1
|
Al-Dajani AR, Kiang TKL. A high-throughput liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of p-cresol sulfate, p-cresol glucuronide, indoxyl sulfate, and indoxyl glucuronide in HepaRG culture medium and the demonstration of mefenamic acid as a potent and selective detoxifying agent. Expert Opin Drug Metab Toxicol 2025; 21:81-93. [PMID: 39323391 DOI: 10.1080/17425255.2024.2409257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND p-cresol and indole are uremic compounds which undergo sulfonation to generate the highly toxic p-cresol sulfate (pCS) and indoxyl sulfate (IxS). They are also subjected to glucuronidation to produce the less toxic p-cresol glucuronide (pCG) and indoxyl glucuronide (IG). We developed and validated an assay to quantify these metabolites in HepaRG cells. We also tested the effects of mefenamic acid on their in-situ formations in relation to the development of cellular necrosis. RESEARCH DESIGN AND METHODS HepaRG cells were exposed to p-cresol or indole (0-1 mM) with mefenamic acid (0-3000 nM) for 24 hours to generate uremic metabolites. Cells were also exposed to 0.5 mM p-cresol or indole with/without 30 nM mefenamic acid to characterize lactate dehydrogenase (LDH) release. RESULTS The assay exhibited high sensitivity and wide calibration ranges covering human concentrations. HepaRG cells also generated physiologically-relevant concentrations of each metabolite. Mefenamic acid inhibited pCS formation in a concentration-dependent manner without affecting pCG, IxS, or IG. Mefenamic acid also reduced LDH release from p-cresol (by 50.12±5.86%) or indole (56.26±3.58%). CONCLUSIONS This novel assay is capable of quantifying these metabolites in HepaRG cells. Our novel findings suggest that mefenamic acid can be potentially utilized therapeutically to attenuate pCS-associated toxicities.
Collapse
Affiliation(s)
- Ala'a R Al-Dajani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| |
Collapse
|
2
|
Sommerfeld-Klatta K, Jiers W, Rzepczyk S, Nowicki F, Łukasik-Głębocka M, Świderski P, Zielińska-Psuja B, Żaba Z, Żaba C. The Effect of Neuropsychiatric Drugs on the Oxidation-Reduction Balance in Therapy. Int J Mol Sci 2024; 25:7304. [PMID: 39000411 PMCID: PMC11242277 DOI: 10.3390/ijms25137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The effectiveness of available neuropsychiatric drugs in the era of an increasing number of patients is not sufficient, and the complexity of neuropsychiatric disease entities that are difficult to diagnose and therapeutically is increasing. Also, discoveries about the pathophysiology of neuropsychiatric diseases are promising, including those initiating a new round of innovations in the role of oxidative stress in the etiology of neuropsychiatric diseases. Oxidative stress is highly related to mental disorders, in the treatment of which the most frequently used are first- and second-generation antipsychotics, mood stabilizers, and antidepressants. Literature reports on the effect of neuropsychiatric drugs on oxidative stress are divergent. They are starting with those proving their protective effect and ending with those confirming disturbances in the oxidation-reduction balance. The presented publication reviews the state of knowledge on the role of oxidative stress in the most frequently used therapies for neuropsychiatric diseases using first- and second-generation antipsychotic drugs, i.e., haloperidol, clozapine, risperidone, olanzapine, quetiapine, or aripiprazole, mood stabilizers: lithium, carbamazepine, valproic acid, oxcarbazepine, and antidepressants: citalopram, sertraline, and venlafaxine, along with a brief pharmacological characteristic, preclinical and clinical studies effects.
Collapse
Affiliation(s)
- Karina Sommerfeld-Klatta
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Wiktoria Jiers
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Szymon Rzepczyk
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Filip Nowicki
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Magdalena Łukasik-Głębocka
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Paweł Świderski
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Barbara Zielińska-Psuja
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Zbigniew Żaba
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Czesław Żaba
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
3
|
Ma L, Wang D. Sex differences in the susceptibility to valproic acid-associated liver injury in epileptic patients. Clin Toxicol (Phila) 2024; 62:101-106. [PMID: 38512019 DOI: 10.1080/15563650.2024.2316144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.
Collapse
Affiliation(s)
- Linfeng Ma
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Dan Wang
- School of life science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Correa Basurto AM, Tamay Cach F, Jarillo Luna RA, Cabrera Pérez LC, Correa Basurto J, García Dolores F, Mendieta Wejebe JE. Hepatotoxic Evaluation of N-(2-Hydroxyphenyl)-2-Propylpentanamide: A Novel Derivative of Valproic Acid for the Treatment of Cancer. Molecules 2023; 28:6282. [PMID: 37687111 PMCID: PMC10488843 DOI: 10.3390/molecules28176282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Valproic acid (VPA) is a drug that has various therapeutic applications; however, it has been associated with liver damage. Furthermore, it is interesting to propose new compounds derived from VPA as N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA). The HO-AAVPA has better antiproliferative activity than the VPA in different cancer cell lines. The purpose of this study was to evaluate the liver injury of HO-AAVPA by acute treatment (once administration) and repeated doses for 7 days under intraperitoneal administration. The median lethal dose value (LD50) was determined in rats and mice (females and males) using OECD Guideline 425. In the study, male rats were randomly divided into 4 groups (n = 7), G1: control (without treatment), G2: vehicle, G3: VPA (500 mg/kg), and G4: HO-AAVPA (708 mg/kg, in equimolar ratio to VPA). Some biomarkers related to hepatotoxicity were evaluated. In addition, macroscopic and histological studies were performed. The LD50 value of HO-AAVPA was greater than 2000 mg/kg. Regarding macroscopy and biochemistry, the HO-AAVPA does not induce liver injury according to the measures of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutathione peroxidase, glutathione reductase, and catalase activities. Comparing the treatment with HO-AAVPA and VPA did not show a significant difference with the control group, while malondialdehyde and glutathione-reduced levels in the group treated with HO-AAVPA were close to those of the control (p ≤ 0.05). The histological study shows that liver lesions caused by HO-AAVPA were less severe compared with VPA. Therefore, it is suggested that HO-AAVPA does not induce hepatotoxicity at therapeutic doses, considering that in the future it could be proposed as an antineoplastic drug.
