1
|
Jin L, Conklin DJ. A novel evaluation of endothelial dysfunction ex vivo: "Teaching an Old Drug a New Trick". Physiol Rep 2021; 9:e15120. [PMID: 34755498 PMCID: PMC8579072 DOI: 10.14814/phy2.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Many CVDs begin with endothelium dysfunction (ED), including hypertension, thrombosis, and atherosclerosis. Our assay evaluated ED in isolated murine aorta by quantifying phenylephrine-induced contractions (PE) in the presence of L-NAME, which blocked acetylcholine-induced relaxation (ACh %; >99%). The "L-NAME PE Contraction Ratio" (PECR) was defined as: "PE Tension post-L-NAME" divided by "PE Tension pre-L-NAME." We hypothesized that our novel PE Contraction Ratio would strongly correlate with alterations in endothelium function. Validation 1: PECR and ACh % values of naïve aortas were strongly and positively correlated (PECR vs. ACh %, r2 = 0.91, n = 7). Validation 2: Retrospective analyses of published aortic PECR and ACh % data of female mice exposed to filtered air, propylene glycol:vegetable glycerin (PG:VG), formaldehyde (FA), or acetaldehyde (AA) for 4d showed that the PECR in air-exposed mice (PECR = 1.43 ± 0.05, n = 16) correlated positively with the ACh % (r2 = 0.40) as seen in naïve aortas. Similarly, PECR values were significantly decreased in aortas with ED yet retained positive regression coefficients with ACh % (PG:VG r2 = 0.54; FA r2 = 0.55). Unlike other toxicants, inhaled AA significantly increased both PECR and ACh % values yet diminished their correlation (r2 = 0.09). Validation 3: To assess species-specific dependence, we tested PECR in rat aorta, and found PECR correlated with ACh % relaxation albeit less well in this aged and dyslipidemic model. Because the PECR reflects NOS function directly, it is a robust measure of both ED and vascular dysfunction. Therefore, it is a complementary index of existing tests of ED that also provides insight into mechanisms of vascular toxicity.
Collapse
Affiliation(s)
- Lexiao Jin
- American Heart Association‐Tobacco Regulation and Addiction CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel J. Conklin
- American Heart Association‐Tobacco Regulation and Addiction CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKentuckyUSA
- Superfund Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Division of Environmental MedicineDepartment of MedicineUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
2
|
Haberzettl P, Jin L, Riggs DW, Zhao J, O’Toole TE, Conklin DJ. Fine particulate matter air pollution and aortic perivascular adipose tissue: Oxidative stress, leptin, and vascular dysfunction. Physiol Rep 2021; 9:e14980. [PMID: 34327871 PMCID: PMC8322754 DOI: 10.14814/phy2.14980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Exposure to fine particulate matter (PM2.5 ) air pollution increases blood pressure, induces vascular inflammation and dysfunction, and augments atherosclerosis in humans and rodents; however, the understanding of early changes that foster chronic vascular disease is incomplete. Because perivascular adipose tissue (PVAT) inflammation is implicated in chronic vascular diseases, we investigated changes in aortic PVAT following short-term air pollution exposure. Mice were exposed to HEPA-filtered or concentrated ambient PM2.5 (CAP) for 9 consecutive days, and the abundance of inflammatory, adipogenic, and adipokine gene mRNAs was measured by gene array and qRT-PCR in thoracic aortic PVAT. Responses of the isolated aorta with and without PVAT to contractile (phenylephrine, PE) and relaxant agonists (acetylcholine, ACh; sodium nitroprusside, SNP) were measured. Exposure to CAP significantly increased the urinary excretion of acrolein metabolite (3HPMA) as well as the abundance of protein-acrolein adducts (a marker of oxidative stress) in PVAT and aorta, upregulated PVAT leptin mRNA expression without changing mRNA levels of several proinflammatory genes, and induced PVAT insulin resistance. In control mice, PVAT significantly depressed PE-induced contractions-an effect that was dampened by CAP exposure. Pulmonary overexpression of extracellular dismutase (ecSOD-Tg) prevented CAP-induced effects on urinary 3HPMA levels, PVAT Lep mRNA, and alterations in PVAT and aortic function, reflecting a necessary role of pulmonary oxidative stress in all of these deleterious CAP-induced changes. More research is needed to address how exactly short-term exposure to PM2.5 perturbs PVAT and aortic function, and how these specific genes and functional changes in PVAT could lead over time to chronic inflammation, endothelial dysfunction, and atherosclerosis.
