1
|
Summer R, Chun P. Pressed for understanding: Interstitial lung disease in dry-cleaning workers. Am J Med Sci 2025; 369:122-125. [PMID: 39237034 DOI: 10.1016/j.amjms.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Interstitial lung disease (ILD) represents a heterogeneous group of disorders characterized by inflammation and fibrosis of the pulmonary interstitium. Risk factors for ILD include various environmental exposures and identifying specific exposures offers a point of intervention for preventing disease. Here, we present several cases of patients who worked in the dry-cleaning business and have ILD or abnormalities consistent with early ILD on chest CT imaging. While this report does not attempt to establish causality, we hypothesize that exposure to the industrial solvent tetrachloroethylene may serve as a contributing factor given its links to epithelial injury, inflammation, redox imbalance and apoptosis. We hope that this report serves to not only inform readers of this possible connection between dry cleaning and ILD but also lay the foundation for additional studies examining the effects of tetrachloroethylene on the lung.
Collapse
Affiliation(s)
- Ross Summer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Sidney Kimmel Medical College and the Jane and Leonard Korman Respiratory Institute Thomas Jefferson University, Philadelphia, PA, USA.
| | - Phoebe Chun
- Department of Medicine, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Pacharra M, Schäper M, Kleinbeck S, Blaszkewicz M, Golka K, van Thriel C. Neurobehavioral effects of exposure to propionic acid revisited—Does psychosocial stress interfere with distractive effects in volunteers? Neurotoxicology 2016; 55:102-111. [DOI: 10.1016/j.neuro.2016.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
3
|
Kodavanti PRS, Royland JE, Moore-Smith DA, Besas J, Richards JE, Beasley TE, Evansky P, Bushnell PJ. Acute and subchronic toxicity of inhaled toluene in male Long-Evans rats: Oxidative stress markers in brain. Neurotoxicology 2015; 51:10-9. [PMID: 26343380 DOI: 10.1016/j.neuro.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute and one subchronic, were conducted to seek effects of the VOC, toluene, in rats and to compare the effects between acute and subchronic exposures. Adult male Long-Evans rats were exposed to toluene vapor (n=6 per group) at a concentration of 0 or 1019 ± 14 ppm for 6h in the acute study and at 0 ± 0, 10 ± 1.4, 97 ± 7, or 995 ± 43 ppm for 6h/d, 5d/week for 13 weeks in the subchronic study. For the acute study, brains were dissected on ice within 30 min of the end of exposure, while for the subchronic study, brains were dissected 18 h after the last exposure. Frontal cortex, hippocampus, cerebellum, and striatum were assayed for a variety of oxidative stress (OS) parameters including total aconitase (TA), protein carbonyls, glutathione peroxidase (GPX), glutathione reductase (GRD), glutathione transferase (GST), γ-glutamylcysteine synthetase (GCS), superoxide dismutase (SOD), total antioxidants (TAS), NADPH quinone oxidoreductase-1 (NQO1), and NADH ubiquinone reductase (UBIQ-RD) activities using commercially available kits. Following acute exposure, UBIQ-RD, GCS and GRD were increased significantly only in the cerebellum, while TAS was increased in frontal cortex. On the other hand, subchronic exposure affected several OS markers including increases in NQO1 and UBIQ-RD. The effect of subchronic toluene exposure on SOD and TAS was greater in the striatum than in the other brain regions. TA activity (involved in maintaining iron homeostasis and an indicator of DNA damage) was inhibited in striatum and cerebellum, increased in hippocampus, and unchanged in frontal cortex. Protein carbonyls increased significantly in both the frontal cortex and cerebellum. In general, the results showed that acute exposure to toluene affected OS parameters to a lesser extent than did subchronic exposure. These results suggest that toluene exposure induces OS in the brain and this may be a component of an adverse outcome pathway for some of the neurotoxic effects reported following toluene exposure.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Joyce E Royland
- Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Debra A Moore-Smith
