcorn J. Ontogeny of glutathione and glutathione-related antioxidant enzymes in rat liver. Res Vet Sci 2009; 87:242-4. [DOI: 10.1016/j.rvsc.2009.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 02/11/2009] [Accepted: 03/03/2009] [Indexed: 01/21/2023]
|
29
|
Sawyer K, Samet JM, Ghio AJ, Pleil JD, Madden MC. Responses measured in the exhaled breath of human volunteers acutely exposed to ozone and diesel exhaust. J Breath Res 2008; 2:037019. [DOI: 10.1088/1752-7155/2/3/037019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Enzymes of glycerol and glyceraldehyde metabolism in mouse liver: effects of caloric restriction and age on activities. Biosci Rep 2008; 28:107-15. [PMID: 18429748 DOI: 10.1042/bsr20080015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The influence of caloric restriction on hepatic glyceraldehyde- and glycerol-metabolizing enzyme activities of young and old mice were studied. Glycerol kinase and cytoplasmic glycerol-3-phosphate dehydrogenase activities were increased in both young and old CR (calorie-restricted) mice when compared with controls, whereas triokinase increased only in old CR mice. Aldehyde dehydrogenase and aldehyde reductase activities in both young and old CR mice were unchanged by caloric restriction. Mitochondrial glycerol-3-phosphate dehydrogenase showed a trend towards an increased activity in old CR mice, whereas a trend towards a decreased activity in alcohol dehydrogenase was observed in both young and old CR mice. Serum glycerol levels decreased in young and old CR mice. Therefore increases in glycerol kinase and glycerol-3-phosphate dehydrogenase were associated with a decrease in fasting blood glycerol levels in CR animals. A prominent role for triokinase in glyceraldehyde metabolism with CR was also observed. The results indicate that long-term caloric restriction induces sustained increases in the capacity for gluconeogenesis from glycerol.
Collapse
|
31
|
Alterations in the proteome of pulmonary alveolar type II cells in the rat after hepatic ischemia-reperfusion. Crit Care Med 2008; 36:1846-54. [PMID: 18496381 DOI: 10.1097/ccm.0b013e31816f49cb] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Hepatic ischemia-reperfusion can be associated with acute lung injury. Alveolar epithelial type II cells (ATII) play an important role in maintaining lung homeostasis in acute lung injury. DESIGN To study potentially new mechanisms of hepatic ischemia-reperfusion-induced lung injury, we examined how liver ischemia-reperfusion altered the proteome of ATII. SETTING Laboratory investigation. SUBJECTS Spontaneously breathing male Zucker rats. INTERVENTIONS Rats were anesthetized with isoflurane. The vascular supply to the left and medial lobe of the liver was clamped for 75 mins and then reperfused. Sham-operated rats were used as controls. After 8 hrs, rats were killed. MEASUREMENTS AND MAIN RESULTS Bronchoalveolar lavage and differential cell counts were performed, and tumor necrosis factor-alpha and cytokine-induced neutrophil chemotactic factor-1 in plasma were determined by enzyme-linked immunosorbent assay. ATII were isolated, lysed, tryptically digested, and labeled using isobaric tags (iTRAQ). The samples were fractionated by cation exchange chromatography, separated by high-performance liquid-chromatography, and identified using electrospray tandem mass spectrometry. Spectra were interrogated and quantified using ProteinProspector. Quantitative proteomics provided quantitative data for 94 and 97 proteins in the two groups. Significant changes in ATII protein content included 30% to 40% increases in adenosine triphosphate synthases, adenosine triphosphate/adenosine diphosphate translocase, and catalase (all p < .001). Following liver ischemia-reperfusion, there was also a significant increase in the percentage of neutrophils in bronchoalveolar lavage (48% +/- 26%) compared with sham-operated controls (5% +/- 3%) (p < .01), and plasma tumor necrosis factor-alpha levels were also significantly increased. CONCLUSIONS The proteins identified by quantitative proteomics indicated significant changes in moderators of cell metabolism and host defense in ATII. These findings provide new insights into possible mechanisms responsible for hepatic ischemia-reperfusion-related acute lung injury and suggest that ATII cells in the lung sense and respond to hepatic injury.
