1
|
King MD, Su G, Crump D, Farhat A, Marlatt V, Lee SL, Williams TD, Elliott JE. Contaminant biomonitoring augmented with a qPCR array indicates hepatic mRNA gene expression effects in wild-collected seabird embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166784. [PMID: 37666345 DOI: 10.1016/j.scitotenv.2023.166784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Birds can bioaccumulate persistent contaminants, and maternal transfer to eggs may expose embryos to concentrations sufficient to cause adverse effects during sensitive early-life stages. However, using tissue residue concentrations alone to infer whether contaminant effects are occurring suffers from uncertainty, and efficient, sensitive biomarkers remain limited in wildlife. We studied relationships between whole embryo contaminant concentrations (total mercury, organochlorine pesticides, perfluoroalkyl substances, polychlorinated biphenyls, and halogenated flame retardants) together with mRNA expression in embryonic liver tissue from a Pacific Ocean seabird, the rhinoceros auklet (Cerorhinca monocerata). Fresh eggs were collected, incubated under controlled conditions, and from the pre-hatch embryo, hepatic RNA was extracted for qPCR array analysis to measure gene expression (2-∆Cq), while the remaining embryo was analyzed for contaminant residues. Contaminant and gene expression data were assessed with a combination of multivariate approaches and linear models. Results indicated correlations between embryonic total mercury and several genes such as sepp1, which encodes selenoprotein P. Correlation between the biotransformation gene cyp1a4 and the C7 perfluoroalkyl carboxylic acid PFHpA was also evident. This study demonstrates that egg collection from free-living populations for contaminant biomonitoring programs can relate chemical residues to in ovo mRNA gene expression effects in embryo hepatic tissue.
Collapse
Affiliation(s)
- Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Geoffrey Su
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Doug Crump
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Amani Farhat
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Vicki Marlatt
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sandi L Lee
- Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| |
Collapse
|
2
|
Reardon AJF, Rowan-Carroll A, Ferguson SS, Leingartner K, Gagne R, Kuo B, Williams A, Lorusso L, Bourdon-Lacombe JA, Carrier R, Moffat I, Yauk CL, Atlas E. Potency Ranking of Per- and Polyfluoroalkyl Substances Using High-Throughput Transcriptomic Analysis of Human Liver Spheroids. Toxicol Sci 2021; 184:154-169. [PMID: 34453843 DOI: 10.1093/toxsci/kfab102] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are some of the most prominent organic contaminants in human blood. Although the toxicological implications of human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are well established, data on lesser-understood PFAS are limited. New approach methodologies (NAMs) that apply bioinformatic tools to high-throughput data are being increasingly considered to inform risk assessment for data-poor chemicals. The aim of this study was to compare the potencies (ie, benchmark concentrations: BMCs) of PFAS in primary human liver microtissues (3D spheroids) using high-throughput transcriptional profiling. Gene expression changes were measured using TempO-seq, a templated, multiplexed RNA-sequencing platform. Spheroids were exposed for 1 or 10 days to increasing concentrations of 23 PFAS in 3 subgroups: carboxylates (PFCAs), sulfonates (PFSAs), and fluorotelomers and sulfonamides. PFCAs and PFSAs exhibited trends toward increased transcriptional potency with carbon chain-length. Specifically, longer-chain compounds (7-10 carbons) were more likely to induce changes in gene expression and have lower transcriptional BMCs. The combined high-throughput transcriptomic and bioinformatic analyses support the capability of NAMs to efficiently assess the effects of PFAS in liver microtissues. The data enable potency ranking of PFAS for human liver cell spheroid cytotoxicity and transcriptional changes, and assessment of in vitro transcriptomic points of departure. These data improve our understanding of the possible health effects of PFAS and will be used to inform read-across for human health risk assessment.
Collapse
Affiliation(s)
- Anthony J F Reardon
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Stephen S Ferguson
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Karen Leingartner
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Remi Gagne
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Luigi Lorusso
- Chemicals and Environmental Health Management Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Julie A Bourdon-Lacombe
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Richard Carrier
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Ivy Moffat
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.,Department of Biochemistry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Reardon AJF, Rowan-Carroll A, Ferguson SS, Leingartner K, Gagne R, Kuo B, Williams A, Lorusso L, Bourdon-Lacombe JA, Carrier R, Moffat I, Yauk CL, Atlas E. Potency Ranking of Per- and Polyfluoroalkyl Substances Using High-Throughput Transcriptomic Analysis of Human Liver Spheroids. Toxicol Sci 2021; 184:154-169. [PMID: 34453843 DOI: 10.1101/2020.10.20.347328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are some of the most prominent organic contaminants in human blood. Although the toxicological implications of human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are well established, data on lesser-understood PFAS are limited. New approach methodologies (NAMs) that apply bioinformatic tools to high-throughput data are being increasingly considered to inform risk assessment for data-poor chemicals. The aim of this study was to compare the potencies (ie, benchmark concentrations: BMCs) of PFAS in primary human liver microtissues (3D spheroids) using high-throughput transcriptional profiling. Gene expression changes were measured using TempO-seq, a templated, multiplexed RNA-sequencing platform. Spheroids were exposed for 1 or 10 days to increasing concentrations of 23 PFAS in 3 subgroups: carboxylates (PFCAs), sulfonates (PFSAs), and fluorotelomers and sulfonamides. PFCAs and PFSAs exhibited trends toward increased transcriptional potency with carbon chain-length. Specifically, longer-chain compounds (7-10 carbons) were more likely to induce changes in gene expression and have lower transcriptional BMCs. The combined high-throughput transcriptomic and bioinformatic analyses support the capability of NAMs to efficiently assess the effects of PFAS in liver microtissues. The data enable potency ranking of PFAS for human liver cell spheroid cytotoxicity and transcriptional changes, and assessment of in vitro transcriptomic points of departure. These data improve our understanding of the possible health effects of PFAS and will be used to inform read-across for human health risk assessment.
