1
|
Alam F, Mohammed Alnazzawi TS, Mehmood R, Al-maghthawi A. A Review of the Applications, Benefits, and Challenges of Generative AI for Sustainable Toxicology. Curr Res Toxicol 2025; 8:100232. [PMID: 40331045 PMCID: PMC12051651 DOI: 10.1016/j.crtox.2025.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/10/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Sustainable toxicology is vital for living species and the environment because it guarantees the safety, efficacy, and regulatory compliance of drugs, treatments, vaccines, and chemicals in living organisms and the environment. Conventional toxicological methods often lack sustainability as they are costly, time-consuming, and sometimes inaccurate. It means delays in producing new drugs, vaccines, and treatments and understanding the adverse effects of the chemicals on the environment. To address these challenges, the healthcare sector must leverage the power of the Generative-AI (GenAI) paradigm. This paper aims to help understand how the healthcare field can be revolutionized in multiple ways by using GenAI to facilitate sustainable toxicological developments. This paper first reviews the present literature and identifies the possible classes of GenAI that can be applied to toxicology. A generalized and holistic visualization of various toxicological processes powered by GenAI is presented in tandem. The paper discussed toxicological risk assessment and management, spotlighting how global agencies and organizations are forming policies to standardize and regulate AI-related development, such as GenAI, in these fields. The paper identifies and discusses the advantages and challenges of GenAI in toxicology. Further, the paper outlines how GenAI empowers Conversational-AI, which will be critical for highly tailored toxicological solutions. This review will help to develop a comprehensive understanding of the impacts and future potential of GenAI in the field of toxicology. The knowledge gained can be applied to create sustainable GenAI applications for various problems in toxicology, ultimately benefiting our societies and the environment.
Collapse
Affiliation(s)
- Furqan Alam
- Faculty of Computing and Information Technology (FoCIT), Sohar University, Sohar 311, Oman
| | - Tahani Saleh Mohammed Alnazzawi
- Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah 41477, Kingdom of Saudi Arabia
| | - Rashid Mehmood
- Faculty of Computer Science and Information Systems, Islamic University Madinah, Madinah 42351, Kingdom of Saudi Arabia
| | - Ahmed Al-maghthawi
- Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha 62529, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Beal MA, Chen G, Dearfield KL, Gi M, Gollapudi B, Heflich RH, Horibata K, Long AS, Lovell DP, Parsons BL, Pfuhler S, Wills J, Zeller A, Johnson G, White PA. Interpretation of in vitro concentration-response data for risk assessment and regulatory decision-making: Report from the 2022 IWGT quantitative analysis expert working group meeting. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023. [PMID: 38115239 DOI: 10.1002/em.22582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Quantitative risk assessments of chemicals are routinely performed using in vivo data from rodents; however, there is growing recognition that non-animal approaches can be human-relevant alternatives. There is an urgent need to build confidence in non-animal alternatives given the international support to reduce the use of animals in toxicity testing where possible. In order for scientists and risk assessors to prepare for this paradigm shift in toxicity assessment, standardization and consensus on in vitro testing strategies and data interpretation will need to be established. To address this issue, an Expert Working Group (EWG) of the 8th International Workshop on Genotoxicity Testing (IWGT) evaluated the utility of quantitative in vitro genotoxicity concentration-response data for risk assessment. The EWG first evaluated available in vitro methodologies and then examined the variability and maximal response of in vitro tests to estimate biologically relevant values for the critical effect sizes considered adverse or unacceptable. Next, the EWG reviewed the approaches and computational models employed to provide human-relevant dose context to in vitro data. Lastly, the EWG evaluated risk assessment applications for which in vitro data are ready for use and applications where further work is required. The EWG concluded that in vitro genotoxicity concentration-response data can be interpreted in a risk assessment context. However, prior to routine use in regulatory settings, further research will be required to address the remaining uncertainties and limitations.
Collapse
Affiliation(s)
- Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Guangchao Chen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Kerry L Dearfield
- Retired from US Environmental Protection Agency and US Department of Agriculture, Washington, DC, USA
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | - Robert H Heflich
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- St George's Medical School, University of London, London, UK
| | - Barbara L Parsons
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, Procter & Gamble, Cincinnati, Ohio, USA
| | - John Wills
- Genetic Toxicology and Photosafety, GSK Research & Development, Stevenage, UK
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George Johnson
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Uwazie CC, Pirlot BM, Faircloth TU, Patel M, Parr RN, Zastre HM, Hematti P, Moll G, Rajan D, Chinnadurai R. Effects of Atrazine exposure on human bone marrow-derived mesenchymal stromal cells assessed by combinatorial assay matrix. Front Immunol 2023; 14:1214098. [PMID: 37588595 PMCID: PMC10426140 DOI: 10.3389/fimmu.2023.1214098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. Methods We here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. Results Our results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFNγ-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFNγ responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. Discussion The here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.
Collapse
Affiliation(s)
- Crystal C. Uwazie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Bonnie M. Pirlot
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Tyler U. Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Mihir Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Rhett N. Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Halie M. Zastre
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin Madison, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| |
Collapse
|
5
|
Christapher PV, Ganeson T, Chinni SV, Parasuraman S. Transgenic Rodent Models in Toxicological and Environmental Research: Future Perspectives. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The coexistence of humans and animals has existed for centuries. Over the past decade, animal research has played a critical role in drug development and discovery. More and more diverse animals, including transgenic animals, are used in basic research than in applied research. Transgenic animals are generated using molecular genetic techniques to add functional genes, alter gene products, delete genes, insert reporter genes into regulatory sequences, replace or repair genes, and make changes in gene expression. These genetically engineered animals are unique tools for studying a wide range of biomedical issues, allowing the exhibition of specific genetic alterations in various biological systems. Over the past two decades, transgenic animal models have played a critical role in improving our understanding of gene regulation and function in biological systems and human disease. This review article aims to highlight the role of transgenic animals in pharmacological, toxicological, and environmental research. The review accounts for various types of transgenic animals and their appropriateness in multiple types of studies.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Department of Pharmacology, Al Shifa College of Pharmacy, Poothavanam post, Kizhattur, Perinthalmanna, Malappuram District, Kerala, India
| | - Thanapakiam Ganeson
- Department of Pharmaceutical Technology, Faculty of Pharmacy, AIMST University, Bedong, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
6
|
The Role of Hydrolases in Biology and Xenobiotics Metabolism. Int J Mol Sci 2022; 23:ijms23094870. [PMID: 35563260 PMCID: PMC9105290 DOI: 10.3390/ijms23094870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
|
7
|
Bondarenko O, Mortimer M, Kahru A, Feliu N, Javed I, Kakinen A, Lin S, Xia T, Song Y, Davis TP, Lynch I, Parak WJ, Leong DT, Ke PC, Chen C, Zhao Y. Nanotoxicology and Nanomedicine: The Yin and Yang of Nano-Bio Interactions for the New Decade. NANO TODAY 2021; 39:101184. [PMID: 36937379 PMCID: PMC10018814 DOI: 10.1016/j.nantod.2021.101184] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotoxicology and nanomedicine are two sub-disciplines of nanotechnology focusing on the phenomena, mechanisms, and engineering at the nano-bio interface. For the better part of the past three decades, these two disciplines have been largely developing independently of each other. Yet recent breakthroughs in microbiome research and the current COVID-19 pandemic demonstrate that holistic approaches are crucial for solving grand challenges in global health. Here we show the Yin and Yang relationship between the two fields by highlighting their shared goals of making safer nanomaterials, improved cellular and organism models, as well as advanced methodologies. We focus on the transferable knowledge between the two fields as nanotoxicological research is moving from pristine to functional nanomaterials, while inorganic nanomaterials - the main subjects of nanotoxicology - have become an emerging source for the development of nanomedicines. We call for a close partnership between the two fields in the new decade, to harness the full potential of nanotechnology for benefiting human health and environmental safety.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Neus Feliu
- Fachbereich Physik und Chemie, Universität Hamburg, 22607 Hamburg, Germany
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tian Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles (UCLA), 570 Westwood Plaza, CNSI 6511, Los Angeles, CA 90095, United States
| | - Yang Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Wolfgang J. Parak
- Fachbereich Physik und Chemie, Universität Hamburg, 22607 Hamburg, Germany
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
8
|
Paranjpe MG, Rudmann D, Sargeant A, Morse M, Yonpiam R, Bonnette K, Albretsen J, Papagiannis C. Proposal to Eliminate Urethane-Treated Positive Control Dose Groups in 26-Week Tg.rasH2 Carcinogenicity Studies. Int J Toxicol 2021; 40:207-210. [PMID: 33813924 DOI: 10.1177/10915818211003308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Short-term (26 weeks) Tg.rasH2 mouse carcinogenicity studies have been conducted as an alternative model to the conventional 2-year mouse carcinogenicity studies, using urethane as a positive control material. In these studies, urethane was used at a dose of 1,000 mg/kg/dose, administered intraperitoneally on days 1, 3, and 5. Urethane consistently produces lung adenomas and carcinomas and hemangiosarcomas of the spleen, proving validity of the assay. We conducted 3 pilot studies at 3 different sites of Charles River Laboratories using a lower dose of urethane (500 mg/kg/dose), administered on days 1, 3, and 5, followed by a 12-week observation period. Our results demonstrate that a lower dose can be used successfully with fewer number of animals per sex to prove the validity of the assay. However, based on our cumulative experience with this model, we propose to eliminate positive control dose groups in future Tg.rasH2 carcinogenicity studies.