Collapse
Affiliation(s)
- Ana María Correa Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
| | - Feliciano Tamay Cach
- Laboratorio de Investigación de Bioquímica Aplicada, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Rosa Adriana Jarillo Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Laura Cristina Cabrera Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
- Laboratorio de Farmacología, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, La Laguna Ticoman, Ciudad de México 07340, Mexico
| | - José Correa Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Fernando García Dolores
- Laboratorio de Patología, Instituto de Ciencias Forenses de la Ciudad de México, Av. Niños Héroes 130. Col. Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
| |
Collapse
|
5
|
Gao Y, Jiang D, Wang C, An G, Zhu L, Cui C. Comprehensive Analysis of Metabolic Changes in Male Mice Exposed to Sodium Valproate Based on GC-MS Analysis. Drug Des Devel Ther 2022; 16:1915-1930. [PMID: 35747443 PMCID: PMC9211130 DOI: 10.2147/dddt.s357530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Sodium valproate (VPA) is the most widely used broad-spectrum antiepileptic first-line drug in clinical practice and is effective against various types of epilepsy. However, VPA can induce severe cardiotoxicity, nephrotoxicity, hepatotoxicity, and neurotoxicity, which limits its use. Metabolomic studies of VPA-induced toxicity have focused primarily on changes in serum and urine metabolites but have not evaluated changes in major organs or tissues. Methods Central target tissues (intestine, lung, liver, hippocampus, cerebral cortex, inner ear, spleen, kidney, heart, and serum) were analyzed using gas chromatography mass spectrometry to comprehensively evaluate VPA toxicity in mouse models. Results Multivariate analyses, including orthogonal projections of the latent structure and Student’s t test, indicated that depending on the matrix used in the study (the intestine, lung, liver, hippocampus, cerebral cortex, inner ear, spleen, kidney, heart or serum) the number of metabolites differed, the lung being the poorest and the kidney the richest in number. Conclusion These metabolites were closely related and were found to participate in 12 key pathways related to amino acid, fatty acid, and energy metabolism, revealing that the toxic mechanism of VPA may involve oxidative stress, inflammation, amino acid metabolism, lipid metabolism, and energy disorder.
Collapse
Affiliation(s)
- Yahao Gao
- Clinical Medical School, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Di Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Gang An
- Clinical Medical School, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Li Zhu
- Department of Clinical Pharmacy, Jining First People’s Hospital, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
- Correspondence: Changmeng Cui, Department of Neurosurgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272000, People’s Republic of China, Tel +8617805378911, Email
| |
Collapse
|
6
|
Effects of p-Cresol on Oxidative Stress, Glutathione Depletion, and Necrosis in HepaRG Cells: Comparisons to Other Uremic Toxins and the Role of p-Cresol Glucuronide Formation. Pharmaceutics 2021; 13:pharmaceutics13060857. [PMID: 34207666 PMCID: PMC8228354 DOI: 10.3390/pharmaceutics13060857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
The toxicological effects of p-cresol have primarily been attributed to its metabolism products; however, very little human data are available in the key organ (i.e., liver) responsible for the generation of these metabolites. Experiments were conducted in HepaRG cells utilizing the following markers of cellular toxicity: 2′-7′-dichlorofluorescein (DCF; oxidative stress) formation, total cellular glutathione (GSH) concentration, and lactate dehydrogenase (LDH; cellular necrosis) release. Concentrations of p-cresol, p-cresol sulfate, and p-cresol glucuronide were determined using validated assays. p-Cresol exposure resulted in concentration- and time-dependent changes in DCF (EC50 = 0.64 ± 0.37 mM at 24 h of exposure) formation, GSH (EC50 = 1.00 ± 0.07 mM) concentration, and LDH (EC50 = 0.85 ± 0.14 mM) release at toxicologically relevant conditions. p-Cresol was also relatively more toxic than 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid, and hippuric acid on all markers. Although the exogenous administration of p-cresol sulfate and p-cresol glucuronide generated high intracellular concentrations of these metabolites, both metabolites were less toxic compared to p-cresol at equal-molar conditions. Moreover, p-cresol glucuronide was the predominant metabolite generated in situ from p-cresol exposure. Selective attenuation of glucuronidation (without affecting p-cresol sulfate formation, while increasing p-cresol accumulation) using independent chemical inhibitors (i.e., 0.75 mM l-borneol, 75 µM amentoflavone, or 100 µM diclofenac) consistently resulted in further increases in LDH release associated with p-cresol exposure (by 28.3 ± 5.3%, 30.0 ± 8.2% or 27.3 ± 6.8%, respectively, compared to p-cresol treatment). These novel data indicated that p-cresol was a relatively potent toxicant, and that glucuronidation was unlikely to be associated with the manifestation of its toxic effects in HepaRG cells.
Collapse
|
7
|
Protective Effect of Thyme Honey against Valproic Acid Hepatotoxicity in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8839898. [PMID: 33688502 PMCID: PMC7920727 DOI: 10.1155/2021/8839898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
Introduction Valproic acid is a medication most commonly used in the treatment of emotional and neurological depression, psychological imbalances, epilepsy, and bipolar disorder. Dark honey, like thyme honey, contains more antioxidant compounds than other samples. The purpose of this study was to evaluate the effect of thyme honey on the potential hepatic effects of valproic acid. Methods In this study, 48 male rats were randomly divided into 8 groups (n = 6): G1 (control): healthy rats (normal saline 0.9%), G2: thyme honey (1 g/kg), G3: thyme honey (2 g/kg dose), G4: thyme honey (3 g/kg dose), G5: VPA (500 mg/kg), G6: VPA (500 mg/kg) and thyme honey (1 g/kg), G7: VPA (500 mg/kg) and thyme honey (2 g/kg dose), and G8: VPA (500 mg/kg) and thyme honey (3 g/kg dose). Groups G1 to G5 received the drug for 28 days. On day 14, administration of thyme honey for G6 to G8 groups was carried out using gavage until day 28. VPA was administered one hour after honey. To carry out the biochemical evaluation, blood samples were collected from all the groups and their serums were used for MDA, TAC, and liver enzymes (AST, ALT, and GGT). Tissue samples of each rat were also removed for histological studies with hematoxylin-eosin and Masson's trichrome staining. Results The use of thyme honey significantly improved the histopathological parameters of the liver tissue, including hypertrophic degeneration and nucleus alteration, expansion of sinusoids, fibrosis and hepatic necrosis, and inflammation as well as hypertrophy of Kupffer cells. In the groups receiving VPA, the rate of lipid peroxidation increased, which indicates the destruction of the liver cell membrane due to drug consumption. TAC levels also increased following increase in thyme honey dosage (p ≤ 0.05). The results of liver enzyme analysis showed a decrease in AST and ALT levels in the G6 group and a decrease in GGT level in the G8 group (p ≤ 0.05). Conclusion Based on the results of this study, it seems that high percentage of antioxidants in thyme honey enabled it to improve hepatic complications and reduce the rate of hepatocellular destruction.
Collapse
|
8
|
Mekky G, Seeds M, Diab AEAA, Shehata AM, Ahmed-Farid OAH, Alzebdeh D, Bishop C, Atala A. The potential toxic effects of magnesium oxide nanoparticles and valproate on liver tissue. J Biochem Mol Toxicol 2020; 35:e22676. [PMID: 33315275 DOI: 10.1002/jbt.22676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/24/2020] [Accepted: 12/03/2020] [Indexed: 02/02/2023]
Abstract
The liver is the main organ responsible for drug and xenobiotic metabolism and detoxification in the body. There are many antiepileptic drugs and nanoparticles that have been reported to cause serious untoward biological responses and hepatotoxicity. The aim of this study is to investigate the potential toxic effect of aspartic acid-coated magnesium oxide nanoparticles (Mg nano) and valproate (valp) using an in vitro three-dimensional (3D) human liver organoid model and an in vivo pentylenetetrazole (PTZ)-induced convulsion model in rats. Here, 3D human liver organoids were treated with valp or valp + Mg nano for 24 h and then incubated with PTZ for an extra 24 h. As the in vivo model, rats were treated with valp, Mg nano, or valp + Mg nano for 4 weeks and then they were treated with PTZ for 24 h. Toxicity in the liver organoids was demonstrated by reduced cell viability, decreased ATP, and increased reactive oxygen species. In the rat convulsion model, results revealed elevated serum alanine aminotransferase and aspartate aminotransferase levels. Both the in vitro and in vivo data demonstrated the potential toxic effects of valp + Mg nano on the liver tissues.