Collapse
Affiliation(s)
- Anthony J F Reardon
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Stephen S Ferguson
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Karen Leingartner
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Remi Gagne
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Luigi Lorusso
- Chemicals and Environmental Health Management Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Julie A Bourdon-Lacombe
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Richard Carrier
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Ivy Moffat
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Choi SY, Kim TH, Hong MW, Park TS, Lee H, Lee SJ. Transcriptomic alterations induced by aflatoxin B1 and ochratoxin A in LMH cell line. Poult Sci 2020; 99:5265-5274. [PMID: 33142442 PMCID: PMC7647754 DOI: 10.1016/j.psj.2020.05.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are toxic metabolites of ubiquitously occurring molds, show diverse toxicological effects such as hepatotoxicity, genotoxicity, and immunotoxicity in human and animals. Despite poultry show sensitivity to AFB1 and OTA, the mechanism of these mycotoxins in chickens has not been fully investigated. Here, we aimed to elucidate the molecular mechanism induced by AFB1 and/or OTA in chicken hepatic cells using transcriptomic analysis. Aflatoxin B1 and OTA induced cytotoxic effects in a dose-dependent manner at 48 h after exposure. Furthermore, correlation effect indicated an antagonism between the 2 toxins. The mRNA sequencing of AFB1-treated or OTA-treated chicken hepatocarcinoma and functional analysis revealed the pathways that were commonly regulated by both mycotoxins, especially PPAR signaling, focal adhesion, and MAPK signaling. Based on these findings, a possible hypothesis is that AFB1 and OTA have similar toxic mechanisms and compete for some steps in the chicken liver, and it is expected that the mycotoxins would have antagonistic effects. In addition, genes identified through transcriptome analysis provide candidates for further study of AFB1 and OTA toxicity and targets for efforts to improve the health of chickens exposed to mycotoxins.
Collapse
Affiliation(s)
- So-Young Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Min-Wook Hong
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
| | - Hyojeong Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
5
|
Sharin T, Crump D, O'Brien JM. Evaluation of the Aryl Hydrocarbon Receptor Response in LMH 3D Spheroids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1693-1701. [PMID: 32452045 DOI: 10.1002/etc.4783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we investigated whether the immortalized chicken hepatocellular carcinoma cell line, leghorn male hepatoma (LMH), had a comparable aryl hydrocarbon receptor (AhR) response to primary chicken embryonic hepatocytes (CEHs) when used in a well-established assay for chemical screening and prioritization. The LMH cells were grown as 2-dimensional (2D) confluent cells and 3D spheroids to determine the optimal cell culture states for chemical screening. Cytochrome P450 1A4 and 1A5 (CYP1A) activity and gene expression were compared between CEHs and LMH cells grown in 2 culture states following exposure to the dioxin-like compound 3,3',4,4',5-pentachlorobiphenyl (PCB-126). The CYP1A activity was measured using the ethoxyresorufin-O-deethylase (EROD) assay, and changes in mRNA expression associated with the AhR pathway were determined using a custom-designed polymerase chain reaction array. Among LMH cell culture states (i.e., 2D vs 3D), EROD induction was observed only in 3D LMH spheroids. Similarly, 3D spheroids had the greatest number of changes in AhR-related genes compared with confluent cells. Overall, these results suggest that LMH cells grown as 3D spheroids have a metabolic and gene expression profile that is comparable to that of CEH, and may represent a suitable animal-free alternative for in vitro screening of chemicals. Environ Toxicol Chem 2020;39:1693-1701. © 2020 SETAC.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Avian Proteins/genetics
- Avian Proteins/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Death/drug effects
- Cell Line, Tumor
- Cell Shape/drug effects
- Cell Survival/drug effects
- Chickens/metabolism
- Cytochrome P-450 CYP1A1/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Polychlorinated Biphenyls/metabolism
- Polychlorinated Biphenyls/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
Collapse
Affiliation(s)
- Tasnia Sharin
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Zhao C, Tang Z, Chung ACK, Wang H, Cai Z. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:495-501. [PMID: 30557707 DOI: 10.1016/j.ecoenv.2018.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Halogenated bisphenol A analogues (X-BPA) have been widely used in industrial production, such as flame retardant. Although BPA exposure was found to result in cytotoxicity, toxicity of X-BPA and molecular mechanism remain under-explored. In this study, we employed human breast cancer cell as a model to investigate the concentration-dependent toxicity and underlying mechanisms of tetrabromo bisphenol A (TBBPA) and tetrachloro bisphenol A (TCBPA). An integrated method involving molecular toxicology and mass spectrometry (MS)-based global metabolomics was applied to evaluate the toxicity of TCBPA and TBBPA on cell viability, reactive oxygen species (ROS), and metabolic alterations. The results demonstrated that low micromolar levels (0-10 μM) of TCBPA/TBBPA exposure induced cell proliferation and activated the energy metabolism of both glycolysis and amino acid. On the other hand, high micromolar levels (10-50 μM) of TCBPA/TBBPA exposure perturbed the balance between ROS and antioxidative defense process by promoting the ROS generation via the down-regulation of glutathione biosynthesis and up-regulation of nucleotide metabolism. This study, for the first time, provides evidence and mechanism for better understanding the cytotoxicity of TCBPA and TBBPA by regulating the specific metabolic pathways.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Arthur Chi Kong Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
