1
|
Zhu L, Su W, Xu X, Shao S, Qin C, Gao R, Wang X, Ma M, Gao J, Zhang Z. Sphincter of Oddi Dysfunction Induces Gallstone by Inhibiting the Expression of ABCB11 via PKC-α. Appl Biochem Biotechnol 2024; 196:5373-5390. [PMID: 38158489 DOI: 10.1007/s12010-023-04818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The abnormal increase of Oddi sphincter pressure and total bile duct pressure may play an important role in the formation of cholesterol stones, but the specific molecular mechanism is still unclear. This study aims to investigate it through in vitro and in vivo experiments. A mouse model of Oddi sphincter dysfunction was constructed by stone-inducing diet. We compared the two groups with PKC-α inhibitor GÖ6976 and PKC-α agonist thymeleatoxin. Oddi sphincter pressure and total bile duct pressure were measured. Biochemical analysis of total cholesterol, bile acid and bilirubin was then conducted. The histopathologic changes of bile duct were observed by HE staining and the ultrastructure of liver cells and surrounding tissues was observed by transmission electron microscopy. Through the above experiments, we found that the change of PKC-α expression may affect the formation process of gallstones. The relationship between PKC-α and ABCB11 was further verified by in vitro and in vivo experiments. Our results suggest that ABCB11 and PKC-α are co-expressed in the tubule membrane of hepatocytes and interact with each other in hepatocytes. The high cholesterol diet further enhances the activation of PKC-α and thus reduces the expression of ABCB11. The formation of cholesterol stones is associated with the down-regulation of ABCB11 expression in the tubule membrane of hepatocytes due to kinase signaling. This is the first study to demonstrate that sphincter of Oddi dysfunction induces gallstones through PKC-α inhibition of ABCB11 expression.
Collapse
Affiliation(s)
- Lichao Zhu
- Department of Pediatric Surgery, Shandong Provincial Hospital, Shandong University , Jinan, 250021, China
| | - Wei Su
- Liver Gall Bladder and Pancreatic Surgery Ward, Qinghai Red Cross Hospital, Xining, 810001, China
| | - Xianwen Xu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shuai Shao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chuan Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Ruxin Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Mingze Ma
- Departments of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Junlin Gao
- Liver Gall Bladder and Pancreatic Surgery Ward, Qinghai Red Cross Hospital, Xining, 810001, China.
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China.
| |
Collapse
|
2
|
Salas G, Litta AA, Medeot AC, Schuck VS, Andermatten RB, Miszczuk GS, Ciriaci N, Razori MV, Barosso IR, Sánchez Pozzi EJ, Roma MG, Basiglio CL, Crocenzi FA. NADPH oxidase-generated reactive oxygen species are involved in estradiol 17ß-d-glucuronide-induced cholestasis. Biochimie 2024; 223:41-53. [PMID: 38608750 DOI: 10.1016/j.biochi.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The endogenous metabolite of estradiol, estradiol 17β-D-glucuronide (E17G), is considered the main responsible of the intrahepatic cholestasis of pregnancy. E17G alters the activity of canalicular transporters through a signaling pathway-dependent cellular internalization, phenomenon that was attributed to oxidative stress in different cholestatic conditions. However, there are no reports involving oxidative stress in E17G-induced cholestasis, representing this the aim of our work. Using polarized hepatocyte cultures, we showed that antioxidant compounds prevented E17G-induced Mrp2 activity alteration, being this alteration equally prevented by the NADPH oxidase (NOX) inhibitor apocynin. The model antioxidant N-acetyl-cysteine prevented, in isolated and perfused rat livers, E17G-induced impairment of bile flow and Mrp2 activity, thus confirming the participation of reactive oxygen species (ROS) in this cholestasis. In primary cultured hepatocytes, pretreatment with specific inhibitors of ERK1/2 and p38MAPK impeded E17G-induced ROS production; contrarily, NOX inhibition did not affect ERK1/2 and p38MAPK phosphorylation. Both, knockdown of p47phox by siRNA and preincubation with apocynin in sandwich-cultured rat hepatocytes significantly prevented E17G-induced internalization of Mrp2, suggesting a crucial role for NOX in this phenomenon. Concluding, E17G-induced cholestasis is partially mediated by NOX-generated ROS through internalization of canalicular transporters like Mrp2, being ERK1/2 and p38MAPK necessary for NOX activation.
Collapse
Affiliation(s)
- Gimena Salas
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Alen A Litta
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Anabela C Medeot
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Virginia S Schuck
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Romina B Andermatten
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Nadia Ciriaci
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Ma Valeria Razori
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Ismael R Barosso
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| |
Collapse
|
3
|
Pang L, Cui M, Wu S, Kong J. Cav-1 regulates the bile salt export pump on the canalicular membrane of hepatocytes by PKCα-associated signalling under cholesterol stimulation. J Cell Mol Med 2024; 28:e18110. [PMID: 38164042 PMCID: PMC10844719 DOI: 10.1111/jcmm.18110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND AIMS The secretion of bile salts transported by the bile salt export pump (BSEP) is the primary driving force for the generation of bile flow; thus, it is closely related to the formation of cholesterol stones. Caveolin-1 (Cav-1), an essential player in cell signalling and endocytosis, is known to co-localize with cholesterol-rich membrane domains. This study illustrates the role of Cav-1 and BSEP in cholesterol stone formation. METHODS Adult male C57BL/6 mice were used as an animal model. HepG2 cells were cultured under different cholesterol concentrations and BSEP, Cav-1, p-PKCα and Hax-1 expression levels were determined via Western blotting. Expression levels of BSEP and Cav-1 mRNA were detected using real-time PCR. Immunofluorescence and immunoprecipitation assays were performed to study BSEP and Hax-1 distribution. Finally, an ATPase activity assay was performed to detect BSEP transport activity under different cholesterol concentrations in cells. RESULTS Under low-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels significantly increased, PKCα phosphorylation significantly decreased, BSEP binding capacity to Hax-1 weakened, and BSEP function increased. Under high-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels decreased, PKCα phosphorylation increased, BSEP binding capacity to Hax-1 rose, and BSEP function decreased. CONCLUSION Cav-1 regulates the bile salt export pump on the canalicular membrane of hepatocytes via PKCα-associated signalling under cholesterol stimulation.
Collapse
Affiliation(s)
- Liwei Pang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Meiying Cui
- Department of Anesthesiology, Shengjing HospitalChina Medical UniversityShenyangChina
| | - Shuodong Wu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jing Kong
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Pan Q, Luo G, Qu J, Chen S, Zhang X, Zhao N, Ding J, Yang H, Li M, Li L, Cheng Y, Li X, Xie Q, Li Q, Zhou X, Zou H, Fan S, Zou L, Liu W, Deng G, Cai S, Boyer JL, Chai J. A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis. EMBO Mol Med 2021; 13:e14563. [PMID: 34585848 PMCID: PMC8573601 DOI: 10.15252/emmm.202114563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Semaphorin 7A (SEMA7A) is a membrane-bound protein that involves axon growth and other biological processes. SEMA7A mutations are associated with vertebral fracture and Kallmann syndrome. Here, we report a case with a mutation in SEMA7A that displays familial cholestasis. WGS reveals a SEMA7AR148W homozygous mutation in a female child with elevated levels of serum ALT, AST, and total bile acid (TBA) of unknown etiology. This patient also carried a SLC10A1S267F allele, but Slc10a1S267F homozygous mice exhibited normal liver function. Similar to the child, Sema7aR145W homozygous mice displayed elevated levels of serum ALT, AST, and TBA. Remarkably, liver histology and LC-MS/MS analyses exhibited hepatocyte hydropic degeneration and increased liver bile acid (BA) levels in Sema7aR145W homozygous mice. Further mechanistic studies demonstrated that Sema7aR145W mutation reduced the expression of canalicular membrane BA transporters, bile salt export pump (Bsep), and multidrug resistance-associated protein-2 (Mrp2), causing intrahepatic cholestasis in mice. Administration with ursodeoxycholic acid and a dietary supplement glutathione improved liver function in the child. Therefore, Sema7aR145W homozygous mutation causes intrahepatic cholestasis by reducing hepatic Bsep and Mrp2 expression.