Collapse
Affiliation(s)
- Gehad Mekky
- Zoology Department, Faculty of Science, Zagazige, Egypt.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Michael Seeds
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | - Ahmed M Shehata
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar A-H Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Dalia Alzebdeh
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
9
|
Hisaki T, Kaneko MAN, Hirota M, Matsuoka M, Kouzuki H. Integration of read-across and artificial neural network-based QSAR models for predicting systemic toxicity: A case study for valproic acid. J Toxicol Sci 2020; 45:95-108. [PMID: 32062621 DOI: 10.2131/jts.45.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We present a systematic, comprehensive and reproducible weight-of-evidence approach for predicting the no-observed-adverse-effect level (NOAEL) for systemic toxicity by using read-across and quantitative structure-activity relationship (QSAR) models to fill gaps in rat repeated-dose and developmental toxicity data. As a case study, we chose valproic acid, a developmental toxicant in humans and animals. High-quality in vivo oral rat repeated-dose and developmental toxicity data were available for five and nine analogues, respectively, and showed qualitative consistency, especially for developmental toxicity. Similarity between the target and analogues is readily defined computationally, and data uncertainties associated with the similarities in structural, physico-chemical and toxicological properties, including toxicophores, were low. Uncertainty associated with metabolic similarity is low-to-moderate, largely because the approach was limited to in silico prediction to enable systematic and objective data collection. Uncertainty associated with completeness of read-across was reduced by including in vitro and in silico metabolic data and expanding the experimental animal database. Taking the "worst-case" approach, the smallest NOAEL values among the analogs (i.e., 200 and 100 mg/kg/day for repeated-dose and developmental toxicity, respectively) were read-across to valproic acid. Our previous QSAR models predict repeated-dose NOAEL of 148 (males) and 228 (females) mg/kg/day, and developmental toxicity NOAEL of 390 mg/kg/day for valproic acid. Based on read-across and QSAR, the conservatively predicted NOAEL is 148 mg/kg/day for repeated-dose toxicity, and 100 mg/kg/day for developmental toxicity. Experimental values are 341 mg/kg/day and 100 mg/kg/day, respectively. The present approach appears promising for quantitative and qualitative in silico systemic toxicity prediction of untested chemicals.
Collapse
Affiliation(s)
- Tomoka Hisaki
- Shiseido Global Innovation Center.,Department of Hygiene and Public Health, Tokyo Women's Medical University
| | | | | | - Masato Matsuoka
- Department of Hygiene and Public Health, Tokyo Women's Medical University
| | | |
Collapse
|
10
|
Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr Drug Metab 2020; 20:867-879. [PMID: 31702487 DOI: 10.2174/1389200220666191105121653] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions. METHODS The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms. RESULTS The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents. CONCLUSION Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, Jammu 180001, India
| | - Mohd Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Zulfiqar Ali Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
11
|
Guo HL, Jing X, Sun JY, Hu YH, Xu ZJ, Ni MM, Chen F, Lu XP, Qiu JC, Wang T. Valproic Acid and the Liver Injury in Patients with Epilepsy: An Update. Curr Pharm Des 2020; 25:343-351. [PMID: 30931853 DOI: 10.2174/1381612825666190329145428] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Valproic acid (VPA) as a widely used primary medication in the treatment of epilepsy is associated with reversible or irreversible hepatotoxicity. Long-term VPA therapy is also related to increased risk for the development of non-alcoholic fatty liver disease (NAFLD). In this review, metabolic elimination pathways of VPA in the liver and underlying mechanisms of VPA-induced hepatotoxicity are discussed. METHODS We searched in PubMed for manuscripts published in English, combining terms such as "Valproic acid", "hepatotoxicity", "liver injury", and "mechanisms". The data of screened papers were analyzed and summarized. RESULTS The formation of VPA reactive metabolites, inhibition of fatty acid β-oxidation, excessive oxidative stress and genetic variants of some enzymes, such as CPS1, POLG, GSTs, SOD2, UGTs and CYPs genes, have been reported to be associated with VPA hepatotoxicity. Furthermore, carnitine supplementation and antioxidants administration proved to be positive treatment strategies for VPA-induced hepatotoxicity. CONCLUSION Therapeutic drug monitoring (TDM) and routine liver biochemistry monitoring during VPA-therapy, as well as genotype screening for certain patients before VPA administration, could improve the safety profile of this antiepileptic drug.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Jun Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Pirozzi C, Lama A, Annunziata C, Cavaliere G, De Caro C, Citraro R, Russo E, Tallarico M, Iannone M, Ferrante MC, Mollica MP, Mattace Raso G, De Sarro G, Calignano A, Meli R. Butyrate prevents valproate-induced liver injury: In vitro and in vivo evidence. FASEB J 2019; 34:676-690. [PMID: 31914696 DOI: 10.1096/fj.201900927rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
Abstract
Sodium valproate (VPA), an antiepileptic drug, may cause dose- and time-dependent hepatotoxicity. However, its iatrogenic molecular mechanism and the rescue therapy are disregarded. Recently, it has been demonstrated that sodium butyrate (NaB) reduces hepatic steatosis, improving respiratory capacity and mitochondrial dysfunction in obese mice. Here, we investigated the protective effect of NaB in counteracting VPA-induced hepatotoxicity using in vitro and in vivo models. Human HepG2 cells and primary rat hepatocytes were exposed to high VPA concentration and treated with NaB. Mitochondrial function, lipid metabolism, and oxidative stress were evaluated, using Seahorse analyzer, spectrophotometric, and biochemical determinations. Liver protection by NaB was also evaluated in VPA-treated epileptic WAG/Rij rats, receiving NaB for 6 months. NaB prevented VPA toxicity, limiting cell oxidative and mitochondrial damage (ROS, malondialdehyde, SOD activity, mitochondrial bioenergetics), and restoring fatty acid oxidation (peroxisome proliferator-activated receptor α expression and carnitine palmitoyl-transferase activity) in HepG2 cells, primary hepatocytes, and isolated mitochondria. In vivo, NaB confirmed its activity normalizing hepatic biomarkers, fatty acid metabolism, and reducing inflammation and fibrosis induced by VPA. These data support the protective potential of NaB on VPA-induced liver injury, indicating it as valid therapeutic approach in counteracting this common side effect due to VPA chronic treatment.