Custer TW, Custer CM, Dummer PM, Bigorgne E, Oziolor EM, Karouna-Renier N, Schultz S, Erickson RA, Aagaard K, Matson CW. EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree swallow (Tachycineta bicolor) nestlings from Great Lakes Areas of Concern. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1392-1407. [PMID: 29039061 DOI: 10.1007/s10646-017-1863-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Tree swallow, Tachycineta bicolor, nestlings were collected from 60 sites in the Great Lakes, which included multiple sites within 27 Areas of Concern (AOCs) and six sites not listed as AOCs from 2010 to 2014. Nestlings, approximately 12 days-of-age, were evaluated for ethoxyresorufin-O-dealkylase (EROD) activity, chromosomal damage, and six measures of oxidative stress. Data on each of these biomarkers were divided into four equal numbered groups from the highest to lowest values and the groups were compared to contaminant concentrations using multivariate analysis. Contaminant concentrations, from the same nestlings, included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and 17 elements. Alkylated polycyclic aromatic hydrocarbons (aPAHs) and parent PAHs (pPAHs) were measured in pooled nestling dietary samples. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and pesticides were measured in sibling eggs. Concentrations of aPAHs, pPAHs, chlordane, dieldrin, heptachlor, and PCBs, in that order, were the major contributors to the significant differences between the lowest and highest EROD activities; PFCs, PBDEs, the remaining pesticides, and all elements were of secondary importance. The four categories of chromosomal damage did not separate out well based on the contaminants measured. Concentrations of aPAHs, pPAHs, heptachlor, PCBs, chlordane, and dieldrin were the major contributors to the significant differences between the lowest and highest activities of two oxidative stress measures, total sulfhydryl (TSH) activity and protein bound sulfhydryl (PBSH) activity. The four categories of thiobarbituric acid reacting substances (TBARS), oxidized glutathione (GSSG), reduced glutathione (GSH), and the ratio of GSSG/GSH did not separate well based on the contaminants measured.
Collapse
Affiliation(s)
- Thomas W Custer
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA.
| | - Christine M Custer
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Paul M Dummer
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Emilie Bigorgne
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, 76798, USA
| | - Elias M Oziolor
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, 76798, USA
| | - Natalie Karouna-Renier
- U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East, BLDG 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Sandra Schultz
- U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East, BLDG 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Richard A Erickson
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Kevin Aagaard
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Cole W Matson
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
8
|
Kwon EJ, Shin JS, Kim BM, Shah-Kulkarni S, Park H, Kho YL, Park EA, Kim YJ, Ha EH. Prenatal Exposure to Perfluorinated Compounds Affects Birth Weight Through GSTM1 Polymorphism. J Occup Environ Med 2016; 58:e198-205. [DOI: 10.1097/jom.0000000000000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Shan G, Wang Z, Zhou L, Du P, Luo X, Wu Q, Zhu L. Impacts of daily intakes on the isomeric profiles of perfluoroalkyl substances (PFASs) in human serum. ENVIRONMENT INTERNATIONAL 2016; 89-90:62-70. [PMID: 26826363 DOI: 10.1016/j.envint.2016.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 05/03/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been well studied in human daily intake for assessment of potential health risks. However, little is known about the isomeric compositions of PFASs in daily intake and their impacts on isomeric profiles in humans. In this study, we investigated the occurrence of PFASs with isomeric analysis in various human exposure matrices including foodstuffs, tap water and indoor dust. Perfluorooctanesulfonate (PFOS) and/or perfluorooctanoate (PFOA) were predominant in these exposure matrices collected in Tianjin, China. In fish and meat, linear (n-) PFOA was enriched with a percentage of 92.2% and 99.6%, respectively. Although n-PFOS was higher in fish (84.8%) than in technical PFOS (ca. 70%), it was much lower in meat (63.1%) and vegetables (58.5%). Dietary intake contributed >99% of the estimated daily intake (EDI) for the general population. The isomeric profiles of PFOA and PFOS in human serum were predicted based on the EDI and a one-compartment, first-order pharmacokinetic model. The isomeric percentage of n-PFOA in the EDI (98.6%) was similar to that in human serum (predicted: 98.2%, previously measured: 99.7%) of Tianjin residents. The results suggest direct PFOA intake plays an important role in its isomeric compositions in humans. For PFOS, the predicted n-PFOS (69.3%) was much higher than the previously measured values (59.2%) in human serum. This implies that other factors, such as indirect exposure to PFOS precursors and multiple excretion pathways, may contribute to the lower percentage of n-PFOS in humans than of technical PFOS.