Collapse
Affiliation(s)
- Qiong Pan
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Gang Luo
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jiaquan Qu
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Sheng Chen
- Department of PediatricsSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xiaoxun Zhang
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Nan Zhao
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingjing Ding
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hong Yang
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Mingqiao Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ling Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ying Cheng
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xuan Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiaoling Xie
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiao Li
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xueqian Zhou
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Huiling Zou
- Department of PediatricsChangsha Hospital for Maternal & Child Health CareChangshaChina
| | - Shijun Fan
- Medical Research CenterSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lingyun Zou
- Bao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Wei Liu
- Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Guohong Deng
- Department of Infectious DiseasesSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Shi‐Ying Cai
- Department of Internal Medicine and Liver CenterYale University School of MedicineNew HavenCTUSA
| | - James L Boyer
- Department of Internal Medicine and Liver CenterYale University School of MedicineNew HavenCTUSA
| | - Jin Chai
- Cholestatic Liver Diseases CenterDepartment of GastroenterologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
5
|
Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ, Roma MG. Oxidative Stress and Localization Status of Hepatocellular Transporters: Impact on Bile Secretion and Role of Signaling Pathways. Antioxid Redox Signal 2021; 35:808-831. [PMID: 34293961 DOI: 10.1089/ars.2021.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Most hepatopathies are primarily or secondarily cholestatic in nature. Oxidative stress (OS) is a frequent trait among them, and impairs the machinery to generate bile by triggering endocytic internalization of hepatocellular transporters, thus causing cholestasis. This is critical, since it leads to accelerated transporter degradation, which could explain the common post-transcriptional downregulation of transporter expression in human cholestatic diseases. Recent Advances: The mechanisms involved in OS-induced hepatocellular transporter internalization are being revealed. Filamentous actin (F-actin) cytoskeleton disorganization and/or detachment of crosslinking actin proteins that afford transporter stability have been characterized as causal factors. Activation of redox-sensitive signaling pathways leading to changes in phosphorylation status of these structures is involved, including Ca2+-mediated activation of "classical" and "novel" protein kinase C (PKC) isoforms or redox-signaling cascades downstream of NADPH oxidase. Critical Issues: Despite the well-known occurrence of hepatocellular transporter internalization in human hepatopathies, the cholestatic implications of this phenomenon have been overlooked. Accordingly, no specific treatment has been established in the clinical practice for its prevention/reversion. Future Directions: We need to improve our knowledge on the pro-oxidant triggering factors and the multiple signaling pathways that mediate this oxidative injury in each cholestatic hepatopathy, so as to envisage tailor-made therapeutic strategies for each case. Meanwhile, administration of antioxidants or heme oxygenase-1 induction to elevate the hepatocellular levels of the endogenous scavenger bilirubin are promising alternatives that need to be re-evaluated and implemented. They may complement current treatments in cholestasis aimed to enhance transcriptional carrier expression, by providing membrane stability to the newly synthesized carriers. Antioxid. Redox Signal. 35, 808-831.
Collapse
Affiliation(s)
- Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| |
Collapse
|
6
|
Vesicular ATP-binding cassette transporters in human disease: relevant aspects of their organization for future drug development. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
7
|
Anticholestatic Effect of Bardoxolone Methyl on Hepatic Ischemia-reperfusion Injury in Rats. Transplant Direct 2020; 6:e584. [PMID: 32766432 PMCID: PMC7371100 DOI: 10.1097/txd.0000000000001017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Cholestasis is a sign of hepatic ischemia-reperfusion injury (IRI), which is caused by the dysfunction of hepatocyte membrane transporters (HMTs). As transcriptional regulation of HMTs during oxidative stress is mediated by nuclear factor erythroid 2-related factor 2, we hypothesized that bardoxolone methyl (BARD), a nuclear factor erythroid 2-related factor 2 activator, can mitigate cholestasis associated with hepatic IRI. Methods. BARD (2 mg/kg) or the vehicle was intravenously administered into rats immediately before sham surgery, 60 min of ischemia (IR60), or 90 min of ischemia (IR90); tissue and blood samples were collected after 24 h to determine the effect on key surrogate markers of bile metabolism and expression of HMT genes (Mrp (multidrug resistance-associated protein) 2, bile salt export pump, Mrp3, sodium-taurocholate cotransporter, and organic anion-transporting polypeptide 1). Results. Significantly decreased serum bile acids were detected upon BARD administration in the IR60 group but not in the IR90 group. Hepatic tissue analyses revealed that BARD administration increased mRNA levels of Mrp2 and Mrp3 in the IR60 group, and it decreased those of bile salt export pump in the IR90 group. Protein levels of multidrug resistance–associated protein 2, multidrug resistance–associated protein 3, and sodium-taurocholate cotransporter were higher in the IR90 group relative to those in the sham or IR60 groups, wherein the difference was notable only when BARD was administered. Immunohistochemical and morphometric analyses showed that the area of expression for multidrug resistance–associated protein 2 and for sodium-taurocholate cotransporter was larger in the viable tissues than in the necrotic area, and the area for multidrug resistance–associated protein 3 was smaller; these differences were notable upon BARD administration. Conclusions. BARD may have the potential to change HMT regulation to mitigate cholestasis in hepatic IRI.
Collapse
|
8
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
9
|
Salas-Silva S, Simoni-Nieves A, Razori MV, López-Ramirez J, Barrera-Chimal J, Lazzarini R, Bello O, Souza V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Roma MG, Bucio-Ortiz L. HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochem Pharmacol 2020; 174:113812. [PMID: 31954718 DOI: 10.1016/j.bcp.2020.113812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - María Valeria Razori
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina
| | - Jocelyn López-Ramirez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Jonatan Barrera-Chimal
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Oscar Bello
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico
| | - Verónica Souza
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roxana U Miranda-Labra
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Marcelo G Roma
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina.
| | - Leticia Bucio-Ortiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells. Acta Pharmacol Sin 2020; 41:56-64. [PMID: 31316180 PMCID: PMC7468545 DOI: 10.1038/s41401-019-0266-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
It was reported that antituberculosis medicines could induce liver damage via oxidative stress. In this study, we investigated the effects of rifampicin (RFP) on the membrane expression of multidrug resistance-associated protein 2 (MRP2) and the relationship between oxidative stress and RFP-induced endocytosis of MRP2 in HepG2 cells. We found that RFP (12.5–50 μM) dose-dependently decreased the expression and membrane localization of MRP2 in HepG2 cells without changing the messenger RNA level. RFP (50 μM) induced oxidative stress responses that further activated the PKC-ERK/JNK/p38 (protein kinase C-extracellular signal-regulated kinase/c-JUN N-terminal kinase/p38) and PI3K (phosphoinositide 3-kinase) signaling pathways in HepG2 cells. Pretreatment with glutathione reduced ethyl ester (2 mM) not only reversed the changes in oxidative stress indicators and signaling molecules but also diminished RFP-induced reduction in green fluorescence intensity of MRP2. We conducted co-immunoprecipitation assays and revealed that a direct interaction existed among MRP2, clathrin, and adaptor protein 2 (AP2) in HepG2 cells, and their expression was clearly affected by the changes in intracellular redox levels. Knockdown of clathrin or AP2 with small interfering RNA attenuated RFP-induced decreases of membrane and total MRP2. We further demonstrated that RFP markedly increased the ubiquitin–proteasome degradation of MRP2 in HepG2 cells, which was mediated by the E3 ubiquitin ligase GP78, but not HRD1 or TEB4. In conclusion, this study demonstrates that RFP-induced oxidative stress activates the PKC-ERK/JNK/p38 and PI3K signaling pathways that leads to clathrin-dependent endocytosis and ubiquitination of MRP2 in HepG2 cells, which provides new insight into the mechanism of RFP-induced cholestasis.
Collapse
|
11
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
12
|
Saad Al-Dhuayan I. Possible Protective Role of Whey Protein on the Rat's Liver Tissues Treated with Nandrolone decanoate. Pak J Biol Sci 2018; 21:262-274. [PMID: 30311477 DOI: 10.3923/pjbs.2018.262.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Nandrolone and whey protein are used as supplementary food and athletic food. The aim of this study was to evaluate the possible histological and ultrastructural alterations in the liver of adult rats after treatment of the anabolic androgenic steroids (Nandrolone decanoate) and whey protein. MATERIALS AND METHODS Twenty eight Wistar Albino male rats were used in the present study divided into 4 groups: Control group received 0.5 mL of saline solution by oral, Nandrolone group injected intramuscular (10 mg kg-1 b.wt./week for 3 months), whey protein group treated by oral (5 mg kg-1 b.wt./week for 3 months) and Nandrolone and whey protein group. At the end of the experimentation, all the rats were sacrificed and liver samples were processed for histological and ultrastructural examination. Haematoxylin and eosin stains for general histological examination and Mallory trichrome stain for collagen fibers. RESULTS Light microscopy examination of the liver of the nandrolone group showed bleeding and widening of the blood sinusoids. Degeneration, vacuolation, coagulative necrosis and pyknotic nuclei were observed. In addition, increased collagen fibers were detected. Whey protein group showed more or less normal hepatocytes, blood sinusoids and collagen fibers. The nandrolone and whey protein group illustrated normal appearance of hepatocytes with vacuolation in some of the hepatocytes and normal blood sinusoids and collagen fibers were noticed. Electron microscopic examination of the nandrolone group showed depletion of the nuclear chromatin, damaged mitochondria, increased of lysosomes, some lipid droplets, damaged blood sinusoids and space of Disse and increased of Kupffer cells, whereas the whey protein group appeared normal. The nandrolone and whey protein group showed well developed hepatocytes, regular space of Disse and normal hepatic sinusoids. CONCLUSIONS Whey protein may be ameliorate the hepatic architecture after treatment with nandrolone.