Collapse
Affiliation(s)
| | | | | | - Mark Morse
- 537465Charles River Laboratories, Mattawan, MI, USA
| | | | | | | | | |
Collapse
|
9
|
Mahapatra D, Donahue DA, Nyska A, Hayashi SM, Koyanagi M, Maronpot RR. alpha-Glycosyl Isoquercitrin (AGIQ) and its lack of carcinogenicity in rasH2 mice. Food Chem Toxicol 2021; 151:112103. [PMID: 33771599 DOI: 10.1016/j.fct.2021.112103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
alpha-Glycosyl Isoquercitrin (AGIQ), is used in Japan as a food additive and was granted generally recognized as safe (GRAS) status in 2005 (FEMA) and 2007 (FDA). The safety and toxicity information for AGIQ is sparse and therefore, the carcinogenicity potential of AGIQ was examined in the CByB6F1-Tg(HRAS)2Jic (rasH2) model. One hundred female and male rasH2 mice, each, were allocated to one of four designated dose groups; 0 (control)%, 1.5%, 3.0% or 5.0% AGIQ. Animals were administered the diets for six months and an additional 10 females and 10 males, each, were administered a positive control, N-methyl-N-nitrosourea (MNU). Body weights and clinical observations were collected. A full screen necropsy, organ weights, clinical chemistry, urinalysis and histopathology were performed. The positive control animals elicited appropriate responses specific to this strain (rasH2) of mice. There were statistically significant sporadic non-dose-dependent changes in clinical chemistries without corresponding pathological correlation. No microscopic AGIQ-related findings were noted; the range of pathology observations were all considered background findings, either specific to rasH2 mice or common to inbred strains of mice. Therefore, under the study conditions, the no-observed-adverse-effect level (NOAEL) was determined to be more than 5.0% (7215.4 mg/kg BW/day in male mice and 14685.5 mg/kg/day in female mice).
Collapse
Affiliation(s)
| | - Douglas A Donahue
- Integrated Laboratory Systems, LLC., Research Triangle Park, NC, USA
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - Shim-Mo Hayashi
- National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | | | | |
Collapse
|
10
|
Chen G, Wang L, Li W, Zhang Q, Hu T. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110444. [PMID: 32169726 DOI: 10.1016/j.ecoenv.2020.110444] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Nodularin (NOD) is a kind of cyanobacterial toxins. It is of concern due to elicit severe genotoxicity in humans and animals. The comprehensive evaluation of NOD-induced adverse effects in living organisms is urgently needed. This study is aimed to report the developmental toxicity and molecular mechanism using zebrafish embryos exposed to NOD. The embryonic toxicity induced by NOD is demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, embryonic malformation as well as defects in angiogenesis and common cardinal vein remodeling. NOD triggered a decreased rate of angiogenesis through inhibiting endothelial cells migration. NOD induced embryonic cell apoptosis and DNA damage, which can be alleviated by antioxidant N-acetyl-L-cysteine. NOD significantly caused oxidative damage as indicated by changes in reactive oxygen species, superoxide dismutase, catalase, glutathione and malondialdehyde. NOD also altered the expression of vascular development-genes (DLL4, CDH5, VEGFA, VEGFC) and apoptosis-related genes (BAX, BCL-2, P53, CASPASE 3). Taken together, NOD induced adverse effect on zebrafish embryos development, which may be associated with oxidative stress and apoptosis through the activation of P53-BAX/BCL-2-CASPASE 3-mediated pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenping Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
11
|
Chen R, Zhou C, Cao Y, Xi J, Ohira T, He L, Huang P, You X, Liu W, Zhang X, Ma S, Xie T, Chang Y, Luan Y. Assessment of Pig-a, Micronucleus, and Comet Assay Endpoints in Tg.RasH2 Mice Carcinogenicity Study of Aristolochic Acid I. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:266-275. [PMID: 31443125 DOI: 10.1002/em.22325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
A newly developed in vivo Pig-a gene mutation assay displays great potential for integration into genotoxicity tests. To obtain more evidence for application of the Pig-a assay, we integrated this assay, micronucleus test in peripheral blood (MN-pb test) and bone marrow (MN-bm test), as well as a Comet assay into a transgenic RasH2 mice carcinogenicity study. Fourteen male RasH2 mice and five wild-type (WT) mice were treated with a strong mutagen aristolochic acid I at a dose of 5 mg/kg/day for 4 consecutive weeks. Mice recovered in 5 weeks. Peripheral bloods were collected for Pig-a assay, MN-pb test, and Comet assay at several time points, while bone marrow and target organs were harvested for the MN-bm test and pathological diagnosis after mice were euthanized. Finally, 13 of the 14 RasH2 mice developed squamous cell carcinomas in the forestomach, while there were no carcinomas in the WT mice. Pig-a mutant frequencies (MFs) consecutively increased throughout the study to a maximum value of approximately 63-fold more than background. These frequencies were relative to the incidence, size, and malignant degree of tumors. Micronucleated reticulocytes increased from Day 1 to Day 49, before returning to background levels. No positive responses were observed in either the MN-bm test or the Comet assay. Results suggested that, when compared with the other two tests, the Pig-a assay persistently contributed to sustaining MFs, enhanced detection sensitivity due to the accumulation of Pig-a mutations, and demonstrated better predictability for tumorigenicity. Environ. Mol. Mutagen. 61:266-275, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Changhui Zhou
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Toko Ohira
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Liang He
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Pengcheng Huang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuangcheng Ma
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Institutes for Food and Drug Control, Beijing, China
| | - Tianpei Xie
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Standard Technology Co., Ltd., Shanghai, People's Republic of China