Collapse
Affiliation(s)
- Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lianqiu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Pin Du
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaoxiao Luo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qiannian Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
10
|
Crump D, Farhat A, Chiu S, Williams KL, Jones SP, Langlois VS. Use of a Novel Double-Crested Cormorant ToxChip PCR Array and the EROD Assay to Determine Effects of Environmental Contaminants in Primary Hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3265-3274. [PMID: 26894911 DOI: 10.1021/acs.est.5b06181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In vitro screening tools and 'omics methods are increasingly being incorporated into toxicity studies to determine mechanistic effects of chemicals and mixtures. To date, the majority of these studies have been conducted with well-characterized laboratory animal models. In the present study, well-established methods developed for chicken embryonic hepatocyte (CEH) studies were extended to a wild avian species, the double-crested cormorant (DCCO; Phalacrocorax auritus), in order to compare the effects of several environmental contaminants on cytotoxicity, ethoxyresorufin O-deethylase (EROD) activity, and mRNA expression. Five organic flame retardants and one plasticizer decreased cormorant hepatocyte viability in a similar manner to that observed in previous studies with CEH. EROD activity was induced in a concentration-dependent manner following exposure to two dioxin-like chemicals and the calculated EC50 values were concordant with domestic avian species from similar species sensitivity categories. Transcriptomic effects were determined using a novel DCCO PCR array, which was designed, constructed and validated in our laboratory based on a commercially available chicken PCR array. The DCCO array has 27 target genes covering a wide range of toxicity pathways. Gene profiles were variable among the 10 chemicals screened; however, good directional concordance was observed with regard to results previously obtained in CEH. Overall, the application of well-established methods (i.e., CEH and chicken PCR array) to the double-crested cormorant demonstrated the portability of the techniques to an indicator species of ecological relevance.
Collapse
Affiliation(s)
- Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Amani Farhat
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Suzanne Chiu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Kim L Williams
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Stephanie P Jones
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | | |
Collapse
|
11
|
Porter E, Crump D, Egloff C, Chiu S, Kennedy SW. Use of an avian hepatocyte assay and the avian Toxchip Polymerse chain reaction array for testing prioritization of 16 organic flame retardants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:573-82. [PMID: 24273086 DOI: 10.1002/etc.2469] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 05/24/2023]
Abstract
Risk assessors are challenged with the task of providing data for an increasing number of priority chemicals. High-throughput toxicity screening methods--which permit rapid determination of toxic, molecular, and/or biochemical effects of a wide range of chemicals--are essential to help meet this demand. The avian embryonic hepatocyte in vitro screening method has been utilized in the authors' laboratory to assess the effects of a wide range of environmental contaminants on cytotoxicity and mRNA expression of genes associated with xenobiotic metabolism, the thyroid hormone pathway, lipid metabolism, and growth. Sixteen structurally variable organic flame retardants (OFRs)--including tetrabromoethylcyclohexane (TBECH), tris(2-butoxyethyl) phosphate (TBEP), tricresyl phosphate (TCP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP)--were screened using the in vitro method in the present study. Hepatocytes from 2 avian species, chicken and herring gull, were prepared, and species differences in hepatocyte viability were observed for several OFRs. For example, TCP was not cytotoxic in chicken hepatocytes up to the highest concentration tested (300 µM), whereas the median lethal concentration (LC50) was 31.2 µM in herring gull hepatocytes. Effects on mRNA expression in chicken embryonic hepatocytes were determined using a 3 × 32 custom-made Avian ToxChip polymerse chain reaction array and were variable among OFRs; TCP, TDCPP, and tris(2,3-dibromopropyl) isocyanurate showed the most significant alterations among the target genes assessed. Overall, this rapid screening method helped prioritize OFRs for further assessment. For example, OFRs that elicited significant effects on cytoxicity or mRNA expression represent prime candidates for egg injection studies that determine adverse effects on the whole animal but are more costly in terms of time, money, and embryo utilization.