Collapse
Affiliation(s)
- Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carmen De Caro
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Rita Citraro
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Martina Tallarico
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | | | | | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Hamed NO, Osman MA, Elkhawad AO, Bjørklund G, Qasem H, Zayed N, El-Ansary A. Determination of neuroinflammatory biomarkers in autistic and neurotypical Saudi children. Metab Brain Dis 2019; 34:1049-1060. [PMID: 31147808 DOI: 10.1007/s11011-019-00420-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
To identify neuroinflammatory biomarkers in patients with various severity of autism spectrum disorder (ASD) increases the insight about the pathogenesis and pathophysiology of this neurodevelopmental disorder. The aim of the present study was to analyze the levels in plasma of TGFβ2, Heat shock protein 70 (HSP70), and hematopoietic prostaglandin D2 synthase (H-PGDS) in Saudi ASD children and healthy age-matched neurotypical controls. Also, it was in the present study examined the correlation among these neuroinflammatory biomarkers and the sensory deficit exhibited by the ASD children. Blood samples from 38 Saudi children with ASD and 32 age-matched neurotypical controls were withdrawn after an overnight fast. For the blood taking 3 mL EDTA containing blood collection tubes was used. The samples were centrifuged for 20 min (4 °C; 3000×g) directly after the blood sampling. The harvested plasma was used for in vitro quantification of TGF-β2, HSP70, and H-PGDS by using the sandwich enzyme immunoassay. Receiver operating characteristic (ROC) analysis and predictiveness curves showed that each of TGF-β2, HSP70 or H-PGDS alone could not be used as a predictive neuroinflammatory biomarker for ASD. However, when TGF-β2 and HSP70 were combined in one ROC curve, the AUC was increased to an appreciable value that makes them together robust predictors of variation between the ASD and neurotypical control groups. Overall, it was in the present study found significant differences for TGF-β2 and HSP70 when the ASD and neurotypical control groups were compared, independently of the sensory deficit level. In conclusion, the present study highlights the usefulness of TGF-β2, HSP70, and H-PGDS as diagnostic tools to differentiate between ASD and neurotypical control children, but not among subgroups of ASD children exhibiting different severity levels of sensory dysfunction. The presented data also suggest the effectiveness of ROC as a powerful statistical tool, which precisely can measure a combined effect of neuroinflammatory biomarkers intended for diagnostic purposes.
Collapse
Affiliation(s)
- Najat O Hamed
- University of Medical Sciences and Technology, Khartoum, Sudan
- Almaaref Colleges for Sciences and Technology, Riyadh, Saudi Arabia
| | - Mohamed A Osman
- Kirkwood College, Cedar Rapids, IA, USA
- Sudan Medical and Scientific Research Institute, Khartoum, Sudan
| | - Abdalla O Elkhawad
- University of Medical Sciences and Technology, Khartoum, Sudan
- Sudan Medical and Scientific Research Institute, Khartoum, Sudan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Hanan Qasem
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Naima Zayed
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shiek Al-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
- Central Laboratory, Female Center for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Fu D, Cardona P, Ho H, Watkins PB, Brouwer KLR. Novel Mechanisms of Valproate Hepatotoxicity: Impaired Mrp2 Trafficking and Hepatocyte Depolarization. Toxicol Sci 2019; 171:431-442. [PMID: 31368504 PMCID: PMC6760262 DOI: 10.1093/toxsci/kfz154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a major challenge in drug development. Although numerous mechanisms for DILI have been identified, few studies have focused on loss of hepatocyte polarization as a DILI mechanism. The current study investigated the effects of valproate, an antiepileptic drug with DILI risk, on the cellular mechanisms responsible for loss of hepatocyte polarization. Fully polarized collagen sandwich-cultured rat hepatocytes were treated with valproate (1-20mM) for specified times (3-24hr). Hepatocyte viability was significantly decreased by 10mM and 20mM valproate. Valproate depolarized hepatocytes, even at non-cytotoxic concentrations (=5mM). Depolarization was associated with significantly decreased canalicular levels of multidrug resistance-associated protein 2 (Mrp2) resulting in reduced canalicular excretion of the Mrp2 substrate carboxydichlorofluorescein. The decreased canalicular Mrp2 was associated with intracellular accumulation of Mrp2 in Rab11-positive recycling endosomes and early endosomes. Mechanistic studies suggested that valproate inhibited canalicular trafficking of Mrp2. This effect of valproate on Mrp2 appeared to be selective in that valproate had less impact on canalicular levels of the bile salt export pump (Bsep) and no detectable effect on P-glycoprotein (P-gp) canalicular levels. Treatment with valproate for 24hr also significantly downregulated levels of tight junction-associated protein, zonula occludens 2 (ZO2), but appeared to have no effect on the levels of tight junction proteins claudin 1, claudin 2, occludin, ZO1 and ZO3. These findings reveal that two novel mechanisms may contribute to valproate hepatotoxicity: impaired canalicular trafficking of Mrp2 and disruption of ZO2-associated hepatocyte polarization.