Collapse
Affiliation(s)
- Petra Haberzettl
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Lexiao Jin
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Daniel W. Riggs
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Jingjing Zhao
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Timothy E. O’Toole
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Daniel J. Conklin
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKYUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKYUSA
- Division of Environmental MedicineUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
3
|
Jin L, Lynch J, Richardson A, Lorkiewicz P, Srivastava S, Theis W, Shirk G, Hand A, Bhatnagar A, Srivastava S, Conklin DJ. Electronic cigarette solvents, pulmonary irritation, and endothelial dysfunction: role of acetaldehyde and formaldehyde. Am J Physiol Heart Circ Physiol 2021; 320:H1510-H1525. [PMID: 33543686 PMCID: PMC8260384 DOI: 10.1152/ajpheart.00878.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
After more than a decade of electronic cigarette (E-cig) use in the United States, uncertainty persists regarding E-cig use and long-term cardiopulmonary disease risk. As all E-cigs use propylene glycol and vegetable glycerin (PG-VG) and generate abundant saturated aldehydes, mice were exposed by inhalation to PG-VG-derived aerosol, formaldehyde (FA), acetaldehyde (AA), or filtered air. Biomarkers of exposure and cardiopulmonary injury were monitored by mass spectrometry (urine metabolites), radiotelemetry (respiratory reflexes), isometric myography (aorta), and flow cytometry (blood markers). Acute PG-VG exposure significantly affected multiple biomarkers including pulmonary reflex (decreased respiratory rate, -50%), endothelium-dependent relaxation (-61.8 ± 4.2%), decreased WBC (-47 ± 7%), and, increased RBC (+6 ± 1%) and hemoglobin (+4 ± 1%) versus air control group. Notably, FA exposure recapitulated the prominent effects of PG-VG aerosol on pulmonary irritant reflex and endothelial dysfunction, whereas AA exposure did not. To attempt to link PG-VG exposure with FA or AA exposure, urinary formate and acetate levels were measured by GC-MS. Although neither FA nor AA exposure altered excretion of their primary metabolite, formate or acetate, respectively, compared with air-exposed controls, PG-VG aerosol exposure significantly increased post-exposure urinary acetate but not formate. These data suggest that E-cig use may increase cardiopulmonary disease risk independent of the presence of nicotine and/or flavorings. This study indicates that FA levels in tobacco product-derived aerosols should be regulated to levels that do not induce biomarkers of cardiopulmonary harm. There remains a need for reliable biomarkers of exposure to inhaled FA and AA.NEW & NOTEWORTHY Use of electronic cigarettes (E-cig) induces endothelial dysfunction (ED) in healthy humans, yet the specific constituents in E-cig aerosols that contribute to ED are unknown. Our study implicates formaldehyde that is formed in heating of E-cig solvents (propylene glycol, PG; vegetable glycerin, VG). Exposure to formaldehyde or PG-VG-derived aerosol alone stimulated ED in female mice. As ED was independent of nicotine and flavorants, these data reflect a "universal flaw" of E-cigs that use PG-VG.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/e-cigarettes-aldehydes-and-endothelial-dysfunction/.