Collapse
|
13
|
Luo L, Xi C, Xu T, Zhang G, Qun E, Zhang W. Muscarinic receptor mediated signaling pathways in hepatocytes from CCL4 - induced liver fibrotic rat. Eur J Pharmacol 2017; 807:109-116. [DOI: 10.1016/j.ejphar.2017.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
|
14
|
TRB3 mediates advanced glycation end product-induced apoptosis of pancreatic β-cells through the protein kinase C β pathway. Int J Mol Med 2017; 40:130-136. [PMID: 28534945 PMCID: PMC5466392 DOI: 10.3892/ijmm.2017.2991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/05/2017] [Indexed: 12/29/2022] Open
Abstract
Advanced glycation end products (AGEs), which accumulate in the body during the development of diabetes, may be one of the factors leading to pancreatic β-cell failure and reduced β-cell mass. However, the mechanisms responsible for AGE‑induced apoptosis remain unclear. This study identified the role and mechanisms of action of tribbles homolog 3 (TRB3) in AGE-induced β-cell oxidative damage and apoptosis. Rat insulinoma cells (INS-1) were treated with 200 µg/ml AGEs for 48 h, and cell apoptosis was then detected by TUNEL staining and flow cytometry. The level of intracellular reactive oxygen species (ROS) was measured by a fluorescence assay. The expression levels of receptor of AGEs (RAGE), TRB3, protein kinase C β2 (PKCβ2) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) were evaluated by RT-qPCR and western blot analysis. siRNA was used to knockdown TRB3 expression through lipofection, followed by an analysis of the effects of TRB3 on PKCβ2 and NOX4. Furthermore, the PKCβ2-specific inhibitor, LY333531, was used to analyze the effects of PKCβ2 on ROS levels and apoptosis. We found that AGEs induced the apoptosis of INS-1 cells and upregulated RAGE and TRB3 expression. AGEs also increased ROS levels in β-cells. Following the knockdown of TRB3, the AGE-induced apoptosis and intracellular ROS levels were significantly decreased, suggesting that TRB3 mediated AGE-induced apoptosis. Further experiments demonstrated that the knockdown of TRB3 decreased the PKCβ2 and NOX4 expression levels. When TRB3 was knocked down, the cells expressed decreased levels of PKCβ2 and NOX4. The PKCβ2‑specific inhibitor, LY333531, also reduced AGE-induced apoptosis and intracellular ROS levels. Taken together, our data suggest that TRB3 mediates AGE-induced oxidative injury in β-cells through the PKCβ2 pathway.
Collapse
|
15
|
Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression. Int J Mol Sci 2017; 18:ijms18040764. [PMID: 28375174 PMCID: PMC5412348 DOI: 10.3390/ijms18040764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs) in transporter regulations are summarized and discussed. Both solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.
Collapse
|
16
|
Mitogen-activated protein kinases are involved in hepatocanalicular dysfunction and cholestasis induced by oxidative stress. Arch Toxicol 2016; 91:2391-2403. [PMID: 27913845 DOI: 10.1007/s00204-016-1898-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
In previous studies, we showed that the pro-oxidant model agent tert-butyl hydroperoxide (tBuOOH) induces alterations in hepatocanalicular secretory function by activating Ca2+-dependent protein kinase C isoforms (cPKC), via F-actin disorganization followed by endocytic internalization of canalicular transporters relevant to bile formation (Mrp2, Bsep). Since mitogen-activated protein kinases (MAPKs) may be downstream effectors of cPKC, we investigated here the involvement of the MAPKs of the ERK1/2, JNK1/2, and p38MAPK types in these deleterious effects. tBuOOH (100 µM, 15 min) increased the proportion of the active, phosphorylated forms of ERK1/2, JNK1/2, and p38MAPK, and panspecific PKC inhibition with bisindolylmaleimide-1 (100 nM) or selective cPKC inhibition with Gö6976 (1 μM) prevented the latter two events. In isolated rat hepatocyte couplets, tBuOOH (100 µM, 15 min) decreased the canalicular vacuolar accumulation of the fluorescent Bsep and Mrp2 substrates, cholylglycylamido fluorescein, and glutathione-methylfluorescein, respectively, and selective inhibitors of ERK1/2 (PD098059), JNK1/2 (SP600125), and p38MAPK (SB203580) partially prevented these alterations. In in situ perfused rat livers, these three MAPK inhibitors prevented tBuOOH (75 µM)-induced impairment of bile flow and the decrease in the biliary output of the Bsep and Mrp2 substrates, taurocholate, and dinitrophenyl-S-glutathione, respectively. The changes in Bsep/Mrp2 and F-actin localization induced by tBuOOH, as assessed by (immuno)fluorescence staining followed by analysis of confocal images, were prevented total or partially by the MAPK inhibitors. We concluded that MAPKs of the ERK1/2, JNK1/2, and p38MAPK types are all involved in cholestasis induced by oxidative stress, by promoting F-actin rearrangement and further endocytic internalization of canalicular transporters critical for bile formation.
Collapse
|
17
|
Ortega-Alonso A, Stephens C, Lucena MI, Andrade RJ. Case Characterization, Clinical Features and Risk Factors in Drug-Induced Liver Injury. Int J Mol Sci 2016; 17:E714. [PMID: 27187363 PMCID: PMC4881536 DOI: 10.3390/ijms17050714] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) caused by xenobiotics (drugs, herbals and dietary supplements) presents with a range of both phenotypes and severity, from acute hepatitis indistinguishable of viral hepatitis to autoimmune syndromes, steatosis or rare chronic vascular syndromes, and from asymptomatic liver test abnormalities to acute liver failure. DILI pathogenesis is complex, depending on the interaction of drug physicochemical properties and host factors. The awareness of risk factors for DILI is arising from the analysis of large databases of DILI cases included in Registries and Consortia networks around the world. These networks are also enabling in-depth phenotyping with the identification of predictors for severe outcome, including acute liver failure and mortality/liver transplantation. Genome wide association studies taking advantage of these large cohorts have identified several alleles from the major histocompatibility complex system indicating a fundamental role of the adaptive immune system in DILI pathogenesis. Correct case definition and characterization is crucial for appropriate phenotyping, which in turn will strengthen sample collection for genotypic and future biomarkers studies.
Collapse
Affiliation(s)
- Aida Ortega-Alonso
- Unidad de Gestión Clínica de Enfermedades Digestivas y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain.
| | - Camilla Stephens
- Unidad de Gestión Clínica de Enfermedades Digestivas y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Enfermedades Digestivas y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Raúl J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| |
Collapse
|
18
|
Sommerfeld A, Mayer PGK, Cantore M, Häussinger D. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate. J Biol Chem 2015; 290:24237-54. [PMID: 26306036 DOI: 10.1074/jbc.m115.666883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 01/05/2023] Open
Abstract
In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014-45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na(+)-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47(phox) knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Annika Sommerfeld
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick G K Mayer
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Miriam Cantore
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Long Y, Dong X, Yuan Y, Huang J, Song J, Sun Y, Lu Z, Yang L, Yu W. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress. J Clin Biochem Nutr 2015; 57:50-9. [PMID: 26236101 PMCID: PMC4512893 DOI: 10.3164/jcbn.14-147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/04/2015] [Indexed: 12/11/2022] Open
Abstract
The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPCc (14:0), glycine and succinic acid and decreased levels of l-valine, PCb (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.