Collapse
Affiliation(s)
- Dong Fu
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Panli Cardona
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Henry Ho
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul B Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
15
|
Catalase C-262T Polymorphism Is a Risk Factor for Valproic Acid–Induced Abnormal Liver Function in Chinese Patients With Epilepsy. Ther Drug Monit 2019; 41:91-96. [DOI: 10.1097/ftd.0000000000000574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Heidari R, Jafari F, Khodaei F, Shirazi Yeganeh B, Niknahad H. Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology (Carlton) 2018; 23:351-361. [PMID: 28141910 DOI: 10.1111/nep.13012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
Abstract
AIM Drug-induced kidney proximal tubular injury and renal failure (Fanconi syndrome; FS) is a clinical complication. Valproic acid (VPA) is among the FS-inducing drugs. The current investigation was designed to evaluate the role of mitochondrial dysfunction and oxidative stress in VPA-induced renal injury. METHODS Animals received VPA (250 and 500 mg/kg, i.p., 15 consecutive days). Serum biomarkers of kidney injury and markers of oxidative stress were assessed. Moreover, kidney mitochondria were isolated and mitochondrial indices, including succinate dehydrogenase activity (SDA), mitochondrial depolarization, mitochondrial permeability transition pore (MPP), reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial glutathione, and ATP were determined. RESULTS Valproic acid-treated animals developed biochemical evidence of FS as judged by elevated serum gamma-glutamyl transferase (γ-GT), alkaline phosphatase (ALP), creatinine (Cr), and blood urea nitrogen (BUN) along with hypokalaemia, hypophosphataemia, and a decrease in serum uric acid. VPA caused an increase in kidney ROS and LPO. Renal GSH reservoirs were depleted and tissue antioxidant capacity decreased in VPA-treated animals. Renal tubular interstitial nephritis, tissue necrosis, and atrophy were also evident in VPA-treated rats. Mitochondrial parameters including SDA, MMP, GSH, ATP and MPP were decreased and mitochondrial ROS and LPO were increased with VPA treatment. It was found that carnitine (100 mg/kg, i.p.) mitigated VPA adverse effects towards the kidney. CONCLUSIONS These data suggest that mitochondrial dysfunction and oxidative stress contributed to the VPA-induced FS. On the other hand, carnitine could be considered a potentially safe and effective therapeutic option in attenuating VPA-induced renal injury.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faezeh Jafari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Shirazi Yeganeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Zhao D, Luo H, Chen B, Chen W, Zhang G, Yu Y. Palladium-Catalyzed H/D Exchange Reaction with 8-Aminoquinoline as the Directing Group: Access to ortho-Selective Deuterated Aromatic Acids and β-Selective Deuterated Aliphatic Acids. J Org Chem 2018; 83:7860-7866. [DOI: 10.1021/acs.joc.8b00734] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Donghong Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haofan Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Binhui Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenteng Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guolin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
18
|
Hamed NO, Al-Ayadhi L, Osman MA, Elkhawad AO, Qasem H, Al-Marshoud M, Merghani NM, El-Ansary A. Understanding the roles of glutamine synthetase, glutaminase, and glutamate decarboxylase autoantibodies in imbalanced excitatory/inhibitory neurotransmission as etiological mechanisms of autism. Psychiatry Clin Neurosci 2018; 72:362-373. [PMID: 29356297 DOI: 10.1111/pcn.12639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
AIM Autism is a heterogeneous neurological disorder that is characterized by impairments in communication and social interactions, repetitive behaviors, and sensory abnormalities. The etiology of autism remains unclear. Animal, genetic, and post-mortem studies suggest that an imbalance exists in the neuronal excitation and inhibition system in autism. The aim of this study was to determine whether alterations of the measured parameters in children with autism are significantly associated with the risk of a sensory dysfunction. METHODS The glutamine synthetase (GS), kidney-type glutaminase (GLS1), and glutamic acid decarboxylase autoantibody levels were analyzed in 38 autistic children and 33 age- and sex-matched controls using enzyme-linked immunosorbent assays. RESULTS The obtained data demonstrated significant alterations in glutamate and glutamine cycle enzymes, as represented by GS and GLS1, respectively. While the glutamic acid decarboxylase autoantibodies levels were remarkably increased, no significant difference was observed compared to the healthy control participants. CONCLUSION The obtained data indicate that GS and GLS1 are promising indicators of a neuronal excitation and inhibition system imbalance and that combined measured parameters are good predictive biomarkers of autism.
Collapse
Affiliation(s)
- Najat O Hamed
- Department of Medical Biochemistry, University of Medical Sciences and Technology, Khartoum, Sudan.,Department of Pharmacology, Almaarefa Colleges for Science & Technology (MCST), Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, King Khalid University Hospital, Riyadh, Saudi Arabia.,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Osman
- Department of Medical Biochemistry, University of Medical Sciences and Technology, Khartoum, Sudan.,Department of Pharmacology, Faculty of Pharmacy, University of Medical Sciences and Technology, Sudan Medical and Scientific Research Institute, Khartoum, Sudan
| | | | - Hanan Qasem
- Autism Research and Treatment Center, King Khalid University Hospital, Riyadh, Saudi Arabia
| | - Majida Al-Marshoud
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Nada M Merghani
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Autism Research and Treatment Center, King Khalid University Hospital, Riyadh, Saudi Arabia.,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia.,Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Shaaban AA, El-Agamy DS. Cytoprotective effects of diallyl trisulfide against valproate-induced hepatotoxicity: new anticonvulsant strategy. Naunyn Schmiedebergs Arch Pharmacol 2017. [PMID: 28646254 DOI: 10.1007/s00210-017-1393-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sodium valproate (VP) is an important antiepileptic drug, although it can produce deleterious hepatotoxic reactions. Diallyl trisulfide (DATS) is the principle component of garlic oil that possesses antioxidant properties. This study explored the potential hepatoprotective activity of DATS against VP-induced hepatic damage and its underlying mechanisms. In addition, the study assessed the effect of DATS on VP antiepileptic activity. Rats were given DATS once daily at two different doses along with VP for 2 weeks. Results have shown the ability of DATS to counteract VP-induced hepatic damage as it decreased elevated serum transaminases (aspartate aminotransferase and alanine aminotransferase) and alkaline phosphatase. Liver histopathology indicated that DATS preserved the hepatic structural integrity and protected against VP-induced hepatic steatosis and necro-inflammation injury. DATS ameliorated VP-induced oxidative stress and increased the antioxidant capacity of the liver. Immunohistochemical analysis showed activation of nuclear factor kappa-B along with high expression of cyclo-oxygenase-2 (COX-2) upon VP administration. This was accompanied by overproduction of proinflammatory mediators (TNF-α, IL-1β, IL-6). Tracing the apoptotic pathway, VP administration induced marked apoptosis using TUNEL staining. Furthermore, VP-treated animals exhibited high immunoexpression of Bax protein and increased levels of Bax and caspase-3 while level of Bcl2 was significantly decreased in hepatic tissue. However, DATS simultaneous treatment counteracted all of these molecular pathological changes. Using pentylenetetrazole (PTZ)-induced seizures model in mice, the effect of DATS on the anticonvulsant activity of VP was found to be positive, meaning that combination of DATS with VP can confer protection against VP-induced hepatic injurious effects through its antioxidant, antiinflammatory, and antiapoptotic properties without affecting VP antiepileptic activity.