| | - Yan Chang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Heflich RH, Johnson GE, Zeller A, Marchetti F, Douglas GR, Witt KL, Gollapudi BB, White PA. Mutation as a Toxicological Endpoint for Regulatory Decision-Making. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:34-41. [PMID: 31600846 DOI: 10.1002/em.22338] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 05/23/2023]
Abstract
Mutations induced in somatic cells and germ cells are responsible for a variety of human diseases, and mutation per se has been considered an adverse health concern since the early part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most commonly used by regulatory agencies for hazard identification, that is, determining whether or not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-response data are being used increasingly for risk assessments. Efforts are currently underway to both improve the measurement of mutations and to refine the computational methods used for evaluating mutation data. We recommend continuing the development of these approaches with the objective of establishing consensus regarding the value of including the quantitative analysis of mutation per se as a required endpoint for comprehensive assessments of toxicological risk. Environ. Mol. Mutagen. 61:34-41, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | - Andreas Zeller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Kristine L Witt
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
13
|
White PA, Luijten M, Mishima M, Cox JA, Hanna JN, Maertens RM, Zwart EP. In vitro mammalian cell mutation assays based on transgenic reporters: A report of the International Workshop on Genotoxicity Testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403039. [DOI: 10.1016/j.mrgentox.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 04/06/2019] [Indexed: 02/07/2023]
|
14
|
Webster JD, Santagostino SF, Foreman O. Applications and considerations for the use of genetically engineered mouse models in drug development. Cell Tissue Res 2019; 380:325-340. [DOI: 10.1007/s00441-019-03101-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
15
|
Namula Z, Wittayarat M, Hirata M, Hirano T, Nguyen NT, Le QA, Fahrudin M, Tanihara F, Otoi T. Genome mutation after the introduction of the gene editing by electroporation of Cas9 protein (GEEP) system into bovine putative zygotes. In Vitro Cell Dev Biol Anim 2019; 55:598-603. [PMID: 31297696 DOI: 10.1007/s11626-019-00385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
The present study was designed to investigate the effects of voltage strength on embryonic developmental rate and mutation efficiency in bovine putative zygotes during electroporation with the CRISPR/Cas9 system to target the MSTN gene at different time points after insemination. Results showed that there was no significant interaction between electroporation time and voltage strength on the embryonic cleavage and blastocyst formation rates. However, increasing the voltage strength to 20 V/mm to electroporate the zygotes at 10 h after the start of insemination yielded significantly lower blastocyst formation rates (P < 0.05) than those of the 10-V/mm electroporated zygotes. Mutation efficiency was then assessed in individual blastocysts by DNA sequence analysis of the target sites in the MSTN gene. A positive correlation between mutation rate and voltage strength was observed. The mutation efficiency in mutant blastocysts was significantly higher in the zygotes electroporated with 20 V/mm at 10 h after the start of insemination (P < 0.05) than in the zygotes electroporated at 15 h, irrespective of the voltage strength. We also noted that a certain number of blastocysts from zygotes that were electroporated with more than 15 V/mm at 10 h (4.8-16.7%) and 20 V/mm at 15 h (4.8%) were biallelic mutants. Our results suggest that the voltage strength during electroporation as well as electroporation time certainly have effects on the embryonic developmental rate and mutation efficiency in bovine putative zygotes.
Collapse
Affiliation(s)
- Zhao Namula
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Maki Hirata
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China.,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takayuki Hirano
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Mokhamad Fahrudin
- Faculty of Veterinary Science, Bogor Agricultural University, Bogor, Indonesia
| | - Fuminori Tanihara
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China. .,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Takeshige Otoi
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China.,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
16
|
Kawabe M, Urano K, Suguro M, Hara T, Kageyama Y, Mera Y, Tsutsumi H. Establishment and Validation of an Ultra-Short-Term Skin Carcinogenicity Bioassay Using Tg-rasH2 Mice. Vet Pathol 2019; 57:192-199. [PMID: 31221040 DOI: 10.1177/0300985819854440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After initiation with 7,12-dimethylbenz[a]anthracene (DMBA), the promoting potential of 12-O-tetradecanoylphorbol-13-acetate (TPA) on skin tumor development can be detected by an ultra-short-term skin carcinogenicity bioassay using Tg-rasH2 mice. In the present study, 10 chemicals were assessed using this ultra-short-term bioassay as a first step to validate this practical and easy-to-use skin carcinogenicity bioassay. These chemicals belonged to 4 categories: dermal vehicles (acetone, 99.5% ethanol, anhydrous ethanol, and Vaseline), skin noncarcinogens (oleic acid diethanolamine condensate, benzethonium chloride, and diisopropylcarbodiimide), skin tumor promoters (TPA and benzoyl peroxide), and a skin carcinogen (4-vinyl-1-cyclohexene diepoxide). In a first study, DMBA was used as the initiator at a dose of 50 μg according to previous data, but skin tumors were observed in the no-treatment and vehicle groups. Therefore, the dose of DMBA for skin tumor initiation was reevaluated using 12.5 or 25 μg, with 12.5 μg found to be sufficient for initiation activity. In the ultra-short-term assay, the vehicles and skin noncarcinogens were negative while the skin tumor promoters and the skin carcinogen were positive. The detection of skin tumor promotion and carcinogenicity was feasible in only 8 weeks. In conclusion, this carcinogenicity bioassay may represent a useful tool for the assessment of the carcinogenicity potential of topically applied chemicals.