Collapse
Affiliation(s)
- Yue Long
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China ; Department of Anesthesiology, 163th Hospital of PLA, Hunan 410003, China
| | - Xin Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yawei Yuan
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jinqiang Huang
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jiangang Song
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumin Sun
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhijie Lu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
20
|
Bachour-El Azzi P, Sharanek A, Burban A, Li R, Guével RL, Abdel-Razzak Z, Stieger B, Guguen-Guillouzo C, Guillouzo A. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes. Toxicol Sci 2015; 145:157-68. [PMID: 25690737 DOI: 10.1093/toxsci/kfv041] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis.
Collapse
Affiliation(s)
- Pamela Bachour-El Azzi
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ahmad Sharanek
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Audrey Burban
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ruoya Li
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Rémy Le Guével
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ziad Abdel-Razzak
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Bruno Stieger
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Christiane Guguen-Guillouzo
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - André Guillouzo
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| |
Collapse
|
21
|
Anwer MS. Role of protein kinase C isoforms in bile formation and cholestasis. Hepatology 2014; 60:1090-7. [PMID: 24700589 PMCID: PMC4141907 DOI: 10.1002/hep.27088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Transhepatic solute transport provides the osmotic driving force for canalicular bile formation. Choleretic and cholestatic agents affect bile formation, in part, by altering plasma membrane localizations of transporters involved in bile formation. These short-term dynamic changes in transporter location are highly regulated posttranslational events requiring various cellular signaling pathways. Interestingly, both choleretic and cholestatic agents activate the same intracellular signaling kinases, such as phosphoinositide-3-kinase (PI3K), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK). An emerging theme is that choleretic and cholestatic effects may be mediated by different isoforms of these kinases. This is most evident for PKC-mediated regulation of plasma membrane localization of Na+-taurocholate cotransporting polypeptide (NTCP) and multidrug resistance-associated protein 2 (MRP2) by conventional PKCα (cPKCα), novel PKCδ (nPKCδ), nPKCε, and atypical PKCζ (aPKCζ). aPKCζ may mediate choleretic effects by inserting NTCP into the plasma membrane, and nPKCε may mediate cholestatic effects by retrieving MRP2 from the plasma membrane. On the other hand, cPKCα and nPKCδ may be involved in choleretic, cholestatic, and anticholestatic effects by inserting, retrieving, and inhibiting retrieval of transporters, respectively. The effects of PKC isoforms may be mediated by phosphorylation of the transporters, actin binding proteins (radixin and myristoylated alanine-rich C kinase substrate), and Rab proteins. Human NTCP plays an important role in the entry of hepatitis B and D viruses into hepatocytes and consequent infection. Thus, PKCs, by regulating NTCP trafficking, may also play an important role in hepatic viral infections.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA
| |
Collapse
|
22
|
Sharanek A, Azzi PBE, Al-Attrache H, Savary CC, Humbert L, Rainteau D, Guguen-Guillouzo C, Guillouzo A. Different dose-dependent mechanisms are involved in early cyclosporine a-induced cholestatic effects in hepaRG cells. Toxicol Sci 2014; 141:244-53. [PMID: 24973091 DOI: 10.1093/toxsci/kfu122] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mechanisms involved in drug-induced cholestasis in humans remain poorly understood. Although cyclosporine A (CsA) and tacrolimus (FK506) share similar immunosuppressive properties, only CsA is known to cause dose-dependent cholestasis. Here, we have investigated the mechanisms implicated in early cholestatic effects of CsA using the differentiated human HepaRG cell line. Inhibition of efflux and uptake of taurocholate was evidenced as early as 15 min and 1 h respectively after addition of 10μM CsA; it peaked at around 2 h and was reversible. These early effects were associated with generation of oxidative stress and deregulation of cPKC pathway. At higher CsA concentrations (≥50μM) alterations of efflux and uptake activities were enhanced and became irreversible, pericanalicular F-actin microfilaments were disorganized and bile canaliculi were constricted. These changes were associated with induction of endoplasmic reticulum stress that preceded generation of oxidative stress. Concentration-dependent changes were observed on total bile acid disposition, which were characterized by an increase and a decrease in culture medium and cells, respectively, after a 24-h treatment with CsA. Accordingly, genes encoding hepatobiliary transporters and bile acid synthesis enzymes were differently deregulated depending on CsA concentration. By contrast, FK506 induced limited effects only at 25-50μM and did not alter bile canaliculi. Our data demonstrate involvement of different concentration-dependent mechanisms in CsA-induced cholestasis and point out a critical role of endoplasmic reticulum stress in the occurrence of the major cholestatic features.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Pamela Bachour-El Azzi
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Houssein Al-Attrache
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Camille C Savary
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Lydie Humbert
- ERL Inserm U1157/UMR7203, Faculté de Medecine Pierre et Marie Curie, Site Saint Antoine, Paris, France
| | - Dominique Rainteau
- ERL Inserm U1157/UMR7203, Faculté de Medecine Pierre et Marie Curie, Site Saint Antoine, Paris, France
| | | | - André Guillouzo
- Inserm UMR991, Foie, Métabolisme et Cancer, Rennes, France Université de Rennes 1, Rennes, France
| |
Collapse
|
23
|
Cuperus FJC, Claudel T, Gautherot J, Halilbasic E, Trauner M. The role of canalicular ABC transporters in cholestasis. Drug Metab Dispos 2014; 42:546-60. [PMID: 24474736 DOI: 10.1124/dmd.113.056358] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis, a hallmark feature of hepatobiliary disease, is characterized by the retention of biliary constituents. Some of these constituents, such as bile acids, inflict damage to hepatocytes and bile duct cells. This damage may lead to inflammation, fibrosis, cirrhosis, and eventually carcinogenesis, sequelae that aggravate the underlying disease and deteriorate clinical outcome. Canalicular ATP-binding cassette (ABC) transporters, which mediate the excretion of individual bile constituents, play a key role in bile formation and cholestasis. The study of these transporters and their regulatory nuclear receptors has revolutionized our understanding of cholestatic disease. This knowledge has served as a template to develop novel treatment strategies, some of which are currently already undergoing phase III clinical trials. In this review we aim to provide an overview of the structure, function, and regulation of canalicular ABC transporters. In addition, we will focus on the role of these transporters in the pathogenesis and treatment of cholestatic bile duct and liver diseases.
Collapse
Affiliation(s)
- Frans J C Cuperus
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
24
|
Rodrigues AD, Lai Y, Cvijic ME, Elkin LL, Zvyaga T, Soars MG. Drug-induced perturbations of the bile acid pool, cholestasis, and hepatotoxicity: mechanistic considerations beyond the direct inhibition of the bile salt export pump. Drug Metab Dispos 2014; 42:566-74. [PMID: 24115749 DOI: 10.1124/dmd.113.054205] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bile salt export pump (BSEP) is located on the canalicular plasma membrane of hepatocytes and plays an important role in the biliary clearance of bile acids (BAs). Therefore, any drug or new chemical entity that inhibits BSEP has the potential to cause cholestasis and possibly liver injury. In reality, however, one must consider the complexity of the BA pool, BA enterohepatic recirculation (EHR), extrahepatic (renal) BA clearance, and the interplay of multiple participant transporters and enzymes (e.g., sulfotransferase 2A1, multidrug resistance-associated protein 2, 3, and 4). Moreover, BAs undergo extensive enzyme-catalyzed amidation and are subjected to metabolism by enterobacteria during EHR. Expression of the various enzymes and transporters described above is governed by nuclear hormone receptors (NHRs) that mount an adaptive response when intracellular levels of BAs are increased. The intracellular trafficking of transporters, and their ability to mediate the vectorial transport of BAs, is governed by specific kinases also. Finally, bile flow, micelle formation, canalicular membrane integrity, and BA clearance can be influenced by the inhibition of multidrug resistant protein 3- or ATPase-aminophospholipid transporter-mediated phospholipid flux. Consequently, when screening compounds in a discovery setting or conducting mechanistic studies to address clinical findings, one has to consider the direct (inhibitory) effect of the parent drug and metabolites on multiple BA transporters, as well as inhibition of BA sulfation and amidation and NHR function. Vectorial BA transport, in addition to BA EHR and homoeostasis, could also be impacted by drug-dependent modulation of kinases and enterobacteria.
Collapse
Affiliation(s)
- A David Rodrigues
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (A.D.R., Y.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey (M.E.C.); and Leads Discovery and Optimization, Bristol-Myers Squibb, Wallingford, Connecticut (L.E., T.Z.)
| | | | | | | | | | | |
Collapse
|
25
|
The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis. Toxicol Appl Pharmacol 2014; 277:77-85. [PMID: 24631341 DOI: 10.1016/j.taap.2014.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 01/05/2023]
Abstract
Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis.