Collapse
Affiliation(s)
- Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
20
|
Kawase A, Hashimoto R, Shibata M, Shimada H, Iwaki M. Involvement of Reactive Metabolites of Diclofenac in Cytotoxicity in Sandwich-Cultured Rat Hepatocytes. Int J Toxicol 2017; 36:260-267. [DOI: 10.1177/1091581817700584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background and Objectives: Diclofenac (DIC) is metabolized to reactive metabolites such as diclofenac acyl-β-d-glucuronide (DIC-AG). It is possible that such reactive metabolites could cause tissue damage by formation of covalent protein adducts and other modification of cellular proteins or by induction of immune responses against its covalent protein adducts. However, the detailed mechanisms of idiosyncratic drug-induced liver injury (DILI) have been unclear. The objective is to clarify the involvement of DIC-AG and 4′hydroxydiclofenac (4′OH-DIC) in acute DILI. Methods: We examined the effects of inhibiting DIC-AG and 4′OH-DIC production on covalent protein adduct formation and lactate dehydrogenase leakage using sandwich-cultured rat hepatocytes (SCRHs). Results: After pretreatment of SCRH with (−)-borneol (BOR, a uridine diphosphate (UDP)-glucuronosyltransferase inhibitor) or sulfaphenazole (SUL, a cytochrome P450 2C9 inhibitor) for 30 minutes, intracellular concentrations of DIC, DIC-AG, and 4′OH-DIC were determined after further treating cells with 300 μM DIC for 3 hours. The decreased levels of reactive metabolites caused by BOR or SUL pretreatment resulted in decreased lactate dehydrogenase leakage from SCRH, although the formation of covalent protein adducts was not affected. Conclusion: These results suggested that both DIC-AG and 4′OH-DIC may be involved in acute cytotoxicity by DIC.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Ryota Hashimoto
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Mai Shibata
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
21
|
Resveratrol prevents oxidative damage and loss of sperm motility induced by long-term treatment with valproic acid in Wistar rats. ACTA ACUST UNITED AC 2016; 68:435-43. [DOI: 10.1016/j.etp.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/13/2016] [Accepted: 07/01/2016] [Indexed: 01/11/2023]
|
22
|
Psychoactive pharmaceuticals at environmental concentrations induce in vitro gene expression associated with neurological disorders. BMC Genomics 2016; 17 Suppl 3:435. [PMID: 27356971 PMCID: PMC4943479 DOI: 10.1186/s12864-016-2784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background A number of researchers have speculated that neurological disorders are mostly due to the interaction of common susceptibility genes with environmental, epigenetic and stochastic factors. Genetic factors such as mutations, insertions, deletions and copy number variations (CNVs) are responsible for only a small subset of cases, suggesting unknown environmental contaminants play a role in triggering neurological disorders like idiopathic autism. Psychoactive pharmaceuticals have been considered as potential environmental contaminants as they are detected in the drinking water at very low concentrations. Preliminary studies in our laboratory identified gene sets associated with neuronal systems and human neurological disorders that were significantly enriched after treating fish brains with psychoactive pharmaceuticals at environmental concentrations. These gene expression inductions were associated with changes in fish behavior. Here, we tested the hypothesis that similar treatments would alter in vitro gene expression associated with neurological disorders (including autism) in human neuronal cells. We differentiated and treated human SK-N-SH neuroblastoma cells with a mixture (fluoxetine, carbamazepine and venlafaxine) and valproate (used as a positive control to induce autism-associated profiles), followed by transcriptome analysis with RNA-Seq approach. Results We found that psychoactive pharmaceuticals and valproate significantly altered neuronal gene sets associated with human neurological disorders (including autism-associated sets). Moreover, we observed that altered expression profiles in human cells were similar to gene expression profiles previously identified in fish brains. Conclusions Psychoactive pharmaceuticals at environmental concentrations altered in vitro gene expression profiles of neuronal growth, development and regulation. These expression patterns were associated with potential neurological disorders including autism, suggested psychoactive pharmaceuticals at environmental concentrations might mimic, aggravate, or induce neurological disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2784-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Ustundag UV, Tunali S, Alev B, Ipekci H, Emekli-Alturfan E, Akbay TT, Yanardag R, Yarat A. Effects of Chard (B
eta Vulgaris
L. Var. Cicla) on Cardiac Damage in Valproic Acid-Induced Toxicity. J Food Biochem 2015. [DOI: 10.1111/jfbc.12202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Unsal Veli Ustundag
- Department of Basic Medical Sciences, Biochemistry; Faculty of Dentistry; Marmara University; Nisantasi Istanbul 34365 Turkey
| | - Sevim Tunali
- Department of Chemistry; Faculty of Engineering; Istanbul University; Istanbul Turkey
| | - Burcin Alev
- Department of Basic Medical Sciences, Biochemistry; Faculty of Dentistry; Marmara University; Nisantasi Istanbul 34365 Turkey
| | - Hazal Ipekci
- Department of Basic Medical Sciences, Biochemistry; Faculty of Dentistry; Marmara University; Nisantasi Istanbul 34365 Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Biochemistry; Faculty of Dentistry; Marmara University; Nisantasi Istanbul 34365 Turkey
| | - Tugba Tunali Akbay
- Department of Basic Medical Sciences, Biochemistry; Faculty of Dentistry; Marmara University; Nisantasi Istanbul 34365 Turkey
| | - Refiye Yanardag
- Department of Chemistry; Faculty of Engineering; Istanbul University; Istanbul Turkey
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry; Faculty of Dentistry; Marmara University; Nisantasi Istanbul 34365 Turkey
| |
Collapse
|
24
|
Komulainen T, Lodge T, Hinttala R, Bolszak M, Pietilä M, Koivunen P, Hakkola J, Poulton J, Morten KJ, Uusimaa J. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 2015; 331:47-56. [PMID: 25745980 DOI: 10.1016/j.tox.2015.03.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022]
Abstract
Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tuomas Komulainen
- PEDEGO Research Center and Medical Research Center Oulu, P.O. Box 5000, FIN-90014, University of Oulu, Oulu, Finland; Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland.
| | - Tiffany Lodge
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX6 9DU, United Kingdom
| | - Reetta Hinttala
- PEDEGO Research Center and Medical Research Center Oulu, P.O. Box 5000, FIN-90014, University of Oulu, Oulu, Finland; Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland
| | - Maija Bolszak
- PEDEGO Research Center and Medical Research Center Oulu, P.O. Box 5000, FIN-90014, University of Oulu, Oulu, Finland; Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland
| | - Mika Pietilä
- Faculty of Medicine, Institute of Biomedicine, Department of Anatomy and Cell Biology, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemisty and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, P.O. Box 5400, FI-90014, University of Oulu, Finland
| | - Jukka Hakkola
- Faculty of Medicine, Institute of Biomedicine, Department of Pharmacology and Toxicology, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, P.O. Box 5000, FIN-90014, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX6 9DU, United Kingdom
| | - Karl J Morten
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX6 9DU, United Kingdom
| | - Johanna Uusimaa
- PEDEGO Research Center and Medical Research Center Oulu, P.O. Box 5000, FIN-90014, University of Oulu, Oulu, Finland; Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland
| |
Collapse
|
25
|
Chaudhary S, Ganjoo P, Raiusddin S, Parvez S. Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. PROTOPLASMA 2015; 252:209-217. [PMID: 25000991 DOI: 10.1007/s00709-014-0670-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Valproic acid (VPA) is ubiquitously used as a major drug in the intervention of epilepsy and in the control of several kinds of seizures. Cellular toxicities are the serious dose-limiting side effects of VPA when applied in the treatment of diseases. Oxidative stress has been proven to be involved in VPA-induced toxicity. Accumulating evidence intimates that oxidative stress caused by free radicals and in kidney cells contributes to the pathogenesis of VPA-induced nephrotoxicity. The pathogenesis of these forms of VPA nephrotoxicity is still not clear. The aim of our investigation was to evaluate the nephrotoxic potential of VPA and protective effects of quercetin (QR) against VPA-induced nephrotoxicity by using rat kidney tissue preparation as an in vitro model. Oxidative stress indexes such as lipid peroxidation (LPO) and protein carbonyl (PC) content were appraised. The levels of oxidative stress markers, LPO, and PC were significantly elevated. Nonenzymatic antioxidants effect was also demonstrated as a significant increase in reduced glutathione (GSH) and nonprotein thiol level (NP-SH). VPA exposure altered the activities of glutathione metabolizing enzymes such as glutathione-S-transferase, glutathione peroxidase, and glutathione reductase. Pre-treatment with QR could reverse the VPA-induced effects in kidney tissue preparation of rat. Based on reno-protective and antioxidant action of QR, we suggest that this flavonoid compound could be considered as a potential safe and effective approach in attenuating the adverse effect of VPA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shaista Chaudhary
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | | | | | | |
Collapse
|
26
|
Abstract
Hepatocytes in sandwich configuration constitute of primary hepatocytes cultured between two layers of extracellular matrix. Sandwich-cultured hepatocytes maintain expression of liver-specific proteins and gradually form intact bile canaliculi with functional biliary excretion of endogenous compounds and xenobiotics. Both freshly isolated and cryopreserved hepatocytes can be used to establish sandwich cultures. Therefore, this preclinical model has become an invaluable in vitro tool to evaluate hepatobiliary drug transport, metabolism, hepatotoxicity, and drug interactions. In this chapter, commonly used procedures to cultivate primary hepatocytes from human and rat in sandwich configuration are described.