Collapse
Affiliation(s)
- Mayumi Kawabe
- DIMS Institute of Medical Science, Ichinomiya, Aichi, Japan
| | - Koji Urano
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Mayuko Suguro
- DIMS Institute of Medical Science, Ichinomiya, Aichi, Japan
| | - Tomomi Hara
- DIMS Institute of Medical Science, Ichinomiya, Aichi, Japan
| | | | - Yukinori Mera
- DIMS Institute of Medical Science, Ichinomiya, Aichi, Japan
| | - Hideki Tsutsumi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| |
Collapse
|
17
|
Chai SC, Lin W, Li Y, Chen T. Drug discovery technologies to identify and characterize modulators of the pregnane X receptor and the constitutive androstane receptor. Drug Discov Today 2019; 24:906-915. [PMID: 30731240 PMCID: PMC6421094 DOI: 10.1016/j.drudis.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are ligand-activated nuclear receptors (NRs) that are notorious for their role in drug metabolism, causing unintended drug-drug interactions and decreasing drug efficacy. They control the xenobiotic detoxification system by regulating the expression of an array of drug-metabolizing enzymes and transporters that excrete exogenous chemicals and maintain homeostasis of endogenous metabolites. Much effort has been invested in recognizing potential drugs for clinical use that can activate PXR and CAR to enhance the expression of their target genes, and in identifying PXR and CAR inhibitors that can be used as co-therapeutics to prevent adverse effects. Here, we present current technologies and assays used in the quest to characterize PXR and CAR modulators, which range from biochemical to cell-based and animal models.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yongtao Li
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
18
|
Izumi H, Ishimoto T, Yamamoto H, Mori H. Bioluminescence imaging of Arc expression in mouse brain under acute and chronic exposure to pesticides. Neurotoxicology 2019; 71:52-59. [DOI: 10.1016/j.neuro.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
|
19
|
Palasca O, Santos A, Stolte C, Gorodkin J, Jensen LJ. TISSUES 2.0: an integrative web resource on mammalian tissue expression. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4851151. [PMID: 29617745 PMCID: PMC5808782 DOI: 10.1093/database/bay003] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022]
Abstract
Physiological and molecular similarities between organisms make it possible to translate findings from simpler experimental systems—model organisms—into more complex ones, such as human. This translation facilitates the understanding of biological processes under normal or disease conditions. Researchers aiming to identify the similarities and differences between organisms at the molecular level need resources collecting multi-organism tissue expression data. We have developed a database of gene–tissue associations in human, mouse, rat and pig by integrating multiple sources of evidence: transcriptomics covering all four species and proteomics (human only), manually curated and mined from the scientific literature. Through a scoring scheme, these associations are made comparable across all sources of evidence and across organisms. Furthermore, the scoring produces a confidence score assigned to each of the associations. The TISSUES database (version 2.0) is publicly accessible through a user-friendly web interface and as part of the STRING app for Cytoscape. In addition, we analyzed the agreement between datasets, across and within organisms, and identified that the agreement is mainly affected by the quality of the datasets rather than by the technologies used or organisms compared. Database URL: http://tissues.jensenlab.org/
Collapse
Affiliation(s)
- Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for non-coding RNA in Technology and Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for non-coding RNA in Technology and Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Smith RL, Cohen SM, Fukushima S, Gooderham NJ, Hecht SS, Guengerich FP, Rietjens IMCM, Bastaki M, Harman CL, McGowen MM, Taylor SV. The safety evaluation of food flavouring substances: the role of metabolic studies. Toxicol Res (Camb) 2018; 7:618-646. [PMID: 30090611 PMCID: PMC6062396 DOI: 10.1039/c7tx00254h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
The safety assessment of a flavour substance examines several factors, including metabolic and physiological disposition data. The present article provides an overview of the metabolism and disposition of flavour substances by identifying general applicable principles of metabolism to illustrate how information on metabolic fate is taken into account in their safety evaluation. The metabolism of the majority of flavour substances involves a series both of enzymatic and non-enzymatic biotransformation that often results in products that are more hydrophilic and more readily excretable than their precursors. Flavours can undergo metabolic reactions, such as oxidation, reduction, or hydrolysis that alter a functional group relative to the parent compound. The altered functional group may serve as a reaction site for a subsequent metabolic transformation. Metabolic intermediates undergo conjugation with an endogenous agent such as glucuronic acid, sulphate, glutathione, amino acids, or acetate. Such conjugates are typically readily excreted through the kidneys and liver. This paper summarizes the types of metabolic reactions that have been documented for flavour substances that are added to the human food chain, the methodologies available for metabolic studies, and the factors that affect the metabolic fate of a flavour substance.
Collapse
Affiliation(s)
- Robert L Smith
- Molecular Toxicology , Imperial College School of Medicine , London SW7 2AZ , UK
| | - Samuel M Cohen
- Dept. of Pathology and Microbiology , University of Nebraska Medical Centre , 983135 Nebraska Medical Centre , Omaha , NE 68198-3135 , USA
| | - Shoji Fukushima
- Japan Bioassay Research Centre , 2445 Hirasawa , Hadano , Kanagawa 257-0015 , Japan
| | - Nigel J Gooderham
- Dept. of Surgery and Cancer , Imperial College of Science , Sir Alexander Fleming Building , London SW7 2AZ , UK
| | - Stephen S Hecht
- Masonic Cancer Centre and Dept. of Laboratory Medicine and Pathology , University of Minnesota , Cancer and Cardiovascular Research Building , 2231 6th St , SE , Minneapolis , MN 55455 , USA
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , 638B Robinson Research Building , 2200 Pierce Avenue , Nashville , Tennessee 37232-0146 , USA
| | - Ivonne M C M Rietjens
- Division of Toxicology , Wageningen University , Tuinlaan 5 , 6703 HE Wageningen , The Netherlands
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| | - Christie L Harman
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| | - Margaret M McGowen
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| |
Collapse
|
21
|
Abstract
Endocrine disrupting chemicals (EDCs) are compounds that alter the structure and function of the endocrine system and may be contributing to disorders of the reproductive, metabolic, neuroendocrine and other complex systems. Typically, these outcomes cannot be modeled in cell-based or other simple systems necessitating the use of animal testing. Appropriate animal model selection is required to effectively recapitulate the human experience, including relevant dosing and windows of exposure, and ensure translational utility and reproducibility. While classical toxicology heavily relies on inbred rats and mice, and focuses on apical endpoints such as tumor formation or birth defects, EDC researchers have used a greater diversity of species to effectively model more subtle but significant outcomes such as changes in pubertal timing, mammary gland development, and social behaviors. Advances in genomics, neuroimaging and other tools are making a wider range of animal models more widely available to EDC researchers.
Collapse
Affiliation(s)
- Heather B Patisaul
- Center for Human Health and the Environment, W.M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Suzanne E Fenton
- Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, 27709, USA.
| | - David Aylor
- Center for Human Health and the Environment, Bioinformatics Research Center, W.M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
22
|