Collapse
|
26
|
Abstract
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders.
Collapse
Affiliation(s)
- Mohammed Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA
| |
Collapse
|
27
|
Physiological concentrations of unconjugated bilirubin prevent oxidative stress-induced hepatocanalicular dysfunction and cholestasis. Arch Toxicol 2013; 88:501-14. [DOI: 10.1007/s00204-013-1143-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
|
28
|
El Sherrif Y, Potts JR, Howard MR, Barnardo A, Cairns S, Knisely AS, Verma S. Hepatotoxicity from anabolic androgenic steroids marketed as dietary supplements: contribution from ATP8B1/ABCB11 mutations? Liver Int 2013; 33:1266-70. [PMID: 23750872 DOI: 10.1111/liv.12216] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/05/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Though possession of androgenic anabolic steroids (AAS) is illegal, non-prescription use of AAS persists. METHODS We describe two Caucasian males (aged 25 and 45 years) with cholestatic hepatitis following ingestion of the dietary supplement Mass-Drol ('Celtic Dragon') containing the AAS 2α-17α-dimethyl-etiocholan-3-one,17β-ol. RESULTS Despite substantial hyperbilirubinaemia peak gamma-glutamyl transferase (GGT) remained normal. Besides 'bland' intralobular cholestasis, liver biopsy in both found deficiency of canalicular expression of ectoenzymes as seen in ATP8B1 disease. In the older patient, bile salt export pump marking (encoded by ABCB11) was focally diminished. We hypothesized that AAS had either induced inhibition of normal ATP8B1/ABCB11 expression or triggered initial episodes of benign recurrent intrahepatic cholestasis (BRIC) type 1/or 2. On sequencing, ATP8B1 was normal in both patients although the younger was heterozygous for the c.2093G>A mutation in ABCB11, a polymorphism previously encountered in drug-induced liver injury. CONCLUSION AAS marketed as dietary supplements continue to cause hepatotoxicity in the UK; underlying mechanisms may include unmasking of genetic cholestatic syndromes.
Collapse
Affiliation(s)
- Yasser El Sherrif
- Department of Gastroenterology and Hepatology, Brighton and Sussex University Hospitals, Brighton, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Anthérieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B, Robin MA, Guillouzo A. Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatology 2013; 57:1518-29. [PMID: 23175273 DOI: 10.1002/hep.26160] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/24/2012] [Indexed: 01/20/2023]
Abstract
UNLABELLED Drugs induce cholestasis by diverse and still poorly understood mechanisms in humans. Early hepatic effects of chlorpromazine (CPZ), a neuroleptic drug known for years to induce intrahepatic cholestasis, were investigated using the differentiated human hepatoma HepaRG cells. Generation of reactive oxygen species (ROS) was detected as early as 15 minutes after CPZ treatment and was associated with an altered mitochondrial membrane potential and disruption of the pericanalicular distribution of F-actin. Inhibition of [3H]-taurocholic acid efflux was observed after 30 minutes and was mostly prevented by N-acetyl cysteine (NAC) cotreatment, indicating a major role of oxidative stress in CPZ-induced bile acid (BA) accumulation. Moreover, 24-hour treatment with CPZ decreased messenger RNA (mRNA) expression of the two main canalicular bile transporters, bile salt export pump (BSEP) and multidrug resistance protein 3 (MDR3). Additional CPZ effects included inhibition of Na+ -dependent taurocholic cotransporting polypeptide (NTCP) expression and activity, multidrug resistance-associated protein 4 (MRP4) overexpression and CYP8B1 inhibition that are involved in BA uptake, basolateral transport, and BA synthesis, respectively. These latter events likely represent hepatoprotective responses which aim to reduce intrahepatic accumulation of toxic BA. Compared to CPZ effects, overloading of HepaRG cells with high concentrations of cholic and chenodeoxycholic acids induced a delayed oxidative stress and, similarly, after 24 hours it down-regulated BSEP and MDR3 in parallel to a decrease of NTCP and CYP8B1 and an increase of MRP4. By contrast, low BA concentrations up-regulated BSEP and MDR3 in the absence of oxidative stress. CONCLUSION These data provide evidence that, among other mechanisms, oxidative stress plays a major role as both a primary causal and an aggravating factor in the early CPZ-induced intrahepatic cholestasis in human hepatocytes.
Collapse
|
30
|
The bile salt export pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol 2012; 36:536-53. [PMID: 22795478 DOI: 10.1016/j.clinre.2012.06.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/29/2012] [Accepted: 06/06/2012] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP) is the major transporter for the secretion of bile acids from hepatocytes into bile in humans. Mutations of BSEP are associated with cholestatic liver diseases of varying severity including progressive familial intrahepatic cholestasis type 2 (PFIC-2), benign recurrent intrahepatic cholestasis type 2 (BRIC-2) and genetic polymorphisms are linked to intrahepatic cholestasis of pregnancy (ICP) and drug-induced liver injury (DILI). Detailed analysis of these diseases has considerably increased our knowledge about physiology and pathophysiology of bile secretion in humans. This review focuses on expression, localization, and function, short- and long-term regulation of BSEP as well as diseases association and treatment options for BSEP-associated diseases.
Collapse
|
31
|
Kudo A, Ban D, Aihara A, Irie T, Ochiai T, Nakamura N, Tanaka S, Arii S. Decreased Mrp2 transport in severe macrovesicular fatty liver grafts. J Surg Res 2012; 178:915-921. [PMID: 22613706 DOI: 10.1016/j.jss.2012.04.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/26/2012] [Accepted: 04/25/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe macrosteatotic liver has been regarded as a donor contraindication for liver transplantation. However, it has not yet been determined whether hepatocytes lose function before cold ischemia. This study was designed to elucidate certain pathophysiological alterations and how to ameliorate such hepatic dysfunctions. MATERIALS AND METHODS Wistar rats were fed with a choline-deficient diet (CD) for up to 6 wk, and their livers were then perfused with Krebs-Henseleit buffer to examine bile output and biliary constituents. Organic anion transport from hepatocellular canalicular membranes through Mrp2 was examined by kinetic analyses for biliary exclusion of 5-carboxyfluorescein (CF), a fluoroprobe excreted through Mrp2. RESULTS Macrovesicular fatty deposits exceeded 60% and serum aspartate aminotransferase (AST) increased on 6-wk CD (CD6w), but not 3-wk CD (CD3w). Mrp2-deficient rat livers (Eisai hyperbilirubinemia) with 3-wk CD were more vulnerable than CD3w livers. In CD6w rats, bile flow rate and biliary glutathione significantly decreased. These declines coincided with the intracellular localization of Mrp2. Moreover, kinetic analyses for biliary CF revealed significant delay in 6-wk CD-fed rat livers. Pioglitazone, a ligand of PPARγ activating protein kinase A (PKA), significantly attenuated this delay by sorting Mrp2 into bile canalicular membranes. However, a PKA inhibitor blunted the increase in CF exclusion, re-localizing Mrp2 into the hepatocellular cytoplasm. A thromboxane A2 synthase inhibitor also ameliorated the CF exclusion delay. CONCLUSION Pioglitazone activated PKA, increasing Mrp2 transports to detoxify xenobiotics. Pioglitazone may allow the donor indications for liver transplantation to be expanded to include severe macrovesicular fatty livers.