Collapse
Affiliation(s)
- Lexiao Jin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Jordan Lynch
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Superfund Research Center, University of Louisville, Louisville, Kentucky
| | - Andre Richardson
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Pawel Lorkiewicz
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Superfund Research Center, University of Louisville, Louisville, Kentucky
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Shweta Srivastava
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Whitney Theis
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Gregg Shirk
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Alexis Hand
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Superfund Research Center, University of Louisville, Louisville, Kentucky
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Sanjay Srivastava
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Superfund Research Center, University of Louisville, Louisville, Kentucky
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel J Conklin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Superfund Research Center, University of Louisville, Louisville, Kentucky
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
4
|
Lynch J, Jin L, Richardson A, Jagatheesan G, Lorkiewicz P, Xie Z, Theis WS, Shirk G, Malovichko MV, Bhatnagar A, Srivastava S, Conklin DJ. Acute and chronic vascular effects of inhaled crotonaldehyde in mice: Role of TRPA1. Toxicol Appl Pharmacol 2020; 402:115120. [PMID: 32634517 DOI: 10.1016/j.taap.2020.115120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Although crotonaldehyde (CR) is an abundant α,β-unsaturated aldehyde in mainstream cigarette smoke (MCS), the cardiovascular toxicity of inhaled CR is largely unexplored. Thus, male C57BL/6 J mice were exposed acutely (1 h, 6 h, and 4d) and chronically (12 weeks) to CR (at levels relevant to MCS; 1 and 3 ppm), and cardiovascular and systemic outcomes were measured in vivo and in vitro. Diastolic blood pressure was decreased (hypotension) by both acute and chronic CR exposure. Vascular toxicity of inhaled CR was quantified in isolated aorta in response to agonists of contraction (phenylephrine, PE) and relaxation (acetylcholine, ACh; sodium nitroprusside, SNP). Although no change in contractility was observed, ACh-induced relaxations were augmented after both acute and chronic CR exposures whereas SNP-induced relaxation was enhanced only following 3 ppm CR exposure. Because CR is a known agonist of the transient receptor potential ankyrin 1 (TRPA1) channel, male TRPA1-null mice were exposed to air or CR (4d, 1 ppm) and aortic function assessed in vitro. CR exposure had no effect on TRPA1-null aortic function indicating a role of TRPA1 in CR effects in C57BL/6 J mice. Notably, CR exposure (4d, 1 ppm) had no effect on aortic function in female C57BL/6 J mice. This study shows that CR inhalation exposure induces real-time and persistent vascular changes that promote hypotension-a known risk factor for stroke. Because of continued widespread exposures of humans to combustion-derived CR (environmental and tobacco products), CR may be an important cardiovascular disease risk factor.
Collapse
Affiliation(s)
- Jordan Lynch
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America.
| | - Lexiao Jin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Andre Richardson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Ganapathy Jagatheesan
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Department of Chemistry, University of Louisville, United States of America.
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America.
| | - Whitney S Theis
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Gregg Shirk
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Marina V Malovichko
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Aruni Bhatnagar
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Daniel J Conklin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| |
Collapse
|
5
|
Haberzettl P, Conklin DJ, Abplanalp WT, Bhatnagar A, O'Toole TE. Inhalation of Fine Particulate Matter Impairs Endothelial Progenitor Cell Function Via Pulmonary Oxidative Stress. Arterioscler Thromb Vasc Biol 2017; 38:131-142. [PMID: 29191925 DOI: 10.1161/atvbaha.117.309971] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Exposure to fine particulate matter (PM2.5) air pollution is associated with the depletion of circulating endothelial progenitor cells (EPCs), as well as vascular injury and dysfunction. Nevertheless, it remains unclear whether PM2.5 exposure leads to significant impairments in EPC function. Hence, we studied the effects of PM2.5 on EPC-mediated recovery of vascular perfusion after hindlimb ischemia and examined the mechanisms whereby PM2.5 exposure affects EPC abundance and function. APPROACH AND RESULTS In comparison with EPCs isolated from mice breathing filtered air, EPCs from mice exposed for 9 consecutive days (6 hours per day) to concentrated ambient PM2.5 (CAP) had defects in both proliferation and tube formation. However, CAP exposure of mice overexpressing extracellular superoxide dismutase (ecSOD-Tg) in the lungs did not affect EPC tube formation. Exposure to CAP also suppressed circulating EPC levels, VEGF (vascular endothelial growth factor)-stimulated aortic Akt phosphorylation, and plasma NO levels in wild-type but not in ecSOD-Tg mice. EPCs from CAP-exposed wild-type mice failed to augment basal recovery of hindlimb perfusion when injected into unexposed mice subjected to hindlimb ischemia; however, these deficits in recovery of hindlimb perfusion were absent when using EPCs derived from CAP-exposed ecSOD-Tg mice. The improved reparative function of EPCs from CAP-exposed ecSOD-Tg mice was also reflected by greater expression of Mmp-9 and Nos3 when compared with EPCs from CAP-exposed wild-type mice. CONCLUSIONS Exposure to PM2.5 impairs EPC abundance and function and prevents EPC-mediated vascular recovery after hindlimb ischemia. This defect is attributed, in part, to pulmonary oxidative stress and was associated with vascular VEGF resistance and a decrement in NO bioavailability.