Collapse
Affiliation(s)
- Emily Porter
- National Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
12
|
Ng CA, Hungerbühler K. Bioconcentration of perfluorinated alkyl acids: how important is specific binding? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7214-23. [PMID: 23734664 DOI: 10.1021/es400981a] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluorinated alkyl acids (PFAAs) are important global pollutants with unique pharmacokinetics. Evidence is accumulating that their behavior within organisms is affected by interaction with a number of proteins. In mammals, serum albumin, fatty acid binding proteins (FABPs) and organic anion transporters (OATs) have been identified as important to the tissue distribution, species-specific accumulation, and species- and gender-specific elimination rates of perfluoroalkyl carboxylates and perfluoroalkane sulfonates. Similar pharmacokinetics has been identified in fish. Yet, no mechanistic model exists for the bioaccumulation of PFAAs in fish that explicitly considers protein interactions. In this work, we present the first mechanistic protein-binding bioconcentration model for PFAAs in fish. Our model considers PFAA uptake via passive diffusion at the gills, association with serum albumin in the circulatory and extracellular spaces, association with FABP in the liver, and renal elimination and reabsorption facilitated by OAT proteins. The model is evaluated using measured bioconcentration and tissue distribution data collected in two previous studies of rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Comparing our model with previous attempts to describe PFAA bioconcentration using a nonspecific (partitioning-type) approach shows that inclusion of protein interactions is key to accurately predicting tissue-specific PFAA distribution and bioconcentration.
Collapse
Affiliation(s)
- Carla A Ng
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10 CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
13
|
Farhat A, Crump D, Chiu S, Williams KL, Letcher RJ, Gauthier LT, Kennedy SW. In Ovo Effects of Two Organophosphate Flame Retardants—TCPP and TDCPP—on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicol Sci 2013; 134:92-102. [DOI: 10.1093/toxsci/kft100] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
O'Brien JM, Williams A, Yauk CL, Crump D, Kennedy SW. In vitro microarray analysis identifies genes in acute-phase response pathways that are down-regulated in the liver of chicken embryos exposed in ovo to PFUdA. Toxicol In Vitro 2013; 27:1649-58. [PMID: 23602845 DOI: 10.1016/j.tiv.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 11/24/2022]
Abstract
Perfluoroundecanoic acid (PFUdA) is one of the most highly detected perfluoroalkyl compounds in wild bird tissues and eggs. Although PFUdA does not affect hatching success, many PFCs are known to impair post-hatch development and survival. Here we use microarrays to survey the transcriptional response of cultured chicken embryonic hepatocytes (CEH) to PFUdA for potential targets of PFUdA action that could lead to developmental deficiencies in exposed birds. At 1 μM and 10 μM PFUdA significantly altered the expression of 346 and 676 transcripts, respectively (fold-change>1.5, p<0.05, false discovery rate-corrected). Using functional, pathway and interactome analysis we identified several potentially important targets of PFUdA exposure, including the suppression of the acute-phase response (APR). We then measured the expression of five APR genes, fibrinogen alpha (fga), fibrinogen gamma (fgg), thrombin (f2), plasminogen (plg), and protein C (proC), in the liver of chicken embryos exposed in ovo to PFUdA. The expression of fga, f2, and proC were down-regulated in embryo livers (100 or 1000 ng/g, p<0.1) as predicted from microarray analysis, whereas fibrinogen gamma (fgg) was up-regulated and plg was not significantly affected. Our results demonstrate the utility of CEH coupled with transcriptome analysis as an in vitro screening tool for identifying novel effects of toxicant exposure. Additionally, we identified APR suppression as a potentially important and environmentally relevant target of PFUdA. These findings suggest in ovo exposure of birds to PFUdA may lead to post-hatch developmental deficiencies, such as impaired inflammatory response.