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jonathan Besas
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judy E Richards
- Cardiopulmonary and Immunotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Tracey E Beasley
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul Evansky
- Inhalation Toxicology Facility, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Philip J Bushnell
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Amadasi A, Mastroluca L, Marasciuolo L, Caligara M, Sironi L, Gentile G, Zoja R. Death due to acute tetrachloroethylene intoxication in a chronic abuser. Int J Legal Med 2015; 129:487-93. [DOI: 10.1007/s00414-015-1143-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
5
|
Valcke M, Haddad S. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:409-431. [PMID: 25785556 DOI: 10.1080/15287394.2014.971477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was to compare the magnitude of interindividual variability in internal dose for inhalation exposure to single versus multiple chemicals. Physiologically based pharmacokinetic models for adults (AD), neonates (NEO), toddlers (TODD), and pregnant women (PW) were used to simulate inhalation exposure to "low" (RfC-like) or "high" (AEGL-like) air concentrations of benzene (Bz) or dichloromethane (DCM), along with various levels of toluene alone or toluene with ethylbenzene and xylene. Monte Carlo simulations were performed and distributions of relevant internal dose metrics of either Bz or DCM were computed. Area under the blood concentration of parent compound versus time curve (AUC)-based variability in AD, TODD, and PW rose for Bz when concomitant "low" exposure to mixtures of increasing complexities occurred (coefficient of variation (CV) = 16-24%, vs. 12-15% for Bz alone), but remained unchanged considering DCM. Conversely, AUC-based CV in NEO fell (15 to 5% for Bz; 12 to 6% for DCM). Comparable trends were observed considering production of metabolites (AMET), except for NEO's CYP2E1-mediated metabolites of Bz, where an increased CV was observed (20 to 71%). For "high" exposure scenarios, Cmax-based variability of Bz and DCM remained unchanged in AD and PW, but decreased in NEO (CV= 11-16% to 2-6%) and TODD (CV= 12-13% to 7-9%). Conversely, AMET-based variability for both substrates rose in every subpopulation. This study analyzed for the first time the impact of multiple exposures on interindividual variability in toxicokinetics. Evidence indicates that this impact depends upon chemical concentrations and biochemical properties, as well as the subpopulation and internal dose metrics considered.
Collapse
Affiliation(s)
- Mathieu Valcke
- a Institut national de santé publique du Québec , Montréal , Quebec , Canada
| | | |
Collapse
|
6
|
Gmaz JM, McKay BE. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex. Neurosci Lett 2014; 560:1-6. [PMID: 24345417 DOI: 10.1016/j.neulet.2013.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
Toluene belongs to a class of psychoactive drugs known as inhalants. Found in common household products such as adhesives, paint products, and aerosols, toluene is inhaled for its intoxicating and euphoric properties. Additionally, exposure to toluene disrupts motor behaviors in a manner consistent with impairments to cerebellar function. Previous work has suggested a role of GABA in mediating toluene's neurobehavioral effects, but how this manifests in the cerebellar cortex is not yet understood. In the present study, we examined the effects of toluene on cerebellar Purkinje cell action potential output and inhibitory synaptic transmission onto Purkinje cells using patch clamp electrophysiology in acute rat cerebellar slices. Toluene (1mM) reduced the frequency of Purkinje cell action potential output without affecting input resistance. Furthermore, toluene dose-dependently enhanced inhibitory synaptic transmission onto Purkinje cells, increasing the amplitude and frequency of inhibitory postsynaptic currents; no change in the frequency of action potentials from molecular layer interneurons was noted. The observed decreases in Purkinje cell action potential output could contribute to toluene-evoked impairments in cerebellar and motor functions.