Nguyen TV, Wittayarat M, Do LTK, Nguyen TV, Nii M, Namula Z, Kunihara T, Tanihara F, Hirata M, Otoi T. Effects of chlorogenic acid (CGA) supplementation during in vitro maturation culture on the development and quality of porcine embryos with electroporation treatment after in vitro fertilization. Anim Sci J 2018; 89:1207-1213. [PMID: 29806122 DOI: 10.1111/asj.13049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Electroporation is the technique of choice to introduce an exogenous gene into embryos for transgenic animal production. Although this technique is practical and effective, embryonic damage caused by electroporation treatment remains a major problem. This study was conducted to evaluate the optimal culture system for electroporation-treated porcine embryos by supplementation of chlorogenic acid (CGA), a potent antioxidant, during in vitro oocyte maturation. The oocytes were treated with various concentrations of CGA (0, 10, 50, and 100 μmol/L) through the duration of maturation for 44 hr. The treated oocytes were then fertilized, electroporated at 30 V/mm with five 1 msec unipolar pulses, and subsequently cultured in vitro until development into the blastocyst stage. Without electroporation, the treatment with 50 μmol/L CGA had useful effects on the maturation rate of oocytes, the total cell number, and the apoptotic nucleus indices of blastocysts. When the oocytes were electroporated after in vitro fertilization, the treatment with 50 μmol/L CGA supplementation significantly improved the rate of oocytes that developed into blastocysts and reduced the apoptotic nucleus indices (4.7% and 7.6, respectively) compared with those of the untreated group (1.4% and 13.0, respectively). These results suggested that supplementation with 50 μmol/L CGA during maturation improves porcine embryonic development and quality of electroporation-treated embryos.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,Faculty of Veterinary Science, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thanh Van Nguyen
- Faculty of Veterinary Science, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Masahiro Nii
- Tokushima Prefectural Livestock Research Institute, Tokushima, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,College of Agricultural Science, Guangdong Ocean University, Guangdong, China
| | - Toshiki Kunihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
23
|
Abstract
Ligand-activated nuclear receptors, including peroxisome proliferator-activated receptor alpha (PPARα), pregnane X receptor, and constitutive androstane receptor, were first identified as key regulators of the responses against chemical toxicants. However, numerous studies using mouse disease models and human samples have revealed critical roles for these receptors and others, such as PPARβ/δ, PPARγ, farnesoid X receptor (FXR), and liver X receptor (LXR), in maintaining nutrient/energy homeostasis in part through modulation of the gut-liver-adipose axis. Recently, disorders associated with disrupted nutrient/energy homeostasis, e.g., obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD), are increasing worldwide. Notably, in NAFLD, a progressive subtype exists, designated as non-alcoholic steatohepatitis (NASH) that is characterized by typical histological features resembling alcoholic steatohepatitis (ASH), and NASH/ASH are recognized as major causes of hepatitis virus-unrelated liver cirrhosis and hepatocellular carcinoma. Since hepatic steatosis is basically caused by an imbalance between fat/energy influx and utilization, abnormal signaling of these nuclear receptors contribute to the pathogenesis of fatty liver disease. Standard therapeutic interventions have not been fully established for fatty liver disease, but some new agents that activate or inhibit nuclear receptor signaling have shown promise as possible therapeutic targets. In this review, we summarize recent findings on the roles of nuclear receptors in fatty liver disease and discuss future perspectives to develop promising pharmacological strategies targeting nuclear receptors for NAFLD/NASH.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Zhivagui M, Korenjak M, Zavadil J. Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:16-22. [PMID: 27754614 DOI: 10.1111/bcpt.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome-wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen-specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single-gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure-specific base-change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|
25
|
|
26
|
Velasco-Velázquez MA, Salinas-Jazmín N, Hisaki-Itaya E, Cobos-Puc L, Xolalpa W, González G, Tenorio-Calvo A, Piña-Lara N, Juárez-Bayardo LC, Flores-Ortiz LF, Medina-Rivero E, Pérez NO, Pérez-Tapia SM. Extensive preclinical evaluation of an infliximab biosimilar candidate. Eur J Pharm Sci 2017; 102:35-45. [PMID: 28188909 DOI: 10.1016/j.ejps.2017.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
Infliximab is therapeutic monoclonal antibody (mAb) against TNF-α employed in the treatment of immunoinflammatory diseases. The development of biosimilar mAbs is a global strategy to increase drug accessibility and reduce therapy-associated costs. Herein we compared key physicochemical characteristics and biological activities produced by infliximab and infliximab-Probiomed in order to identify functionally relevant differences between the mAbs. Binding of infliximab-Probiomed to TNF-α was specific and had kinetics comparable to that of the reference product. Both mAbs had highly similar neutralizing efficacy in HUVEC cell cultures stimulated with TNF-α. In vitro induction of CDC and ADCC were also similar between the evaluated products. In vivo comparability was assessed using a transgenic mouse model of arthritis that expresses human TNF-α in a 13-week multiple-administration study. Infliximab and infliximab-Probiomed showed comparable efficacy, safety, and pharmacokinetic profiles. Our results indicate that infliximab-Probiomed has highly similar activities to infliximab in preclinical models, warranting a clinical evaluation of its biosimilarity.
Collapse
Affiliation(s)
- M A Velasco-Velázquez
- Facultad de Medicina, Universidad Nacional Autónoma de México, Cd. Universitaria, Cd. Mx. 04510, México
| | - N Salinas-Jazmín
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN. Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, Cd. Mx. 11340, México
| | - E Hisaki-Itaya
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN. Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, Cd. Mx. 11340, México
| | - L Cobos-Puc
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN. Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, Cd. Mx. 11340, México
| | - W Xolalpa
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN. Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, Cd. Mx. 11340, México
| | - G González
- Unidad de Desarrollo e Investigación, Probiomed S.A. de C.V. Cruce de carreteras Acatzingo-Zumpahuacán, 52400 Tenancingo, México
| | - A Tenorio-Calvo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN. Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, Cd. Mx. 11340, México
| | - N Piña-Lara
- Unidad de Desarrollo e Investigación, Probiomed S.A. de C.V. Cruce de carreteras Acatzingo-Zumpahuacán, 52400 Tenancingo, México
| | - L C Juárez-Bayardo
- Unidad de Desarrollo e Investigación, Probiomed S.A. de C.V. Cruce de carreteras Acatzingo-Zumpahuacán, 52400 Tenancingo, México
| | - L F Flores-Ortiz
- Unidad de Desarrollo e Investigación, Probiomed S.A. de C.V. Cruce de carreteras Acatzingo-Zumpahuacán, 52400 Tenancingo, México
| | - E Medina-Rivero
- Unidad de Desarrollo e Investigación, Probiomed S.A. de C.V. Cruce de carreteras Acatzingo-Zumpahuacán, 52400 Tenancingo, México
| | - N O Pérez
- Unidad de Desarrollo e Investigación, Probiomed S.A. de C.V. Cruce de carreteras Acatzingo-Zumpahuacán, 52400 Tenancingo, México.
| | - S M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN. Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, Cd. Mx. 11340, México; Departamento de Inmunología and Unidad de Investigación Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), Escuela Nacional de Ciencias Biológicas, IPN, México.
| |
Collapse
|
27
|
Suguro M, Numano T, Kawabe M, Doi Y, Imai N, Mera Y, Tamano S. Lung Tumor Induction by 26-week Dermal Application of 1,2-Dichloroethane in CB6F1-Tg rasH2 Mice. Toxicol Pathol 2017; 45:427-434. [DOI: 10.1177/0192623317701003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-term alternatives to traditional 2-year carcinogenic studies in rodents are being actively pursued. Recently, a 26-week short-term carcinogenicity study using CB6F1-Tg rasH2@Jcl (rasH2) mice has become a worldwide standard for the evaluation of chemical carcinogenesis. However, an acceptable short-term carcinogenic study model for dermally applied products is still lacking. To investigate the suitability of using the rasH2 mouse to test carcinogenic potential, 1,2-dichloroethane (1,2-DCE) was dermally applied to rasH2 mice: 1,2-DCE is a known carcinogen that causes lung bronchiolo-alveolar adenomas and adenocarcinomas when administered topically, orally, or by inhalation exposure; 1,2-DCE at a dose level of 126 mg/mouse in 200 μl acetone or acetone alone (vehicle control) was applied to the dorsal skin of 10 mice of each sex 3 times a week for 26 weeks. As a positive control, 10 mice of each sex received a single intraperitoneal injection of 75 mg/kg of N-methyl- N-nitrosourea. Bronchiolo-alveolar adenomas and adenocarcinomas were significantly increased in 1,2-DCE-treated rasH2 mice of both sexes, and bronchiolo-alveolar hyperplasias were significantly increased in female mice. Overall, almost all mice of each sex developed adenomas and/or adenocarcinomas with 100% of female rasH2 mice developing bronchiolo-alveolar adenocarcinomas.