Collapse
Affiliation(s)
- Petra Haberzettl
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Daniel J Conklin
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Wesley T Abplanalp
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Aruni Bhatnagar
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY
| | - Timothy E O'Toole
- From the Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
6
|
Paffett ML, Zychowski KE, Sheppard L, Robertson S, Weaver JM, Lucas SN, Campen MJ. Ozone Inhalation Impairs Coronary Artery Dilation via Intracellular Oxidative Stress: Evidence for Serum-Borne Factors as Drivers of Systemic Toxicity. Toxicol Sci 2015; 146:244-53. [PMID: 25962394 DOI: 10.1093/toxsci/kfv093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ambient ozone (O3) levels are associated with cardiovascular morbidity and mortality, but the underlying pathophysiological mechanisms driving extrapulmonary toxicity remain unclear. This study examined the coronary vascular bed of rats in terms of constrictive and dilatory responses to known agonists following a single O3 inhalation exposure. In addition, serum from exposed rats was used in ex vivo preparations to examine whether bioactivity and toxic effects of inhaled O3 could be conveyed to extrapulmonary systems via the circulation. We found that 24 h following inhalation of 1 ppm O3, isolated coronary vessels exhibited greater basal tone and constricted to a greater degree to serotonin stimulation. Vasodilation to acetylcholine (ACh) was markedly diminished in coronary arteries from O3-exposed rats, compared with filtered air-exposed controls. Dilation to ACh was restored by combined superoxide dismutase and catalase treatment, and also by NADPH oxidase inhibition. When dilute (10%) serum from exposed rats was perfused into the lumen of coronary arteries from unexposed, naïve rats, the O3-induced reduction in vasodilatory response to ACh was partially recapitulated. Furthermore, following O3 inhalation, serum exhibited a nitric oxide scavenging capacity, which may partially explain blunted ACh-mediated vasodilatory responses. Thus, bioactivity from inhalation exposures may be due to compositional changes of the circulation. These studies shed light on possible mechanisms of action that may explain O3-associated cardiac morbidity and mortality in humans.
Collapse
Affiliation(s)
- Michael L Paffett
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Katherine E Zychowski
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Lianne Sheppard
- Departments of Biostatistics and Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington and
| | - Sarah Robertson
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - John M Weaver
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Selita N Lucas
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Matthew J Campen
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico,
| |
Collapse
|
7
|
Nagiah S, Phulukdaree A, Naidoo D, Ramcharan K, Naidoo RN, Moodley D, Chuturgoon A. Oxidative stress and air pollution exposure during pregnancy: A molecular assessment. Hum Exp Toxicol 2014; 34:838-47. [PMID: 25403174 DOI: 10.1177/0960327114559992] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic air pollution exposure during pregnancy can cause oxidative stress leading to adverse birth outcomes. The aim of this study was to assess and compare oxidative stress response in peripheral lymphocytes isolated from pregnant women from a highly industrialized locale (south Durban (SD); n = 50) and a control with lower air pollutant levels (north Durban (ND); n = 50). Oxidative stress response was measured by quantifying malondialdehyde (MDA) levels and a SuperArray gene panel. Mitochondrial function (adenosine triphosphate (ATP) levels and mitochondrial depolarization), DNA integrity (comet assay and mitochondrial DNA (mtDNA) viability) and DNA repair (OGG1) were assessed. Antioxidant response was assessed by quantification of glutathione (GSH) and SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2) and uncoupling protein 2 (UCP2) protein and messenger RNA (mRNA) expression. Levels of MDA (p = 0.9), mitochondrial depolarization (p = 0.88), ATP (1.89-fold), SOD2 (1.23-fold) and UCP2 (1.58-fold) gene expression were elevated in the SD group with significantly higher UCP2 protein levels (p = 0.05) and longer comet tail length (p = 0.0004). The expression of Nrf2 protein (p = 0.03) and mRNA levels (-1.37-fold), GSH concentration (p < 0.0001), mtDNA amplification (-2.04-fold) and OGG1 mRNA (-2.78-fold) activity were decreased in the SD group. Of the 84 oxidative stress-related genes evaluated, 26 were differentially regulated. Pregnant women exposed to higher air pollutant levels showed increased markers for oxidative stress and compromised DNA integrity and repair.
Collapse
Affiliation(s)
- S Nagiah
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - A Phulukdaree
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - D Naidoo
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - K Ramcharan
- Discipline of Occupational and Environmental Health, University of KwaZulu Natal, Durban, South Africa
| | - R N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu Natal, Durban, South Africa
| | - D Moodley
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - A Chuturgoon
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|