Collapse
Affiliation(s)
- Jimmie M Gmaz
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Bruce E McKay
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
7
|
Study of the potential oxidative stress induced by six solvents in the rat brain. Neurotoxicology 2012; 35:71-83. [PMID: 23270871 DOI: 10.1016/j.neuro.2012.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 02/03/2023]
Abstract
The mechanisms of action involved in the neurotoxicity of solvents are poorly understood. In vitro studies have suggested that the effects of some solvents might be due to the formation of reactive oxygen species (ROS). This study assesses hydroxyl radical (OH) generation and measures malondialdehyde (MDA) levels in the cerebral tissue of rats exposed to six solvents (n-hexane, n-octane, toluene, n-butylbenzene, cyclohexane and 1,2,4-trimethylcyclohexane). Three of these solvents have been shown to generate ROS in studies carried out in vitro on granular cell cultures from rat cerebellum. We assessed OH production by quantifying the rate of formation of 3,4-dihydroxybenzoic acid using a trapping agent, 4-hydroxybenzoic acid, infused via the microdialysis probe, into the prefrontal cortex of rats exposed intraperitoneally to the solvents. Extracellular MDA was quantified in microdialysates collected from the prefrontal cortex of rats exposed, 6h/day for ten days, to 1000ppm of the solvents (except for n-butylbenzene, generated at 830ppm) in inhalation chambers. Tissue levels of free and total MDA were measured in different brain structures for rats acutely (intraperitoneal route) and sub-acutely (inhalation) exposed to solvents. None of the six solvents studied increased the production of hydroxyl radicals in the prefrontal cortex after acute administration. Nor did they increase extracellular or tissue levels of MDA after 10 days' inhalation exposure. On the other hand, a decrease in the concentrations of free MDA in brain structures was observed after acute administration of n-hexane, 1,2,4-trimethylcyclohexane, toluene and n-butylbenzene. Therefore, data of this study carried out in vivo did not confirm observations made in vitro on cell cultures.
Collapse
|
8
|
Noori HR, Fliegel S, Brand I, Spanagel R. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: A meta-analysis. Synapse 2012; 66:893-901. [DOI: 10.1002/syn.21581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/19/2012] [Indexed: 01/23/2023]
|
9
|
MacPhail RC, Farmer JD, Jarema KA. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats. Neurotoxicology 2011; 33:111-8. [PMID: 22192906 DOI: 10.1016/j.neuro.2011.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
Abstract
Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is needed on aging-related susceptibility to environmental contaminants.
Collapse
Affiliation(s)
- R C MacPhail
- Neurotoxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | |
Collapse
|
10
|
Benignus VA, Bushnell PJ, Boyes WK. Estimated rate of fatal automobile accidents attributable to acute solvent exposure at low inhaled concentrations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:1935-1948. [PMID: 21545625 DOI: 10.1111/j.1539-6924.2011.01622.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mechanisms. These observations, along with the extensive data on the relationship between ethanol consumption and fatal automobile accidents, suggested a way to estimate the probability of fatal automobile accidents from solvent inhalation. The problem can be approached using the logic of the algebraic transitive postulate of equality: if A=B and B=C, then A=C. We first calculated a function describing the internal doses of solvent vapors that cause the same magnitude of behavioral impairment as ingestion of ethanol (A=B). Next, we fit a function to data from the literature describing the probability of fatal car crashes for a given internal dose of ethanol (B=C). Finally, we used these two functions to generate a third function to estimate the probability of a fatal car crash for any internal dose of organic solvent vapor (A=C). This latter function showed quantitatively (1) that the likelihood of a fatal car crash is increased by acute exposure to organic solvent vapors at concentrations less than 1.0 ppm, and (2) that this likelihood is similar in magnitude to the probability of developing leukemia from exposure to benzene. This approach could also be applied to other potentially adverse consequences of acute exposure to solvents (e.g., nonfatal car crashes, property damage, and workplace accidents), if appropriate data were available.