Collapse
Affiliation(s)
- Jason M O'Brien
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 20 Marie-Curie, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
15
|
Fair PA, Romano T, Schaefer AM, Reif JS, Bossart GD, Houde M, Muir D, Adams J, Rice C, Hulsey TC, Peden-Adams M. Associations between perfluoroalkyl compounds and immune and clinical chemistry parameters in highly exposed bottlenose dolphins (Tursiops truncatus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:736-746. [PMID: 23322558 DOI: 10.1002/etc.2122] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/16/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Perfluoroalkyl compounds (PFCs) are ubiquitous, persistent chemical contaminants found in the environment, wildlife, and humans. Despite the widespread occurrence of PFCs, little is known about the impact these contaminants have on the health of wildlife populations. The authors investigated the relationship between PFCs (including ∑perfluorocarboxylates, ∑perfluoroalkyl sulfonates, perfluorooctane sulfonate, perfluorooctanoic acid, and perfluorodecanoic acid) and the clinocopathologic and immune parameters in a highly exposed population (n = 79) of Atlantic bottlenose dolphins (mean ∑PFCs = 1970 ng/ml; range 574-8670 ng/ml) sampled from 2003 to 2005 near Charleston, South Carolina, USA. Age-adjusted linear regression models showed statistically significant positive associations between exposure to one or more of the PFC totals and/or individual analytes and the following immunological parameters: absolute numbers of CD2+ T cells, CD4+ helper T cells, CD19+ immature B cells, CD21+ mature B cells, CD2/CD21 ratio, MHCII+ cells, B cell proliferation, serum IgG1, granulocytic, and monocytic phagocytosis. Several PFC analyte groups were also positively associated with serum alanine aminotransferase, gamma-glutamyltransferase, creatinine, phosphorus, amylase, and anion gap and negatively associated with cholesterol levels, creatinine phosphokinase, eosinophils, and monocytes. Based on these relationships, the authors suggest that the PFC concentrations found in Charleston dolphins may have effects on immune, hematopoietic, kidney, and liver function. The results contribute to the emerging data on PFC health effects in this first study to describe associations between PFCs and health parameters in dolphins.
Collapse
Affiliation(s)
- Patricia A Fair
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sahu SC, O'Donnell MW, Sprando RL. Interactive toxicity of usnic acid and lipopolysaccharides in human liver HepG2 cells. J Appl Toxicol 2012; 32:739-49. [PMID: 22777745 DOI: 10.1002/jat.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/09/2022]
Abstract
Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccarides (LPS), a potential contaminant of food, at low non-toxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in a binary mixture, for 24 h at 37°C in 5% CO2. After the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenomic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway-focused gene expression profiles. Compared with the controls, low non-toxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their binary mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway-focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the binary mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of the present study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | |
Collapse
|
17
|
Strömqvist M, Olsson JA, Kärrman A, Brunström B. Transcription of genes involved in fat metabolism in chicken embryos exposed to the peroxisome proliferator-activated receptor alpha (PPARα) agonist GW7647 or to perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA). Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:29-36. [PMID: 22465071 DOI: 10.1016/j.cbpc.2012.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 12/23/2022]
Abstract
Perfluoroalkyl acids (PFAAs) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are developmental toxicants in various animal classes, including birds. Both compounds interact with peroxisome proliferator-activated receptors (PPARs), but it is not known whether activation of PPARs is involved in their embryo toxicity in birds. We exposed chicken embryos via egg injection at a late developmental stage to GW7647, a potent PPARα agonist in mammals, and to PFOS or PFOA. Mortality was induced by PFOS and PFOA but not by GW7647. Transcripts of a number of genes activated by PPARα agonists in mammals were analyzed in liver and kidney of 18-day-old embryos. Several of the genes were induced in both liver and kidney following exposure to GW7647. Treatment with PFOA resulted in induction of acyl-coenzyme A oxidase mRNA in liver, whereas none of the genes were significantly induced by PFOS treatment. No up-regulation of gene transcription was found in kidney following treatment with PFOS or PFOA. Principal component analysis showed that PFOA caused an mRNA expression pattern in liver more similar to the pattern induced by GW7647 than PFOS did. Our findings do not support that the embryo mortality by PFOS and PFOA in chicken embryos involves PPARα activation.
Collapse
Affiliation(s)
- Marie Strömqvist
- Department of Environmental Toxicology, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
18
|
Cassone CG, Vongphachan V, Chiu S, Williams KL, Letcher RJ, Pelletier E, Crump D, Kennedy SW. In Ovo Effects of Perfluorohexane Sulfonate and Perfluorohexanoate on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicol Sci 2012; 127:216-24. [DOI: 10.1093/toxsci/kfs072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Naile JE, Wiseman S, Bachtold K, Jones PD, Giesy JP. Transcriptional effects of perfluorinated compounds in rat hepatoma cells. CHEMOSPHERE 2012; 86:270-277. [PMID: 22071372 DOI: 10.1016/j.chemosphere.2011.09.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/04/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is the terminal degradation product of many commercially used perfluorinated compounds, and most of the toxicity testing to date has focused on its potential biological effects. While PFOS has been extensively studied, other PFCs including replacement chemicals such as perfluorobutanesulfonate (PFBS) and perfluorobutyric acid (PFBA), have not been well characterized. Despite the relative lack of data available on these other PFCs it has been assumed that they will cause similar or lesser effects than PFOS. This study compared the effects of 10 PFCs routinely found in the environment on mRNA abundance of 7 genes related to processes known to be affected by PFOS, such as fatty acid and cholesterol synthesis, and thyroid development. Rat H4IIE hepatoma cells were exposed and changes in mRNA abundance were quantified by real-time PCR. Significant changes in mRNA abundance were observed. The effects caused by the shorter chain replacement chemicals differed significantly from those caused by PFOS or PFOA. Furthermore, not all of the PFCs caused the same effects, and changes could not simply be attributed to chain-length or functional group. These differences could mean that these replacement chemicals do not act through the same mechanisms as the more studied PFOS and PFOA.