Collapse
|
32
|
Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J Neurosci 2008; 28:6239-49. [PMID: 18550766 PMCID: PMC6670537 DOI: 10.1523/jneurosci.4956-07.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 05/02/2008] [Accepted: 05/04/2008] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress may underlie age-dependent memory loss and cognitive decline. Toxic aldehydes, including 4-hydroxy-2-nonenal (HNE), an end product of lipid peroxides, are known to accumulate in the brain in neurodegenerative disease. We have previously shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies HNE by oxidizing its aldehyde group. To investigate the role of such toxic aldehydes, we produced transgenic mice, which expressed a dominant-negative form of ALDH2 in the brain. The mice had decreased ability to detoxify HNE in their cortical neurons and accelerated accumulation of HNE in the brain. Consequently, their lifespan was shortened and age-dependent neurodegeneration and hyperphosphorylation of tau were observed. Object recognition and Morris water maze tests revealed that the onset of cognitive impairment correlated with the degeneration, which was further accelerated by APOE (apolipoprotein E) knock-out; therefore, the accumulation of toxic aldehydes is by itself critical in the progression of neurodegenerative disease, which could be suppressed by ALDH2.
Collapse
Affiliation(s)
- Ikuroh Ohsawa
- Department of Biochemistry and Cell Biology and
- The Center of Molecular Hydrogen Medicine, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki 211-8533, Japan
| | | | | | - Yuko Suzuki
- Department of Biochemistry and Cell Biology and
| | | | - Shigeo Ohta
- Department of Biochemistry and Cell Biology and
| |
Collapse
|
33
|
Teeguarden JG, Bogdanffy MS, Covington TR, Tan C, Jarabek AM. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Inhal Toxicol 2008; 20:375-90. [PMID: 18302046 DOI: 10.1080/08958370801903750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and respiratory epithelium in rats at concentrations > 50 ppm (90 day exposure) and respiratory and olfactory nasal tumors at concentrations > or = 750 ppm, the lowest concentration tested in the 2-yr chronic bioassay. Differences in the anatomy and biochemistry of the rodent and human nose, including polymorphisms in human high-affinity acetaldehyde dehydrogenase (ALDH2), are important considerations for interspecies extrapolations in the risk assessment of acetaldehyde. A physiologically based pharmacokinetic model of rat and human nasal tissues was constructed for acetaldehyde to support a dosimetry-based risk assessment for acetaldehyde (Dorman et al., 2008). The rodent model was developed using published metabolic constants and calibrated using upper-respiratory-tract acetaldehyde extraction data. The human nasal model incorporates previously published tissue volumes, blood flows, and acetaldehyde metabolic constants. ALDH2 polymorphisms were represented in the human model as reduced rates of acetaldehyde metabolism. Steady-state dorsal olfactory epithelial tissue acetaldehyde concentrations in the rat were predicted to be 409, 6287, and 12,634 microM at noncytotoxic (50 ppm), and cytotoxic/tumorigenic exposure concentrations (750 and 1500 ppm), respectively. The human equivalent concentration (HEC) of the rat no-observed-adverse-effect level (NOAEL) of 50 ppm, based on steady-state acetaldehyde concentrations from continual exposures, was 67 ppm. Respiratory and olfactory epithelial tissue acetaldehyde and H(+) (pH) concentrations were largely linear functions of exposure in both species. The impact of presumed ALDH2 polymorphisms on human olfactory tissue concentrations was negligible; the high-affinity, low-capacity ALDH2 does not contribute significantly to acetaldehyde metabolism in the nasal tissues. The human equivalent acetaldehyde concentration for homozygous low activity was 66 ppm, 1.5% lower than for the homozygous full activity phenotype. The rat and human acetaldehyde PBPK models developed here can also be used as a bridge between acetaldehyde dose-response and mode-of-action data as well as between similar databases for other acetaldehyde-producing nasal toxicants.
Collapse
Affiliation(s)
- Justin G Teeguarden
- Biological Monitoring and Modeling, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
34
|
Yoon M, Barton HA. Predicting maternal rat and pup exposures: how different are they? Toxicol Sci 2007; 102:15-32. [PMID: 18024990 DOI: 10.1093/toxsci/kfm286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Risk and safety assessments for early life exposures to environmental chemicals or pharmaceuticals based on cross-species extrapolation would greatly benefit from information on chemical dosimetry in the young. Although relevant toxicity studies involve exposures during multiple life stages, the mother's exposure dose is frequently used for extrapolation of rodent toxicity findings to humans and represents a substantial source of uncertainty. A compartmental pharmacokinetic model augmented with biological information on factors changing during lactation and early postweaning was developed. The model uses adult pharmacokinetics, milk distribution, and relevant postnatal biology to predict dosimetry in the young for chemicals. The model addressed three dosing strategies employed in toxicity studies (gavage, constant ppm diet, and adjusted ppm diet) and the impact of different pharmacokinetic properties such as rates of clearance, milk distribution, and volume of distribution on the pup exposure doses and internal dosimetry. Developmental delays in clearance and recirculation of chemical in excreta from the pup to mother were evaluated. Following comparison with data for two chemicals, predictions were made for theoretical chemicals with a range of characteristics. Pup exposure was generally lower than the mother's with a shorter half-life, lower milk transfer, larger volume of distribution, and gavage dosing, while higher with longer half-life, higher milk transfer, smaller volume of distribution, and dietary exposures. The present model demonstrated pup exposures do not always parallel the mother's. The model predictions can be used to help design early life toxicity and pharmacokinetic studies and better interpret study findings.