Collapse
Affiliation(s)
- Janneke Keemink
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, O&N2, Herestraat 49, Bus 921, Leuven, 3000, Belgium
| | | | | |
Collapse
|
27
|
Zheng Q, Liu W, Liu Z, Zhao H, Han X, Zhao M. Valproic acid protects septic mice from renal injury by reducing the inflammatory response. J Surg Res 2014; 192:163-9. [DOI: 10.1016/j.jss.2014.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/05/2014] [Accepted: 05/13/2014] [Indexed: 01/17/2023]
|
28
|
Jin J, Xiong T, Hou X, Sun X, Liao J, Huang Z, Huang M, Zhao Z. Role of Nrf2 activation and NF-κB inhibition in valproic acid induced hepatotoxicity and in diammonium glycyrrhizinate induced protection in mice. Food Chem Toxicol 2014; 73:95-104. [DOI: 10.1016/j.fct.2014.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/19/2023]
|
29
|
Surendradoss J, Chang TKH, Abbott FS. Evaluation of in situ generated valproyl 1-O-β-acyl glucuronide in valproic acid toxicity in sandwich-cultured rat hepatocytes. Drug Metab Dispos 2014; 42:1834-42. [PMID: 25147275 DOI: 10.1124/dmd.114.059352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acyl glucuronides are reactive electrophilic metabolites implicated in the toxicity of carboxylic acid drugs. Valproyl 1-O-β-acyl glucuronide (VPA-G), which is a major metabolite of valproic acid (VPA), has been linked to the development of oxidative stress in VPA-treated rats. However, relatively little is known about the toxicity of in situ generated VPA-G and its contribution to VPA hepatotoxicity. Therefore, we investigated the effects of modulating the in situ formation of VPA-G on lactate dehydrogenase (LDH) release (a marker of necrosis), BODIPY 558/568 C12 accumulation (a marker of steatosis), and cellular glutathione (GSH) content in VPA-treated sandwich-cultured rat hepatocytes. VPA increased LDH release and BODIPY 558/568 C12 accumulation, whereas it had little or no effect on total GSH content. Among the various uridine 5'-diphospho-glucuronosyltransferase inducers evaluated, β-naphthoflavone produced the greatest increase in VPA-G formation. This was accompanied by an attenuation of the increase in BODIPY 558/568 C12 accumulation, but did not affect the change in LDH release or total GSH content in VPA-treated hepatocytes. Inhibition of in situ formation of VPA-G by borneol was not accompanied by substantive changes in the effects of VPA on any of the toxicity markers. In a comparative study, in situ generated diclofenac glucuronide was not toxic to rat hepatocytes, as assessed using the same chemical modulators, thereby demonstrating the utility of the sandwich-cultured rat hepatocyte model. Overall, in situ generated VPA-G was not toxic to sandwich-cultured rat hepatocytes, suggesting that VPA glucuronidation per se is not expected to be a contributing mechanism for VPA hepatotoxicity.
Collapse
Affiliation(s)
- Jayakumar Surendradoss
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank S Abbott
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Suresh M, Kishore Kumar SN, Ashok Kumar S, Thulasi Raman K, Uma M, Kalaiselvi P. Hesperidin safeguards hepatocytes from valproate-induced liver dysfunction in Sprague-Dawley rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, Sprando RL. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol 2014; 34:1155-66. [PMID: 24522958 DOI: 10.1002/jat.2994] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 02/06/2023]
Abstract
The use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics has increased significantly owing to their antibacterial and antifungal properties. As a consequence, the need for validated rapid screening methods to assess their toxicity is necessary to ensure consumer safety. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential cytotoxicity of food- and cosmetic-related nanoparticles. The two cell culture models were utilized to compare the potential cytotoxicity of 20-nm silver. The average size of the silver nanoparticle determined by our transmission electron microscopy (TEM) analysis was 20.4 nm. The dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The concentration of the 20-nm silver solution determined by our inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Our ICP-MS and TEM analysis demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Cytotoxicity, determined by the Alamar Blue reduction assay, was evaluated in the nanosilver concentration range of 0.1 to 20 µg ml(-1) . Significant concentration-dependent cytotoxicity of the nanosilver in HepG2 cells was observed in the concentration range of 1 to 20 µg ml(-1) and at a higher concentration range of 10 to 20 µg ml(-1) in Caco2 cells compared with the vehicle control. A concentration-dependent decrease in dsDNA content was observed in both cell types exposed to nanosilver but not controls, suggesting an increase in DNA damage. The DNA damage was observed in the concentration range of 1 to 20 µg ml(-1) . Nanosilver-exposed HepG2 and Caco2 cells showed no cellular oxidative stress, determined by the dichlorofluorescein assay, compared with the vehicle control in the concentration range used in this study. A concentration-dependent decrease in mitochondria membrane potential in both nanosilver exposed cell types suggested increased mitochondria injury compared with the vehicle control. The mitochondrial injury in HepG2 cells was significant in the concentration range of 1 to 20 µg ml(-1) , but in Caco2 cells it was significant at a higher concentration range of 10 to 20 µg ml(-1) . These results indicated that HepG2 cells were more sensitive to nanosilver exposure than Caco2 cells. It is generally believed that cellular oxidative stress induces cytotoxicity of nanoparticles. However, in this study we did not detect any nanosilver-induced oxidative stress in either cell type at the concentration range used in this study. Our results suggest that cellular oxidative stress did not play a major role in the observed cytotoxicity of nanosilver in HepG2 and Caco2 cells and that a different mechanism of nanosilver-induced mitochondrial injury leads to the cytotoxicity. The HepG2 and Caco2 cells used this study appear to be targets for silver nanoparticles. The results of this study suggest that the differences in the mechanisms of toxicity induced by nanosilver may be largely as a consequence of the type of cells used. This differential rather than universal response of different cell types exposed to nanoparticles may play an important role in the mechanism of their toxicity. In summary, the results of this study indicate that the widely used in vitro models, HepG2 and Caco2 cells in culture, are excellent systems for screening cytotoxicity of silver nanoparticles. These long established cell culture models and simple assays used in this study can provide useful toxicity and mechanistic information that can help to better inform safety assessments of food- and cosmetic-related silver nanoparticles.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, 20708, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Felker D, Lynn A, Wang S, Johnson DE. Evidence for a potential protective effect of carnitine-pantothenic acid co-treatment on valproic acid-induced hepatotoxicity. Expert Rev Clin Pharmacol 2014; 7:211-8. [DOI: 10.1586/17512433.2014.871202] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Guo C, He L, Yao D, A J, Cao B, Ren J, Wang G, Pan G. Alpha-naphthylisothiocyanate modulates hepatobiliary transporters in sandwich-cultured rat hepatocytes. Toxicol Lett 2014; 224:93-100. [DOI: 10.1016/j.toxlet.2013.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
|
34
|
Jafarian I, Eskandari MR, Mashayekhi V, Ahadpour M, Hosseini MJ. Toxicity of valproic acid in isolated rat liver mitochondria. Toxicol Mech Methods 2013; 23:617-23. [DOI: 10.3109/15376516.2013.821567] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Nanau RM, Neuman MG. Adverse drug reactions induced by valproic acid. Clin Biochem 2013; 46:1323-38. [PMID: 23792104 DOI: 10.1016/j.clinbiochem.2013.06.012] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/11/2022]
Abstract
Valproic acid is a widely-used first-generation antiepileptic drug, prescribed predominantly in epilepsy and psychiatric disorders. VPA has good efficacy and pharmacoeconomic profiles, as well as a relatively favorable safety profile. However, adverse drug reactions have been reported in relation with valproic acid use, either as monotherapy or polytherapy with other antiepileptic drugs or antipsychotic drugs. This systematic review discusses valproic acid adverse drug reactions, in terms of hepatotoxicity, mitochondrial toxicity, hyperammonemic encephalopathy, hypersensitivity syndrome reactions, neurological toxicity, metabolic and endocrine adverse events, and teratogenicity.