Collapse
Affiliation(s)
- Jonathan E Naile
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Saskatchewan, Canada S7N 5B3.
| | | | | | | | | |
Collapse
|
20
|
O'Brien JM, Austin AJ, Williams A, Yauk CL, Crump D, Kennedy SW. Technical-grade perfluorooctane sulfonate alters the expression of more transcripts in cultured chicken embryonic hepatocytes than linear perfluorooctane sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2846-2859. [PMID: 21994020 DOI: 10.1002/etc.700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently it was discovered that the perfluorooctane sulfonate (PFOS) detected in wildlife, such as fish-eating birds, had a greater proportion of linear PFOS (L-PFOS) than the manufactured technical product (T-PFOS), which contains linear and branched isomers. This suggests toxicological studies based on T-PFOS data may inaccurately assess exposure risk to wildlife. To determine whether PFOS effects were influenced by isomer content, we compared the transcriptional profiles of cultured chicken embryonic hepatocytes (CEH) exposed to either L-PFOS or T-PFOS using Agilent microarrays. At equal concentrations (10 µM), T-PFOS altered the expression of more transcripts (340, >1.5-fold change, p < 0.05) compared with L-PFOS (130 transcripts). Higher concentrations of L-PFOS (40 µM) were also less transcriptionally disruptive (217 transcripts) than T-PFOS at 10 µM. Functional analysis showed that L-PFOS and T-PFOS affected genes involved in lipid metabolism, hepatic system development, and cellular growth and proliferation. Pathway and interactome analysis suggested that genes may be affected through the RXR receptor, oxidative stress response, TP53 signaling, MYC signaling, Wnt/β-catenin signaling, and PPARγ and SREBP receptors. In all functional categories and pathways examined, the response elicited by T-PFOS was greater than that of L-PFOS. These data show that T-PFOS elicits a greater transcriptional response in CEH than L-PFOS alone and demonstrates the importance of considering the isomer-specific toxicological properties of PFOS when assessing exposure risk.
Collapse
Affiliation(s)
- Jason M O'Brien
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Arukwe A, Mortensen AS. Lipid peroxidation and oxidative stress responses of salmon fed a diet containing perfluorooctane sulfonic- or perfluorooctane carboxylic acids. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:288-95. [PMID: 21742055 DOI: 10.1016/j.cbpc.2011.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/01/2022]
Abstract
The present study was conducted to evaluate the effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on lipid β-oxidation and oxidative stress responses in Atlantic salmon liver and kidney tissues. We quantified changes in the expression levels of peroxisome proliferator-activated receptors (PPARs) and acyl-CoA oxidase (ACOX1) enzyme whose transcription is induced by PPARs. In addition, we analyzed gene expression patterns for enzymatic antioxidants (superoxide dismutase: SOD, catalase: CAT and glutathione peroxidase: GPx). Thiobarbituric acid reactive substances (TBARS) were analyzed as a measure for lipid peroxidation. Juvenile Atlantic salmon were repeatedly force-fed food spiked with PFOA or PFOS at 0.2mg/kg, and samples were collected after 0, 2, 5 and 8 days and after a 7 days recovery period. Our data showed that exposure of salmon to PFOS or PFOA produced changes (either increased or decreased) in mRNA expression for PPARs, ACOX1, oxidative stress responses and lipid peroxidation (TBARS) and these responses showed marked organ differences, associated with tissue bioaccumulation patterns and dependent on exposure time. Given that a classical reaction during reactive oxygen species (ROS)-induced damage involves the peroxidation of lipids, our study demonstrates that salmon continuously exposed to dietary PFOS or PFOA dose showed alteration in peroxisomal responses and oxidative stress responses, with higher severity in the kidney, compared to liver. Overall, our data suggest that ROS-mediated oxidative damage maybe a significant and putative toxic effect of PFOA and PFOS in fish as has been reported in mammals.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | | |
Collapse
|
22
|
Sahu SC, Amankwa-Sakyi M, O'Donnell MW, Sprando RL. Effects of usnic acid exposure on human hepatoblastoma HepG2 cells in culture. J Appl Toxicol 2011; 32:722-30. [DOI: 10.1002/jat.1721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 01/25/2023]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Margaret Amankwa-Sakyi
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Michael W. O'Donnell
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Robert L. Sprando
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| |
Collapse
|
23
|
Deng Y, Meyer SA, Guan X, Escalon BL, Ai J, Wilbanks MS, Welti R, Garcia-Reyero N, Perkins EJ. Analysis of common and specific mechanisms of liver function affected by nitrotoluene compounds. PLoS One 2011; 6:e14662. [PMID: 21346803 PMCID: PMC3035612 DOI: 10.1371/journal.pone.0014662] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022] Open
Abstract
Background Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. Methodology/Principal Findings Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. Conclusions/Significance A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds.