Collapse
Affiliation(s)
- Mayuko Suguro
- DIMS Institute of Medical Science, Inc., Ichinomiya, Aichi, Japan
| | - Takamasa Numano
- DIMS Institute of Medical Science, Inc., Ichinomiya, Aichi, Japan
| | - Mayumi Kawabe
- DIMS Institute of Medical Science, Inc., Ichinomiya, Aichi, Japan
| | - Yuko Doi
- DIMS Institute of Medical Science, Inc., Ichinomiya, Aichi, Japan
| | - Norio Imai
- DIMS Institute of Medical Science, Inc., Ichinomiya, Aichi, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., Ichinomiya, Aichi, Japan
| | - Seiko Tamano
- DIMS Institute of Medical Science, Inc., Ichinomiya, Aichi, Japan
| |
Collapse
|
28
|
|
29
|
Wang Z, Li X, Wu Q, Lamb JC, Klaunig JE. Toxaphene-induced mouse liver tumorigenesis is mediated by the constitutive androstane receptor. J Appl Toxicol 2017; 37:967-975. [DOI: 10.1002/jat.3445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zemin Wang
- Department of Environmental Health; Indiana University Bloomington; IN 47405 USA
| | - Xilin Li
- Department of Environmental Health; Indiana University Bloomington; IN 47405 USA
| | - Qiangen Wu
- Department of Environmental Health; Indiana University Bloomington; IN 47405 USA
| | - James C. Lamb
- Center for Toxicology and Mechanistic Biology; Exponent Inc.; Alexandria VA 22314 USA
| | - James E. Klaunig
- Department of Environmental Health; Indiana University Bloomington; IN 47405 USA
| |
Collapse
|
30
|
Wang L, Xu W, Ma L, Zhang S, Zhang K, Ye P, Xing G, Zhang X, Cao Y, Xi J, Gu J, Luan Y. Detoxification of benzo[a]pyrene primarily depends on cytochrome P450, while bioactivation involves additional oxidoreductases including 5-lipoxygenase, cyclooxygenase, and aldo-keto reductase in the liver. J Biochem Mol Toxicol 2017; 31. [PMID: 28111842 DOI: 10.1002/jbt.21902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/02/2023]
Abstract
Cytochrome P450s are involved in detoxification and activation of benzo[a]pyrene (BaP) with unclear balance and unknown contribution of other oxidoreductases. Here, we investigated the BaP and BaP-induced mutagenicity in hepatic and extra-hepatic tissues using hepatic P450 reductase null (HRN) gpt mice. After 2-week treatment (50 mg/kg, i.p. 4 days), BaP in the liver and lung of HRN-gpt mice were increased. BaP promoted gpt mutant frequency (MF) in HRN-gpt mice liver. MF of gpt in the lung and Pig-a in hematopoietic cells induced by BaP in HRN-gpt mice were increased than in gpt mice. BaP-7,8-diol-9,10-epoxide (BPDE)-DNA adducts in vitro was analyzed for enzymes detection in BaP bioactivation. Specific inhibitors of 5-lipoxygenase, cyclooxygenase-1&2, and aldo-keto reductase resulted in more than 80% inhibition rate in the DNA adduct formation, further confirmed by Macaca fascicularis hepatic S9 system. Our results suggested the detoxification of BaP primarily depends on cytochrome P450, while the bioactivation involves additional oxidoreductases.
Collapse
Affiliation(s)
- Liupeng Wang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Wenwei Xu
- Tong Ren Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People's Republic of China
| | - Leilei Ma
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Suxing Zhang
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Kezhi Zhang
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Peizhen Ye
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Guozhen Xing
- Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, Nanjing, People's Republic of China
| | - Xuefeng Zhang
- Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, Nanjing, People's Republic of China
| | - Yiyi Cao
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jing Xi
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jun Gu
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201-0509, USA
| | - Yang Luan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
31
|
Patisaul HB. Endocrine Disruption of Vasopressin Systems and Related Behaviors. Front Endocrinol (Lausanne) 2017; 8:134. [PMID: 28674520 PMCID: PMC5475378 DOI: 10.3389/fendo.2017.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that interfere with the organizational or activational effects of hormones. Although the vast majority of the EDC literature focuses on steroid hormone signaling related impacts, growing evidence from a myriad of species reveals that the nonapeptide hormones vasopressin (AVP) and oxytocin (OT) may also be EDC targets. EDCs shown to alter pathways and behaviors coordinated by AVP and/or OT include the plastics component bisphenol A (BPA), the soy phytoestrogen genistein (GEN), and various flame retardants. Many effects are sex specific and likely involve action at nuclear estrogen receptors. Effects include the elimination or reversal of well-characterized sexually dimorphic aspects of the AVP system, including innervation of the lateral septum and other brain regions critical for social and other non-reproductive behaviors. Disruption of magnocellular AVP function has also been reported in rats, suggesting possible effects on hemodynamics and cardiovascular function.
Collapse
Affiliation(s)
- Heather B. Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, NC State University, Raleigh, NC, United States
- *Correspondence: Heather B. Patisaul,
| |
Collapse
|
32
|
Kugler J, Luch A, Oelgeschläger M. Transgenic Mouse Models Transferred into the Test Tube: New Perspectives for Developmental Toxicity Testing In Vitro? Trends Pharmacol Sci 2016; 37:822-830. [PMID: 27450043 DOI: 10.1016/j.tips.2016.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022]
Abstract
Despite our increasing understanding of molecular mechanisms controlling embryogenesis, the identification and characterization of teratogenic substances still heavily relies on animal testing. Embryonic development depends on cell-autonomous and non-autonomous processes including spatiotemporally regulated extracellular signaling activities. These have been elucidated in transgenic mouse models harboring easily detectable reporter genes under the control of evolutionarily conserved signaling cascades. We propose combining these transgenic mouse models and cells derived thereof with existing alternative toxicological testing strategies. This would enable the plausibility of in vitro data to be verified in light of in vivo data and, ultimately, facilitate regulatory acceptance of in vitro test methods.
Collapse
Affiliation(s)
- Josephine Kugler
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment (BfR), Department of Experimental Toxicology and ZEBET, Bf3R, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
33
|
Kugler J, Kemler R, Luch A, Oelgeschläger M. Editor's Highlight: Identification and Characterization of Teratogenic Chemicals Using Embryonic Stem Cells Isolated From a Wnt/β-Catenin-Reporter Transgenic Mouse Line. Toxicol Sci 2016; 152:382-94. [PMID: 27208078 DOI: 10.1093/toxsci/kfw094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Embryonic stem cells (ESCs) are commonly used for the analysis of gene function in embryonic development and provide valuable models for human diseases. In recent years, ESCs have also become an attractive tool for toxicological testing, in particular for the identification of teratogenic compounds. We have recently described a Bmp-reporter ESC line as a new tool to identify teratogenic compounds and to characterize the molecular mechanisms mediating embryonic toxicity. Here we describe the use of a Wnt/β-Catenin-reporter ESC line isolated from a previously described mouse line that carries the LacZ reporter gene under the control of a β-Catenin responsive promoter. The reporter ESC line stably differentiates into cardiomyocytes within 12 days. The reporter was endogenously induced between day 3-5 of differentiation reminiscent of its expression in vivo, in which strong LacZ activity is detected around gastrulation. Subsequently its expression becomes restricted to mesodermal cells and cells undergoing an epithelial to mesenchymal transition. The Wnt/β-Catenin-dependent expression of the reporter protein allowed quantification of dose- and time-dependent effects of teratogenic chemicals. In particular, valproic acid reduced reporter activity on day 7 whereas retinoic acid induced reporter activity on day 5 at concentrations comparable to the ones inhibiting the formation of functional cardiomyocytes, the classical read-out of the embryonic stem cell test (EST). In addition, we were also able to show distinct effects of teratogenic chemicals on the Wnt/β-Catenin-reporter compared with the previously described Bmp-reporter ESCs. Thus, different reporter cell lines provide complementary tools for the identification and analysis of potentially teratogenic compounds.
Collapse
Affiliation(s)
- Josephine Kugler
- *Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Rolf Kemler
- Emeritus Laboratory, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andreas Luch
- *Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Michael Oelgeschläger
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
34
|
Luijten M, Olthof ED, Hakkert BC, Rorije E, van der Laan JW, Woutersen RA, van Benthem J. An integrative test strategy for cancer hazard identification. Crit Rev Toxicol 2016; 46:615-39. [PMID: 27142259 DOI: 10.3109/10408444.2016.1171294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assessment of genotoxic and carcinogenic potential is considered one of the basic requirements when evaluating possible human health risks associated with exposure to chemicals. Test strategies currently in place focus primarily on identifying genotoxic potential due to the strong association between the accumulation of genetic damage and cancer. Using genotoxicity assays to predict carcinogenic potential has the significant drawback that risks from non-genotoxic carcinogens remain largely undetected unless carcinogenicity studies are performed. Furthermore, test systems already developed to reduce animal use are not easily accepted and implemented by either industries or regulators. This manuscript reviews the test methods for cancer hazard identification that have been adopted by the regulatory authorities, and discusses the most promising alternative methods that have been developed to date. Based on these findings, a generally applicable tiered test strategy is proposed that can be considered capable of detecting both genotoxic as well as non-genotoxic carcinogens and will improve understanding of the underlying mode of action. Finally, strengths and weaknesses of this new integrative test strategy for cancer hazard identification are presented.