Collapse
Affiliation(s)
- Radu M Nanau
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Seeland S, Török M, Kettiger H, Treiber A, Hafner M, Huwyler J. A cell-based, multiparametric sensor approach characterises drug-induced cytotoxicity in human liver HepG2 cells. Toxicol In Vitro 2013; 27:1109-20. [DOI: 10.1016/j.tiv.2013.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/30/2012] [Accepted: 02/06/2013] [Indexed: 01/23/2023]
|
37
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Surendradoss J, Chang TK, Abbott FS. Assessment of the role of in situ generated (E)-2,4-diene-valproic acid in the toxicity of valproic acid and (E)-2-ene-valproic acid in sandwich-cultured rat hepatocytes. Toxicol Appl Pharmacol 2012; 264:413-22. [DOI: 10.1016/j.taap.2012.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 11/30/2022]
|
39
|
An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 2012; 225:258-68. [PMID: 22960313 DOI: 10.1016/j.neuroscience.2012.08.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/20/2023]
Abstract
Valproic acid (VPA), a branched short-chain fatty acid, is generally used as an antiepileptic drug and a mood stabilizer. VPA is a relatively safe drug, but its use in higher concentrations is associated with idiosyncratic neurotoxicity. Investigations involving cerebral cortex and cerebellum can shed light on whether neurotoxicity induced by branched chain fatty acids like VPA is mediated by oxidative stress. The aim of our investigation was to evaluate the neurotoxic potential of VPA by using preparation of cerebral cortex and cerebellum of young rats as an in vitro model. Oxidative stress indexes such as lipid peroxidation (LPO) and protein carbonyl (PC) formation were evaluated to visualize whether the first line of defence was breached. The levels of oxidative stress markers, LPO and PC were significantly elevated. Non-enzymatic antioxidants' effect was also demonstrated as a significant depletion in reduced glutathione (GSH) and non-protein thiol activity (NP-SH), but there was no significant increase or decrease in the concentrations of total thiol (T-SH) and protein thiol (P-SH). VPA also showed significant reduction in the activities of glutathione metabolizing enzymes such as glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) and other antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) in cerebellum and cerebral cortex. A significant elevation was also observed in the activity of xanthine oxidase (XO). Some neurotoxicity biomarkers were investigated in which the activity of acetylcholinesterase (AChE) and sodium-potassium ATPase (Na(+), K(+)-ATPase) was decreased and monoamine oxidase (MAO) was increased. These results indicate that VPA induces oxidative stress by compromising the antioxidant status of the neuronal tissue. Further studies are required to decipher the cellular and molecular mechanisms of branched chain fatty acid-induced neurotoxicity.
Collapse
|
40
|
Sahu SC, O'Donnell MW, Sprando RL. Interactive toxicity of usnic acid and lipopolysaccharides in human liver HepG2 cells. J Appl Toxicol 2012; 32:739-49. [PMID: 22777745 DOI: 10.1002/jat.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/09/2022]
Abstract
Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccarides (LPS), a potential contaminant of food, at low non-toxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in a binary mixture, for 24 h at 37°C in 5% CO2. After the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenomic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway-focused gene expression profiles. Compared with the controls, low non-toxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their binary mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway-focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the binary mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of the present study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | |
Collapse
|
41
|
Pourahmad J, Eskandari MR, Kaghazi A, Shaki F, Shahraki J, Fard JK. A new approach on valproic acid induced hepatotoxicity: Involvement of lysosomal membrane leakiness and cellular proteolysis. Toxicol In Vitro 2012; 26:545-51. [DOI: 10.1016/j.tiv.2012.01.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 12/04/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
42
|
Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci 2012; 127:403-11. [PMID: 22454432 PMCID: PMC3355318 DOI: 10.1093/toxsci/kfs122] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal of this study was to investigate whether this observation could be extended to the determination of LD50 values and whether 3D data could be correlated to in vivo observations. We developed a noninvasive means to estimate the amount of protein present in a 3D spheroid from it is planar area (± 21%) so that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC50 data (mM) for six common drugs (acetaminophen, amiodarone, diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented here) demonstrated similar LD50 values. Although in vitro 2D HepG2 data showed a poor correlation, the primary hepatocyte and 3D spheroid data resulted in a much higher degree of correlation with in vivo lethal blood plasma levels. These results corroborate that 3D hepatocyte cultures are significantly different from 2D cultures and are more representative of the liver in vivo.
Collapse
Affiliation(s)
- Stephen J Fey
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | |
Collapse
|
43
|
Sahu SC, Amankwa-Sakyi M, O'Donnell MW, Sprando RL. Effects of usnic acid exposure on human hepatoblastoma HepG2 cells in culture. J Appl Toxicol 2011; 32:722-30. [DOI: 10.1002/jat.1721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 01/25/2023]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Margaret Amankwa-Sakyi
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Michael W. O'Donnell
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Robert L. Sprando
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| |
Collapse
|
44
|
Kiang TK, Teng XW, Surendradoss J, Karagiozov S, Abbott FS, Chang TK. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity. Toxicol Appl Pharmacol 2011; 252:318-24. [DOI: 10.1016/j.taap.2011.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 11/28/2022]
|