Collapse
Affiliation(s)
- Youping Deng
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
O'Brien JM, Kennedy SW, Chu S, Letcher RJ. Isomer-specific accumulation of perfluorooctane sulfonate in the liver of chicken embryos exposed in ovo to a technical mixture. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:226-231. [PMID: 20928918 DOI: 10.1002/etc.368] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prior to its recent phaseout, perfluorooctane sulfonate (PFOS) was produced by electrochemical fluorination processes, which yielded technical mixtures composed of linear isomer (∼65-79%) and several branched isomers (∼21-35%). Because PFOS can biomagnify in wildlife, birds that occupy higher trophic levels are at increased risk of exposure. We hypothesized that the pharmacokinetic properties of PFOS are isomer-specific in developing chicken (Gallus gallus domesticus) embryos exposed to technical grade PFOS (T-PFOS). In the present study, T-PFOS was composed of 62.7% linear isomer (L-PFOS), and 37.3% branched isomer, including six mono(trifluoromethyl)-branched isomers and four bis(trifluoromethyl)-branched isomers. Concentrations of 0.1, 5, or 100 µg/g of T-PFOS were injected into the air cell of chicken eggs prior to incubation. After pipping, compared with T-PFOS, the PFOS isomer profile in embryonic liver tissue for the 0.1 µg/g dose group showed 21% enrichment in the proportion of L-PFOS with a corresponding decrease in the proportion of branched isomers. Not all branched isomers were discriminated against at equal rates. The proportion of two mono(trifluoromethyl)-branched isomers and three bis(trifluoromethyl)-branched isomers decreased to a greater degree than other branched isomers. In contrast, the mono-branched isomer, P6MHpS, was overrepresented in the low-dose group. In the higher dose groups, L-PFOS was still enriched but only by approximately 10%, which indicated a dose-dependent change in isomer composition relative to T-PFOS. These results show that accumulation of PFOS in chicken embryo livers is dependent on the presence and position of branches on the alkyl backbone. This supports the hypothesis that the pharmacokinetics of PFOS are isomer-specific in biota, and may help explain why wildlife PFOS burdens are dominated by L-PFOS relative to T-PFOS mixtures.
Collapse
Affiliation(s)
- Jason M O'Brien
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
25
|
Gene Expression Profiling in Wild-Type and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate Reveals PPARα-Independent Effects. PPAR Res 2010; 2010. [PMID: 20936131 PMCID: PMC2948942 DOI: 10.1155/2010/794739] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/13/2010] [Indexed: 11/25/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) is a perfluoroalkyl acid (PFAA) and a persistent environmental contaminant found in the tissues of humans and wildlife. Although blood levels of PFOS have begun to decline, health concerns remain because of the long half-life of PFOS in humans. Like other PFAAs, such as, perfluorooctanoic acid (PFOA), PFOS is an activator of peroxisome proliferator-activated receptor-alpha (PPARα) and exhibits hepatocarcinogenic potential in rodents. PFOS is also a developmental toxicant in rodents where, unlike PFOA, its mode of action is independent of PPARα. Wild-type (WT) and PPARα-null (Null) mice were dosed with 0, 3, or 10 mg/kg/day PFOS for 7 days. Animals were euthanized, livers weighed, and liver samples collected for histology and preparation of total RNA. Gene profiling was conducted using Affymetrix 430_2 microarrays. In WT mice, PFOS induced changes that were characteristic of PPARα transactivation including regulation of genes associated with lipid metabolism, peroxisome biogenesis, proteasome activation, and inflammation. PPARα-independent changes were indicated in both WT and Null mice by altered expression of genes related to lipid metabolism, inflammation, and xenobiotic metabolism. Such results are similar to studies done with PFOA and are consistent with modest activation of the constitutive androstane receptor (CAR), and possibly PPARγ and/or PPARβ/δ. Unique treatment-related effects were also found in Null mice including altered expression of genes associated with ribosome biogenesis, oxidative phosphorylation, and cholesterol biosynthesis. Of interest was up-regulation of Cyp7a1, a gene which is under the control of various transcription regulators. Hence, in addition to its ability to modestly activate PPARα, PFOS induces a variety of PPARα-independent effects as well.
Collapse
|
26
|
Nobels I, Dardenne F, Coen WD, Blust R. Application of a multiple endpoint bacterial reporter assay to evaluate toxicological relevant endpoints of perfluorinated compounds with different functional groups and varying chain length. Toxicol In Vitro 2010; 24:1768-74. [DOI: 10.1016/j.tiv.2010.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/16/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
27
|
O’Brien JM, Crump D, Mundy LJ, Chu S, McLaren KK, Vongphachan V, Letcher RJ, Kennedy SW. Pipping success and liver mRNA expression in chicken embryos exposed in ovo to C8 and C11 perfluorinated carboxylic acids and C10 perfluorinated sulfonate. Toxicol Lett 2009; 190:134-9. [DOI: 10.1016/j.toxlet.2009.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
|