Collapse
Affiliation(s)
- Atsushi Kudo
- Department of Hepatobiliary Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gonçalves P, Gregório I, Catarino TA, Martel F. The effect of oxidative stress upon the intestinal epithelial uptake of butyrate. Eur J Pharmacol 2012. [PMID: 23201076 DOI: 10.1016/j.ejphar.2012.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our aim was to investigate the effect of oxidative stress upon butyrate uptake at the intestinal epithelial level. For this, IEC-6 cells were treated with tert-butylhydroperoxide 3000μM (tBOOH), which increased levels of oxidative stress biomarkers, while maintaining cellular viability. The effect of tBOOH upon uptake of [(14)C]butyrate ([(14)C]BT) (10μM) can be summarized as follows: (a) it caused a reduction in the intracellular accumulation of [(14)C]BT over time, (b) it strongly reduced total [(14)C]BT uptake but did not affect Na(+)-independent uptake of [(14)C]BT, and (c) it did not affect the kinetics of [(14)C]BT uptake at 37°C, but increased uptake at 4°C. Moreover, tBOOH increased the efflux of [(14)C]BT not mediated by breast cancer resistance protein. We thus conclude that tBOOH strongly inhibits Na(+)-coupled monocarboxylate cotransporter 1 (SMCT1)-mediated, but not H(+)-coupled monocarboxylate transporter (MCT1)-mediated butyrate uptake; moreover, it increases uptake and efflux of butyrate by passive diffusion. tBOOH did not affect the mRNA expression levels of MCT1 and SMCT1 nor their cell membrane insertion. Rather, its effect was dependent on extracellular signal regulated kinase 1/2 and protein tyrosine kinase activation and on the generation of reactive oxygen species by NADPH and xanthine oxidases and was partially prevented by the polyphenols quercetin and resveratrol. In conclusion, tBOOH is an effective inhibitor of SMCT1-mediated butyrate transport in non-tumoral intestinal epithelial cells. Given the important role played by butyrate in the intestine, this mechanism may contribute to the procarcinogenic and proinflammatory effect of oxidative stress at this level.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | | | | | | |
Collapse
|
33
|
Wang H, Jiang YW, Zhang WJ, Xu SQ, Liu HL, Yang WY, Lou JN. Differential activations of PKC/PKA related to microvasculopathy in diabetic GK rats. Am J Physiol Endocrinol Metab 2012; 302:E173-82. [PMID: 21989030 DOI: 10.1152/ajpendo.00184.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microvasculopathy is the most serious and predictable threat to the health of diabetic patients, which often results in end-stage renal disease, blindness, and limb amputations. Up to the present, the underlying mechanisms have remained elusive. Here, it was found that the differential activations of PKC/PKA were involved in diabetic microvasculopathy in diabetic GK rats. By real-time PCR, Western blot, immunohistochemistry, and enzyme activity assay, upregulation of PKC was prominent in kidney but was not significant in liver and brain. The expression and activity of PKA were lowered in kidney but comparable in brain and liver during diabetic nephropathy. Furthermore, the generation of reactive oxygen species, production of nitric oxide, and expression of inducible nitric oxide synthase induced by advanced glycation end products were inhibited by PKCβ inhibitor LY-333531 or a PKA agonist in rat glomerular microvascular endothelial cells. Finally, albuminuria was significantly lowered by a PKA agonist and boosted by a PKA antagonist. It suggested that the differential activations of PKC/PKA related to microvasculopathy in diabetes and that activation of PKA may protect the diabetic microvasculature.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Cantore M, Reinehr R, Sommerfeld A, Becker M, Häussinger D. The Src family kinase Fyn mediates hyperosmolarity-induced Mrp2 and Bsep retrieval from canalicular membrane. J Biol Chem 2011; 286:45014-29. [PMID: 22057277 PMCID: PMC3247936 DOI: 10.1074/jbc.m111.292896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/23/2011] [Indexed: 12/17/2022] Open
Abstract
In perfused rat liver, hyperosmolarity induces Mrp2- (Kubitz, R., D'urso, D., Keppler, D., and Häussinger, D. (1997) Gastroenterology 113, 1438-1442) and Bsep retrieval (Schmitt, M., Kubitz, R., Lizun, S., Wettstein, M., and Häussinger, D. (2001) Hepatology 33, 509-518) from the canalicular membrane leading to cholestasis. The aim of this study was to elucidate the underlying signaling events. Hyperosmolarity-induced retrieval of Mrp2 and Bsep from the canalicular membrane in perfused rat liver was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Both hyperosmotic transporter retrieval and Src kinase activation were sensitive to apocynin (300 μmol/liter), N-acetylcysteine (NAC; 10 mmol/liter), and SU6656 (1 μmol/liter). Also PP-2 (250 nmol/liter), which inhibited hyperosmotic Fyn but not Yes activation, prevented hyperosmotic transporter retrieval from the canalicular membrane, suggesting that Fyn but not Yes mediates hyperosmotic Bsep and Mrp2 retrieval. Neither hyperosmotic Fyn activation nor Bsep/Mrp2 retrieval was observed in livers from p47(phox) knock-out mice. Hyperosmotic activation of JNKs was sensitive to apocynin and NAC but insensitive to SU6656 and PP-2, indicating that JNKs are not involved in transporter retrieval, as also evidenced by experiments using the JNK inhibitors L-JNKI-1 and SP6001255, respectively. Hyperosmotic transporter retrieval was accompanied by a NAC and Fyn knockdown-sensitive inhibition of biliary excretion of the glutathione conjugate of 1-chloro-2,4-dinitrobenzene in perfused rat liver and of cholyl-L-lysyl-fluorescein secretion into the pseudocanaliculi formed by hepatocyte couplets. Hyperosmolarity triggered an association between Fyn and cortactin and increased the amount of phosphorylated cortactin underneath the canalicular membrane. It is concluded that the hyperosmotic cholestasis is triggered by a NADPH oxidase-driven reactive oxygen species formation that mediates Fyn-dependent retrieval of the Mrp2 and Bsep from the canalicular membrane, which may involve an increased cortactin phosphorylation.
Collapse
Affiliation(s)
- Miriam Cantore
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Roland Reinehr
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Annika Sommerfeld
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Martin Becker
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 2011; 24:1345-410. [PMID: 21702456 DOI: 10.1021/tx200168d] [Citation(s) in RCA: 504] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.
Collapse
Affiliation(s)
- Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
The impact of resuscitated fecal peritonitis on the expression of the hepatic bile salt transporters in a porcine model. Shock 2011; 34:508-16. [PMID: 20357697 DOI: 10.1097/shk.0b013e3181dfc4b4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis is often associated with cholestatic liver dysfunction caused by changes in the expression profile of hepatic bile salt transporters. However, in rodent endotoxin models, the role of ischemic hepatitis caused by liver hypoperfusion cannot be delineated. We hypothesized that hepatocytes change their expression pattern of bile salt transporters during early severe sepsis despite adequate resuscitation. Fifteen anesthetized and instrumented pigs were randomized to either fecal peritonitis (n = 8) or control (n = 7). Resuscitation was performed by hydroxyethyl starch and norepinephrine infusion. Hemodynamic parameters and markers of cholestatic and ischemic hepatic dysfunction were recorded. At baseline and after 21 h, messenger RNA (mRNA) and protein expression of bile salt transporters was determined by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively, on in vivo liver biopsies. All resuscitated septic pigs developed a normotensive hyperdynamic circulation with increased portal flow. After 21 h of peritonitis, no signs of biochemical or histological cholestasis were present. Na-taurocholate cotransporting polypeptide and bile salt export pump mRNA were downregulated by 83% (P = 0.001) and 67% (P = 0.001), respectively, in comparison with controls, whereas multidrug resistance-associated protein 4 (MRP4) mRNA was upregulated by 85% (P = 0.02). Bile salt export pump and MRP2 staining were downregulated in septic pigs. During early porcine fluid-resuscitated sepsis, hepatic basolateral influx (Na-taurocholate cotransporting polypeptide) and canalicular efflux (bile salt export pump) of bile salts were downregulated without hemodynamic signs of hepatic hypoperfusion or biochemical signs of cholestasis. In parallel, the basolateral escape transport (MRP4) was markedly upregulated, possibly as an early adaptive response to counteract hepatocellular accumulation of toxic bile acids.