Collapse
Affiliation(s)
- Vernon A Benignus
- Integrated Systems Toxicology Division, Systems Biology Branch, Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA. vbenignus.@earthlink.net
| | | | | |
Collapse
|
11
|
Valcke M, Krishnan K. Assessing the impact of the duration and intensity of inhalation exposure on the magnitude of the variability of internal dose metrics in children and adults. Inhal Toxicol 2011; 23:863-77. [DOI: 10.3109/08958378.2011.609918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Hester SD, Johnstone AF, Boyes WK, Bushnell PJ, Shafer TJ. Acute toluene exposure alters expression of genes in the central nervous system associated with synaptic structure and function. Neurotoxicol Teratol 2011; 33:521-9. [DOI: 10.1016/j.ntt.2011.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/07/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
13
|
Oshiro WM, Kenyon EM, Gordon CJ, Bishop B, Krantz QT, Ford J, Bushnell PJ. Extrapolating the Acute Behavioral Effects of Toluene from 1- to 24-h Exposures in Rats: Roles of Dose Metric and Metabolic and Behavioral Tolerance. Toxicol Sci 2011; 123:180-92. [DOI: 10.1093/toxsci/kfr162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Acute inhalation of 2,2,4-trimethylpentane alters visual evoked potentials and signal detection behavior in rats. Neurotoxicol Teratol 2010; 32:525-35. [DOI: 10.1016/j.ntt.2010.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/16/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
|
15
|
Behavioral toxicology in the 21st century: challenges and opportunities for behavioral scientists. Summary of a symposium presented at the annual meeting of the neurobehavioral teratology society, June, 2009. Neurotoxicol Teratol 2010; 32:313-28. [PMID: 20171276 DOI: 10.1016/j.ntt.2010.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/27/2010] [Accepted: 02/06/2010] [Indexed: 12/26/2022]
Abstract
The National Research Council (NRC) of the National Academies of Science recently published a report of its vision of toxicity testing in the 21st century. The report proposes that the current toxicity testing paradigm that depends upon whole-animal tests be replaced with a strategy based upon in vitro tests, in silico models and evaluations of toxicity at the human population level. These goals are intended to set in motion changes that will transform risk assessment into a process in which adverse effects on public health are predicted by quantitative structure-activity relationship (QSAR) models and data from suites of high-throughput in vitro tests. The potential roles for whole-animal testing in this futuristic vision are both various and undefined. A symposium was convened at the annual meeting of the Neurobehavioral Teratology Society in Rio Grande, Puerto Rico in June, 2009 to discuss the potential challenges and opportunities for behavioral scientists in developing and/or altering this strategy toward the ultimate goal of protecting public health from hazardous chemicals. R. Kavlock described the NRC vision, introduced the concept of the 'toxicity pathway' (a central guiding principle of the NRC vision), and described the current status of an initial implementation this approach with the EPA's ToxCast(R) program. K. Crofton described a pathway based upon disruption of thyroid hormone metabolism during development, including agents, targets, and outcomes linked by this mode of action. P. Bushnell proposed a pathway linking the neural targets and cellular to behavioral effects of acute exposure to organic solvents, whose predictive power is limited by our incomplete understanding of the complex CNS circuitry that mediates the behavioral responses to solvents. B. Weiss cautioned the audience regarding a pathway approach to toxicity testing, using the example of the developmental toxicity of phthalates, whose effects on mammalian sexual differentiation would be difficult to identify based on screening tests in vitro. Finally, D. Rice raised concerns regarding the use of data derived from toxicity screening tests to human health risk assessments. Discussion centered around opportunities and challenges for behavioral toxicologists regarding this impending paradigm shift. Opportunities include: identifying and characterizing toxicity pathways; informing the conditions and limits of extrapolation; addressing issues of susceptibility and variability; providing reality-checks on selected positives and negatives from screens; and performing targeted testing and dose-response assessments of chemicals flagged during screening. Challenges include: predicting behavior using models of complex neurobiological pathways; standardizing study designs and dependent variables to facilitate creation of databases; and managing the cost and efficiency of behavioral assessments. Thus, while progress is being made in approaching the vision of 21st century toxicology, we remain a long way from replacing whole-animal tests; indeed, some animal testing will be essential for the foreseeable future at least. Initial advances will likely provide better prioritization tools so that animal resources are used more efficiently and effectively.
Collapse
|