Collapse
Affiliation(s)
- Mirjam Luijten
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Betty C Hakkert
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Emiel Rorije
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | | | - Ruud A Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , the Netherlands
| | - Jan van Benthem
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| |
Collapse
|
35
|
In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis. PLoS One 2016; 11:e0149497. [PMID: 26900852 PMCID: PMC4763017 DOI: 10.1371/journal.pone.0149497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/02/2016] [Indexed: 01/04/2023] Open
Abstract
The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.
Collapse
|
36
|
Bajanca F, Gonzalez-Perez V, Gillespie SJ, Beley C, Garcia L, Theveneau E, Sear RP, Hughes SM. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis. eLife 2015; 4. [PMID: 26459831 PMCID: PMC4601390 DOI: 10.7554/elife.06541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/10/2015] [Indexed: 12/30/2022] Open
Abstract
Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmd(ta222a/ta222a) zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)(ct90a) that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics.
Collapse
Affiliation(s)
- Fernanda Bajanca
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,CNRS and Université Paul Sabatier, Toulouse, France
| | | | - Sean J Gillespie
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Cyriaque Beley
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | - Luis Garcia
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Richard P Sear
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
38
|
Singh PK, Negi A, Gupta PK, Chauhan M, Kumar R. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations. Arch Toxicol 2015; 90:1785-802. [PMID: 26341667 DOI: 10.1007/s00204-015-1587-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023]
Abstract
Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Arvind Negi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Pawan Kumar Gupta
- Centre for Computational Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Monika Chauhan
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India.
| |
Collapse
|
39
|
Kugler J, Tharmann J, Chuva de Sousa Lopes SM, Kemler R, Luch A, Oelgeschläger M. A Bmp Reporter Transgene Mouse Embryonic Stem Cell Model as a Tool to Identify and Characterize Chemical Teratogens. Toxicol Sci 2015; 146:374-85. [PMID: 26001961 DOI: 10.1093/toxsci/kfv103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Embryonic stem cells (ESCs) were first isolated from mouse embryos more than 30 years ago. They have proven invaluable not only in generating genetically modified mice that allow for analysis of gene function in tissue development and homeostasis but also as models for genetic disease. In addition, ESCs in vitro are finding inroads in pharmaceutical and toxicological testing, including the identification of teratogenic compounds. Here, we describe the use of a bone morphogenetic protein (Bmp)-reporter ESC line, isolated from a well-characterized transgenic mouse line, as a new tool for the identification of chemical teratogens. The Bmp-mediated expression of the green fluorescent protein enabled the quantification of dose- and time-dependent effects of valproic acid as well as retinoic acid. Significant effects were detectable at concentrations that were comparable to the ones observed in the classical embryonic stem cell test, despite the fact that the reporter gene is expressed in distinct cell types, including endothelial and endodermal cells. Thus these cells provide a valuable new tool for the identification and characterization of relevant mechanisms of embryonic toxicity.
Collapse
Affiliation(s)
- Josephine Kugler
- *German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety Berlin, 10589 Berlin, Germany
| | - Julian Tharmann
- *German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety Berlin, 10589 Berlin, Germany
| | | | - Rolf Kemler
- Max-Planck Institute of Immunobiology and Epigenetics, Emeritus Laboratory, 79108 Freiburg, Germany and
| | - Andreas Luch
- *German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety Berlin, 10589 Berlin, Germany
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment (BfR), Department of Experimental Toxicology and Center for Alternatives to Animal Testing, 10589 Berlin, Germany
| |
Collapse
|
40
|
Gonzalez FJ, Fang ZZ, Ma X. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:869-81. [PMID: 25836352 DOI: 10.1517/17425255.2015.1032245] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The study of xenobiotic metabolism and toxicity has been greatly aided by the use of genetically modified mouse models and metabolomics. AREAS COVERED Gene knockout mice can be used to determine the enzymes responsible for the metabolism of xenobiotics in vivo and to examine the mechanisms of xenobiotic-induced toxicity. Humanized mouse models are especially important because there exist marked species differences in the xenobiotic-metabolizing enzymes and the nuclear receptors that regulate these enzymes. Humanized mice expressing CYPs and nuclear receptors including the pregnane X receptor, the major regulator of xenobiotic metabolism and transport were produced. With genetically modified mouse models, metabolomics can determine the metabolic map of many xenobiotics with a level of sensitivity that allows the discovery of even minor metabolites. This technology can be used for determining the mechanism of xenobiotic toxicity and to find early biomarkers for toxicity. EXPERT OPINION Metabolomics and genetically modified mouse models can be used for the study of xenobiotic metabolism and toxicity by: i) comparison of the metabolomics profiles between wild-type and genetically modified mice, and searching for genotype-dependent endogenous metabolites; ii) searching for and elucidating metabolites derived from xenobiotics; and iii) discovery of specific alterations of endogenous compounds induced by xenobiotics-induced toxicity.
Collapse
Affiliation(s)
- Frank J Gonzalez
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Metabolism , Bethesda, MD 20892 , USA +1 301 496 9067 ; +1 301 496 8419 ;
| | | | | |
Collapse
|
41
|
Sura R, Settivari RS, LeBaron MJ, Craig Rowlands J, Carney EW, Bhaskar Gollapudi B. A critical assessment of the methodologies to investigate the role of inhibition of apoptosis in rodent hepatocarcinogenesis. Toxicol Mech Methods 2015; 25:192-200. [DOI: 10.3109/15376516.2015.1007541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
|
43
|
Hu Y, Xie Y, Wang Y, Chen X, Smith DE. Development and characterization of a novel mouse line humanized for the intestinal peptide transporter PEPT1. Mol Pharm 2014; 11:3737-46. [PMID: 25148225 PMCID: PMC4186676 DOI: 10.1021/mp500497p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
The
proton-coupled oligopeptide transporter PEPT1 (SLC15A1) is
abundantly expressed in the small intestine, but not colon, of mammals
and found to mediate the uptake of di/tripeptides and peptide-like
drugs from the intestinal lumen. However, species differences have
been observed in both the expression (and localization) of PEPT1 and
its substrate affinity. With this in mind, the objectives of this
study were to develop a humanized PEPT1 mouse model
(huPEPT1) and to characterize hPEPT1 expression and
functional activity in the intestines. Thus, after generating huPEPT1 mice in animals previously nulled for mouse Pept1, phenotypic, PCR, and immunoblot analyses were performed,
along with in situ single-pass intestinal perfusion
and in vivo oral pharmacokinetic studies with a model
dipeptide, glycylsarcosine (GlySar). Overall, the huPEPT1 mice had normal survival rates, fertility, litter size, gender distribution,
and body weight. There was no obvious behavioral or pathological phenotype.