Collapse
|
37
|
Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 2010; 42:402-36. [PMID: 20082599 DOI: 10.3109/03602530903491741] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABCC2/Abcc2 (MRP2/Mrp2) is expressed at major physiological barriers, such as the canalicular membrane of liver cells, kidney proximal tubule epithelial cells, enterocytes of the small and large intestine, and syncytiotrophoblast of the placenta. ABCC2/Abcc2 always localizes in the apical membranes. Although ABCC2/Abcc2 transports a variety of amphiphilic anions that belong to different classes of molecules, such as endogenous compounds (e.g., bilirubin-glucuronides), drugs, toxic chemicals, nutraceuticals, and their conjugates, it displays a preference for phase II conjugates. Phenotypically, the most obvious consequence of mutations in ABCC2 that lead to Dubin-Johnson syndrome is conjugate hyperbilirubinemia. ABCC2/Abcc2 harbors multiple binding sites and displays complex transport kinetics.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Chemical Research Center, Institute of Biomolecular Chemistry, HAS, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
38
|
Boaglio AC, Zucchetti AE, Sánchez Pozzi EJ, Pellegrino JM, Ochoa JE, Mottino AD, Vore M, Crocenzi FA, Roma MG. Phosphoinositide 3-kinase/protein kinase B signaling pathway is involved in estradiol 17β-D-glucuronide-induced cholestasis: complementarity with classical protein kinase C. Hepatology 2010; 52:1465-76. [PMID: 20815017 DOI: 10.1002/hep.23846] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Estradiol 17β-D-glucuronide (E(2)17G) is an endogenous, cholestatic metabolite that induces endocytic internalization of the canalicular transporters relevant to bile secretion: bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). We assessed whether phosphoinositide 3-kinase (PI3K) is involved in E(2)17G-induced cholestasis. E(2)17G activated PI3K according to an assessment of the phosphorylation of the final PI3K effector, protein kinase B (Akt). When the PI3K inhibitor wortmannin (WM) was preadministered to isolated rat hepatocyte couplets (IRHCs), it partially prevented the reduction induced by E(2)17G in the proportion of IRHCs secreting fluorescent Bsep and Mrp2 substrates (cholyl lysyl fluorescein and glutathione methylfluorescein, respectively). 2-Morpholin-4-yl-8-phenylchromen-4-one, another PI3K inhibitor, and an Akt inhibitor (Calbiochem 124005) showed similar protective effects. IRHC immunostaining and confocal microscopy analysis revealed that endocytic internalization of Bsep and Mrp2 induced by E(2)17G was extensively prevented by WM; this effect was fully blocked by the microtubule-disrupting agent colchicine. The protection of WM was additive to that afforded by the classical protein kinase C (cPKC) inhibitor 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile (Gö6976); this suggested differential and complementary involvement of the PI3K and cPKC signaling pathways in E(2)17G-induced cholestasis. In isolated perfused rat liver, an intraportal injection of E(2)17G triggered endocytosis of Bsep and Mrp2, and this was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Bsep and Mrp2 substrates [(3)H]taurocholate and glutathione until the end of the perfusion period. Unlike Gö6976, WM did not prevent the initial decay, but it greatly accelerated the recovery to normality of these parameters and the reinsertion of Bsep and Mrp2 into the canalicular membrane in a microtubule-dependent manner. CONCLUSION The PI3K/Akt signaling pathway is involved in the biliary secretory failure induced by E(2)17G through sustained internalization of canalicular transporters endocytosed via cPKC.
Collapse
Affiliation(s)
- Andrea C Boaglio
- Institute of Experimental Physiology, National Scientific and Technical Research Council/University of Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pang KS, Maeng HJ, Fan J. Interplay of transporters and enzymes in drug and metabolite processing. Mol Pharm 2010; 6:1734-55. [PMID: 19891494 DOI: 10.1021/mp900258z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review highlights the "interplay" between enzymes and transporters, essential components of eliminating organs for drug removal. The understanding of the interplay is important in terms of deciphering the change of one eliminatory pathway on compensatory mechanisms in drug disposal, and, ultimately, their importance in drug-drug interactions. Controversy existed on the explanation underlying the interplay between transporters and enzymes in the Caco-2 cell monolayer or cell culture systems, but less so on eliminating organs such as the intestine and liver. For the Caco-2 system, the increase in the mean residence time (MRT) accompanying increased secretion had been construed as the basis for increased metabolism. We hold the opposite view and assert that increased secretion should evoke a decrease in metabolism due to the competition between the enzyme and apical efflux transporter for the drug within the cell. To illustrate this point, simulations on the MRT, fraction of dose metabolized (f(met)) and the extraction ratio (ER) as defined by various investigators under linear and nonlinear metabolic conditions were compared to observed data and the trends upon induction/inhibition of secretion. The conclusion is that the f(met) is the more appropriate index to reflect the extent of metabolism in transporter-enzyme interplay, since the parameter captures drug metabolism in the cell when its contents in the apical, cell, and basolateral compartments or the entire dose is considered to be available for metabolism. This parameter for metabolism (f(met)) bears a reciprocal relationship to the secretory intrinsic clearance and is in concordance with the notion that both the enzyme and apical transporter compete for the cellular substrate within. For the liver and intestine, several physiologically based pharmacokinetic (PBPK) models that contain transporters and enzymes were utilized, together with the solved equations for the area under the curve (AUC), metabolic, excretory, and total clearance (CL) to shed meaningful insight of how the inhibition of one pathway can result in a higher AUC and therefore a reduced total clearance for drug, but a higher apparent clearance of the alternate pathway; induction of the same pathway would lead to an increased total clearance but decreased drug AUC, and reduced clearance of the alternate pathway. The use of an increased MRT to explain increased extents of metabolism upon increased apical excretion is not tenable in these organs or "open systems" since the MRT of drug in the cell is reduced with irreversible loss from biliary excretion or hastened gastrointestinal transit of the secreted drug in the lumen. Data in the literature for the Caco-2 system, knockout animals and organ perfusion systems were discussed in relation to these concepts on clearance based on fundamental, pharmacokinetic theory. The shortcomings in data interpretation were discussed. The general conclusion is that a reciprocal relationship exists between the clearances related to enzymes and apical transporters due to their competition for the substrate within the cell, and is a relationship independent of the MRT of drug in the system.
Collapse
Affiliation(s)
- K Sandy Pang
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
40
|
Ikebuchi Y, Takada T, Ito K, Yoshikado T, Anzai N, Kanai Y, Suzuki H. Receptor for activated C-kinase 1 regulates the cellular localization and function of ABCB4. Hepatol Res 2009; 39:1091-107. [PMID: 19674157 DOI: 10.1111/j.1872-034x.2009.00544.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM Multidrug resistance protein 3 (MDR3/ABCB4), located on the bile canalicular membrane of hepatocytes, is responsible for the translocation of phosphatidylcholine across the plasma membrane, and its hereditary defect causes liver disorders, such as progressive familial intrahepatic cholestasis type 3. We aimed to identify the proteins responsible for the surface expression of human ABCB4. METHODS We performed yeast two-hybrid screening with the cytoplasmic linker region of ABCB4 against a human liver cDNA library. This screening allowed us to identify the receptor for activated C-kinase 1 (RACK1) as a novel binding partner of ABCB4. The association of RACK1 with the linker region of ABCB4 was further confirmed by GST-pulldown assay, although we could not find out the interaction of full length of ABCB4 and RACK1 in co-immunoprecipitation assay in HeLa cells. RESULTS Down-regulation of endogenous RACK1 expression by siRNA in HeLa cells resulted in the localization of ABCB4 in the cytosolic compartment as well as reduced protein expression of ABCB4, although mRNA expression and the protein stability of ABCB4 were not affected by the suppression of endogenous RACK1. Similar alterations in cellular localization of ABCB4 were also found by suppressing endogenous RACK1 expression in HepG2 cells. Consequently, ABCB4-mediated phosphatidylcholine translocation activity was significantly reduced when endogenous RACK1 expression was suppressed in HeLa cells. In contrast, the membrane surface localization and the protein expression of ABCB1 were not affected by the suppression of endogenous RACK1 expression. CONCLUSION These results suggest that RACK1 may have a functional significance as a regulatory cofactor of ABCB4 and is indispensable for the plasma membrane localization and translocation function of ABCB4.
Collapse
Affiliation(s)
- Yuki Ikebuchi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Stross C, Keitel V, Winands E, Häussinger D, Kubitz R. Expression and localization of atypical PKC isoforms in liver parenchymal cells. Biol Chem 2009; 390:235-44. [PMID: 19090727 DOI: 10.1515/bc.2009.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of all three classes of the protein kinase C (PKC) family including atypical PKCzeta (PKCzeta) are involved in central functions of liver parenchymal cells. However, expression and localization of PKCiota (PKCiota), the highly homologous atypical PKC (aPKC) isoform, in hepatocytes is unknown to date. PKCzeta and PKCiota were cloned from human and rat liver and fused to fluorescent protein tags (YFP). The sequence of full-length rat PKCiota is not yet known and was cloned from cDNA of hepatocytes by the use of degenerated primers. PKCzeta-YFP and PKCiota-YFP (human and rat) were expressed in HeLa or HEK293 cells and used to test the specificity of seven aPKC antibodies. Two antibodies were PKCiota-specific and two were specific for PKCzeta in immunofluorescence and Western blot analysis. Subcellular localization was analyzed by immunofluorescence in isolated rat and human hepatocytes and liver sections. Low immunoreactivity for aPKCs was found at the sinusoidal membrane and in the cytosol. The highest density of PKCiota as well as PKCzeta was found at the canalicular membrane in co-localization with ABC-transporters, such as bile salt export pump or multidrug resistance-associated protein 2. This topology suggests a specific function of aPKCs at the canalicular membrane in addition to their known role in cell polarity of epithelial cells.