Collapse
Affiliation(s)
- Miyoung Yoon
- National Research Council Research Associateship Program at U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
35
|
Tayama Y, Moriyasu A, Sugihara K, Ohta S, Kitamura S. Developmental Changes of Aldehyde Oxidase in Postnatal Rat Liver. Drug Metab Pharmacokinet 2007; 22:119-24. [PMID: 17495419 DOI: 10.2133/dmpk.22.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, the developmental changes and variability of aldehyde oxidase in postnatal rat liver were examined. Postnatal day 1, 7 and 14 rats showed little or no liver aldehyde oxidase activity, as evaluated in terms of the activities for oxidation of benzaldehyde to benzoic acid, N-1-methylnicotinamide (NMN) to N-1-methyl-2-pyridone-5-carboxamide (2-PY) and N-1-methyl-4-pyridone-3-carboxamide (4-PY), and methotrexate (MTX) to 7-hydroxymethotrexate (7-OH-MTX). However, these oxidase activities were markedly increased in liver cytosol from the rats after postnatal day 14. The activity was then maintained up to 6 weeks. The amounts of 2-PY and 4-PY formed from NMN were almost the same. The development of aldehyde oxidase activity toward benzaldehyde was closely correlated with that of oxidase activity toward NMN and MTX. The expression of aldehyde oxidase at postnatal day 14 was confirmed by Western blotting analysis. The density of bands of aldehyde oxidase was closely correlated with the oxidase activity toward benzaldehyde. The developmental changes of aldehyde oxidase activities during postnatal reflected the changes in the amount of the oxidase protein. Thus, aldehyde oxidase activity in rats rapidly increases from birth, reaching a plateau within 4 weeks, and is regulated by expression of the protein.
Collapse
Affiliation(s)
- Yoshitaka Tayama
- Division of Medicinal Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
36
|
Xu D, Guthrie JR, Mabry S, Sack TM, Truog WE. Mitochondrial aldehyde dehydrogenase attenuates hyperoxia-induced cell death through activation of ERK/MAPK and PI3K-Akt pathways in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L966-75. [PMID: 16782756 DOI: 10.1152/ajplung.00045.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oxygen toxicity is one of the major risk factors in the development of the chronic lung disease or bronchopulmonary dysplasia in premature infants. Using proteomic analysis, we discovered that mitochondrial aldehyde dehydrogenase (mtALDH or ALDH2) was downregulated in neonatal rat lung after hyperoxic exposure. To study the role of mtALDH in hyperoxic lung injury, we overexpressed mtALDH in human lung epithelial cells (A549) and found that mtALDH significantly reduced hyperoxia-induced cell death. Compared with control cells (Neo-A549), the necrotic cell death in mtALDH-overexpressing cells (mtALDH-A549) decreased from 25.3 to 6.5%, 50.5 to 9.1%, and 52.4 to 15.1% after 24-, 48-, and 72-h hyperoxic exposure, respectively. The levels of intracellular and mitochondria-derived reactive oxygen species (ROS) in mtALDH-A549 cells after hyperoxic exposure were significantly lowered compared with Neo-A549 cells. mtALDH overexpression significantly stimulated extracellular signal-regulated kinase (ERK) phosphorylation under normoxic and hyperoxic conditions. Inhibition of ERK phosphorylation partially eliminated the protective effect of mtALDH in hyperoxia-induced cell death, suggesting ERK activation by mtALDH conferred cellular resistance to hyperoxia. mtALDH overexpression augmented Akt phosphorylation and maintained the total Akt level in mtALDH-A549 cells under normoxic and hyperoxic conditions. Inhibition of phosphatidylinositol 3-kinase (PI3K) activation by LY294002 in mtALDH-A549 cells significantly increased necrotic cell death after hyperoxic exposure, indicating that PI3K-Akt activation by mtALDH played an important role in cell survival after hyperoxia. Taken together, these data demonstrate that mtALDH overexpression attenuates hyperoxia-induced cell death in lung epithelial cells through reduction of ROS, activation of ERK/MAPK, and PI3K-Akt cell survival signaling pathways.
Collapse
Affiliation(s)
- Dong Xu
- Neonatology Research Laboratory, Children's Mercy Hospital, Pediatric Research Center, 4th Floor, 2401 Gillham Rd., Kansas City, MO 64108, USA.
| | | | | | | | | |
Collapse
|