The mRNA and protein profiles indicated that huPEPT1 mice had substantial PEPT1 expression in all regions of the small
intestine (i.e., duodenum, jejunum, and ileum) along with low but
measurable expression in both proximal and distal segments of the
colon. In agreement with PEPT1 expression, the in situ permeability of GlySar in huPEPT1 mice was similar
to but lower than wildtype animals in small intestine, and greater
than wildtype mice in colon. However, a species difference existed
in the in situ transport kinetics of jejunal PEPT1,
in which the maximal flux and Michaelis constant of GlySar were reduced
7-fold and 2- to 4-fold, respectively, in huPEPT1 compared to wildtype mice. Still, the in vivo function
of intestinal PEPT1 appeared fully restored (compared to Pept1 knockout mice) as indicated by the nearly identical pharmacokinetics
and plasma concentration–time profiles following a 5.0 nmol/g
oral dose of GlySar to huPEPT1 and wildtype mice.
This study reports, for the first time, the development and characterization
of mice humanized for PEPT1. This novel transgenic huPEPT1 mouse model should prove useful in examining the
role, relevance, and regulation of PEPT1 in diet and disease, and
in the drug discovery process.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
44
|
Pereira EFR, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 2014; 350:313-21. [PMID: 24907067 PMCID: PMC4109493 DOI: 10.1124/jpet.114.214932] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/05/2014] [Indexed: 01/14/2023] Open
Abstract
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
Collapse
Affiliation(s)
- Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Louis J DeTolla
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - E Jeffrey Beecham
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edgar J Wakayama
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| |
Collapse
|
45
|
Piersma AH, Ezendam J, Luijten M, Muller JJA, Rorije E, van der Ven LTM, van Benthem J. A critical appraisal of the process of regulatory implementation of novel in vivo and in vitro methods for chemical hazard and risk assessment. Crit Rev Toxicol 2014; 44:876-94. [PMID: 25058877 DOI: 10.3109/10408444.2014.940445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulatory toxicology urgently needs applicable alternative test systems that reduce animal use, testing time, and cost. European regulation on cosmetic ingredients has already banned animal experimentation for hazard identification, and public awareness drives toward additional restrictions in other regulatory frameworks as well. In addition, scientific progress stimulates a more mechanistic approach of hazard identification. Nevertheless, the implementation of alternative methods is lagging far behind their development. In search for general bottlenecks for the implementation of alternative methods, this manuscript reviews the state of the art as to the development and implementation of 10 diverse test systems in various areas of toxicological hazard assessment. They vary widely in complexity and regulatory acceptance status. The assays are reviewed as to parameters assessed, biological system involved, standardization, interpretation of results, extrapolation to human hazard, position in testing strategies, and current regulatory acceptance status. Given the diversity of alternative methods in many aspects, no common bottlenecks could be identified that hamper implementation of individual alternative assays in general. However, specific issues for the regulatory acceptance and application were identified for each assay. Acceptance of one-in-one replacement of complex in vivo tests by relatively simple in vitro assays is not feasible. Rather, innovative approaches using test batteries are required together with metabolic information and in vitro to in vivo dose extrapolation to convincingly provide the same level of information of current in vivo tests. A mechanistically based alternative approach using the Adverse Outcome Pathway concept could stimulate further (regulatory) acceptance of non-animal tests.
Collapse
Affiliation(s)
- Aldert H Piersma
- RIVM, Center for Health Protection , Bilthoven , the Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, Shimizu M, Narita N, Okamoto M, Kobayashi S, Nomura H, Kato H, Nishimura N, Taruta S, Endo M. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 2014; 114:6040-79. [PMID: 24720563 PMCID: PMC4059771 DOI: 10.1021/cr400341h] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Naoto Saito
- Institute
for Biomedical Sciences, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan
| | - Hisao Haniu
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Yuki Usui
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Kaoru Aoki
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Kazuo Hara
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Seiji Takanashi
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Masayuki Shimizu
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Nobuyo Narita
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Masanori Okamoto
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Shinsuke Kobayashi
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Hiroki Nomura
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Hiroyuki Kato
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Naoyuki Nishimura
- R&D
Center, Nakashima Medical Co. Ltd., Haga 5322, Kita-ku, Okayama 701-1221, Japan
| | - Seiichi Taruta
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Morinobu Endo
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| |
Collapse
|
47
|
Eastmond DA, Vulimiri SV, French JE, Sonawane B. The use of genetically modified mice in cancer risk assessment: challenges and limitations. Crit Rev Toxicol 2014; 43:611-31. [PMID: 23985072 DOI: 10.3109/10408444.2013.822844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of genetically modified (GM) mice to assess carcinogenicity is playing an increasingly important role in the safety evaluation of chemicals. While progress has been made in developing and evaluating mouse models such as the Trp53⁺/⁻, Tg.AC and the rasH2, the suitability of these models as replacements for the conventional rodent cancer bioassay and for assessing human health risks remains uncertain. The objective of this research was to evaluate the use of accelerated cancer bioassays with GM mice for assessing the potential health risks associated with exposure to carcinogenic agents. We compared the published results from the GM bioassays to those obtained in the National Toxicology Program's conventional chronic mouse bioassay for their potential use in risk assessment. Our analysis indicates that the GM models are less efficient in detecting carcinogenic agents but more consistent in identifying non-carcinogenic agents. We identified several issues of concern related to the design of the accelerated bioassays (e.g., sample size, study duration, genetic stability and reproducibility) as well as pathway-dependency of effects, and different carcinogenic mechanisms operable in GM and non-GM mice. The use of the GM models for dose-response assessment is particularly problematic as these models are, at times, much more or less sensitive than the conventional rodent cancer bioassays. Thus, the existing GM mouse models may be useful for hazard identification, but will be of limited use for dose-response assessment. Hence, caution should be exercised when using GM mouse models to assess the carcinogenic risks of chemicals.
Collapse
Affiliation(s)
- David A Eastmond
- Department of Cell Biology & Neuroscience, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
48
|
Manjanatha MG, Cao X, Shelton SD, Mittelstaedt RA, Heflich RH. In vivo cII, gpt, and Spi⁻ gene mutation assays in transgenic mice and rats. Methods Mol Biol 2014; 1044:97-119. [PMID: 23896873 DOI: 10.1007/978-1-62703-529-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transgenic mutation assays are used to identify and characterize genotoxic hazards and for determining the mode of action for carcinogens. The three most popular transgenic mutational models are Big Blue® (rats or mice), Muta™ mouse (mice), and gpt-delta (rats or mice). The Big Blue® and Muta™ mouse models use the cII gene as a reporter of mutation whereas gpt-delta rodents use the gpt gene and the red/gam genes (Spi⁻ selection) as mutation reporter genes. Here we describe methodology for conducting mutation assays with these transgenes. Transgenes recovered from tissue DNA are packaged into infectious lambda phage, bacteria are infected with the phage, and cII-mutant and Spi⁻ plaques and gpt-mutant colonies are isolated using selective conditions and quantified. Selected mutants can be further analyzed for identification of small sequence alterations in the cII and gpt genes and large deletions at the Spi⁻ locus.
Collapse
Affiliation(s)
- Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | | | | |
Collapse
|
49
|
Leonard MO, Limonciel A, Jennings P. Stress Response Pathways. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Morton D, Sistare FD, Nambiar PR, Turner OC, Radi Z, Bower N. Regulatory Forum Commentary. Toxicol Pathol 2013; 42:799-806. [DOI: 10.1177/0192623313502130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/− mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment.
Collapse
Affiliation(s)
| | | | | | - Oliver C. Turner
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Zaher Radi
- Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Nancy Bower
- Eisai, Inc., Woodcliff Lake, New Jersey, USA
| |
Collapse
|