Collapse
Affiliation(s)
- Claudia Stross
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
42
|
Sánchez Pozzi EJ, Roma MG. Putative role for actin organization status in the dynamic localization of canalicular carriers under oxidative stress conditions. Am J Physiol Gastrointest Liver Physiol 2009; 296:G969. [PMID: 19332616 DOI: 10.1152/ajpgi.00019.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Affiliation(s)
- James L Boyer
- Department of Medicine, Liver Center, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| |
Collapse
|
44
|
Crocenzi FA, Sánchez Pozzi EJ, Ruiz ML, Zucchetti AE, Roma MG, Mottino AD, Vore M. Ca(2+)-dependent protein kinase C isoforms are critical to estradiol 17beta-D-glucuronide-induced cholestasis in the rat. Hepatology 2008; 48:1885-95. [PMID: 18972403 PMCID: PMC3004396 DOI: 10.1002/hep.22532] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The endogenous estradiol metabolite estradiol 17beta-D-glucuronide (E(2)17G) induces an acute cholestasis in rat liver coincident with retrieval of the canalicular transporters bile salt export pump (Bsep, Abcc11) and multidrug resistance-associated protein 2 (Mrp2, Abcc2) and their associated loss of function. We assessed the participation of Ca(2+)-dependent protein kinase C isoforms (cPKC) in the cholestatic manifestations of E(2)17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHCs). In PRL, E(2)17G (2 mumol/liver; intraportal, single injection) maximally decreased bile flow, total glutathione, and [(3)H] taurocholate excretion by 61%, 62%, and 79%, respectively; incorporation of the specific cPKC inhibitor Gö6976 (500 nM) in the perfusate almost totally prevented these decreases. In dose-response studies using IRHC, E(2)17G (3.75-800 muM) decreased the canalicular vacuolar accumulation of the Bsep substrate cholyl-lysylfluorescein with an IC50 of 54.9 +/- 7.9 muM. Gö6976 (1 muM) increased the IC50 to 178.4 +/- 23.1 muM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Mrp2 substrate, glutathione methylfluorescein. Prevention of these changes by Gö6976 coincided with complete protection against E(2)17G-induced retrieval of Bsep and Mrp2 from the canalicular membrane, as detected both in the PRL and IRHC. E(2)17G also increased paracellular permeability in IRHC, which was only partially prevented by Gö6976. The cPKC isoform PKCalpha, but not the Ca(2+)-independent PKC isoform, PKCepsilon, translocated to the plasma membrane after E(2)17G administration in primary cultured rat hepatocytes; Gö6976 completely prevented this translocation, thus indicating specific activation of cPKC. This is consistent with increased autophosphorylation of cPKC by E(2)17G, as detected via western blotting. CONCLUSION Our findings support a central role for cPKC isoforms in E(2)17G-induced cholestasis, by inducing both transporter retrieval from the canalicular membrane and opening of the paracellular route.
Collapse
Affiliation(s)
- Fernando A. Crocenzi
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina, Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| | - Enrique J. Sánchez Pozzi
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Andrés E. Zucchetti
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Marcelo G. Roma
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Aldo D. Mottino
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina, Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| | - Mary Vore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| |
Collapse
|
45
|
Roma MG, Crocenzi FA, Mottino AD. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 2008; 14:6786-801. [PMID: 19058304 PMCID: PMC2773873 DOI: 10.3748/wjg.14.6786] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vesicle-based trafficking of hepatocellular transporters involves delivery of the newly-synthesized carriers from the rough endoplasmic reticulum to either the plasma membrane domain or to an endosomal, submembrane compartment, followed by exocytic targeting to the plasma membrane. Once delivered to the plasma membrane, the transporters usually undergo recycling between the plasma membrane and the endosomal compartment, which usually serves as a reservoir of pre-existing transporters available on demand. The balance between exocytic targeting and endocytic internalization from/to this recycling compartment is therefore a chief determinant of the overall capability of the liver epithelium to secrete bile and to detoxify endo and xenobiotics. Hence, it is a highly regulated process. Impaired regulation of this balance may lead to abnormal localization of these transporters, which results in bile secretory failure due to endocytic internalization of key transporters involved in bile formation. This occurs in several experimental models of hepatocellular cholestasis, and in most human cholestatic liver diseases. This review describes the molecular bases involved in the biology of the dynamic localization of hepatocellular transporters and its regulation, with a focus on the involvement of signaling pathways in this process. Their alterations in different experimental models of cholestasis and in human cholestatic liver disease are reviewed. In addition, the causes explaining the pathological condition (e.g. disorganization of actin or actin-transporter linkers) and the mediators involved (e.g. activation of cholestatic signaling transduction pathways) are also discussed. Finally, several experimental therapeutic approaches based upon the administration of compounds known to stimulate exocytic insertion of canalicular transporters (e.g. cAMP, tauroursodeoxycholate) are described.
Collapse
|
46
|
Influence of sodium monoketocholate on the hypolipidemic activity of lovastatin in healthy and diabetic rats. Eur J Drug Metab Pharmacokinet 2008; 33:77-84. [DOI: 10.1007/bf03191024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond) 2008; 114:567-88. [PMID: 18377365 DOI: 10.1042/cs20070227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent overwhelming advances in molecular and cell biology have added enormously to our understanding of the physiological processes involved in bile formation and, by extension, to our comprehension of the consequences of their alteration in cholestatic hepatopathies. The present review addresses in detail this new information by summarizing a number of recent experimental findings on the structural, functional and regulatory aspects of hepatocellular transporter function in acquired cholestasis. This comprises (i) a short overview of the physiological mechanisms of bile secretion, including the nature of the transporters involved and their role in bile formation; (ii) the changes induced by nuclear receptors and hepatocyte-enriched transcription factors in the constitutive expression of hepatocellular transporters in cholestasis, either explaining the primary biliary failure or resulting from a secondary adaptive response; (iii) the post-transcriptional changes in transporter function and localization in cholestasis, including a description of the subcellular structures putatively engaged in the endocytic internalization of canalicular transporters and the involvement of signalling cascades in this effect; and (iv) a discussion on how this new information has contributed to the understanding of the mechanism by which anticholestatic agents exert their beneficial effects, or the manner in which it has helped the design of new successful therapeutic approaches to cholestatic liver diseases.
Collapse
|
48
|
|
49
|
|
50
|
Donner MG, Schumacher S, Warskulat U, Heinemann J, Häussinger D. Obstructive cholestasis induces TNF-alpha- and IL-1 -mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1134-46. [PMID: 17916651 DOI: 10.1152/ajpgi.00079.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inverse acinar regulation of Mrp2 and 3 represents an adaptive response to hepatocellular cholestatic injury. We studied whether obstructive cholestasis (bile duct ligation) and LPS treatment affect the zonal expression of Bsep (Abcb11), Mrp4 (Abcc4), Ntcp (Slc10a1), and Oatp isoforms (Slco1a1, Slco1a4, and slco1b2) in rat liver, as analyzed by semiquantitative immunofluorescence. Contribution of TNF-alpha and IL-1beta to transporter zonation in obstructive cholestasis was studied by cytokine inactivation. In normal liver Bsep, Mrp4, Ntcp, and Oatp1a1 were homogeneously distributed in the acinus, whereas Oatp1a4 and Oatp1b2 expression increased from zone 1 to 3. Glutamine synthetase-positive pericentral hepatocytes exhibited markedly lower Oatp1a4 expression than the remaining zone 3 hepatocytes. In cholestatic liver Bsep and Ntcp immunofluorescence in periportal hepatocytes significantly decreased to 66 +/- 4% (P < 0.01) and 67 +/- 7% (P < 0.05), whereas it was not altered in pericentral hepatocytes. Oatp1a4 was significantly induced in hepatocytes with a primarily low expression, i.e., in periportal hepatocytes and in glutamine synthetase-positive pericentral hepatocytes. Likewise, Oatp1b2 was upregulated in periportal hepatocytes. Mrp4 zonal induction was homogeneous. Inactivation of TNF-alpha and IL-1beta prevented periportal downregulation of Bsep. Recruitment of neutrophils and polymorphonuclear cells mainly occurred in the periportal zone. Likewise, IL-1beta induction was largely found periportally. No significant transporter zonation was seen following LPS treatment. In conclusion, zonal downregulation of Bsep in obstructive cholestasis is associated with portal inflammation and is mediated by TNF-alpha and IL-1beta. Periportal downregulation of Ntcp and induction of Oatp1a4 and Oatp1b2 may represent adaptive mechanisms to reduce cholestatic injury in hepatocytes with profound downregulation of Bsep and Mrp2.
Collapse
Affiliation(s)
- Markus G Donner
- Dept. of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine Univ. Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|