1
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
2
|
Li B, Jin X, Chan HM. Effects of low doses of methylmercury (MeHg) exposure on definitive endoderm cell differentiation in human embryonic stem cells. Arch Toxicol 2023; 97:2625-2641. [PMID: 37612375 PMCID: PMC10475006 DOI: 10.1007/s00204-023-03580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Fetal development is one of the most sensitive windows to methylmercury (MeHg) toxicity. Laboratory and epidemiological studies have shown a dose-response relationship between fetal MeHg exposure and neuro performance in different life stages from infants to adults. In addition, MeHg exposure has been reported to be associated with disorders in endoderm-derived organs, such as morphological changes in liver cells and pancreatic cell dysfunctions. However, the mechanisms of the effects of MeHg on non-neuronal organs or systems, especially during the early development of endoderm-derived organs, remain unclear. Here we determined the effects of low concentrations of MeHg exposure during the differentiation of definitive endoderm (DE) cells from human embryonic stem cells (hESCs). hESCs were exposed to MeHg (0, 10, 100, and 200 nM) that covers the range of Hg concentrations typically found in human maternal blood during DE cell induction. Transcriptomic analysis showed that sub-lethal doses of MeHg exposure could alter global gene expression patterns during hESC to DE cell differentiation, leading to increased expression of endodermal genes/proteins and the over-promotion of endodermal fate, mainly through disrupting calcium homeostasis and generating ROS. Bioinformatic analysis results suggested that MeHg exerts its developmental toxicity mainly by disrupting ribosome biogenesis during early cell lineage differentiation. This disruption could lead to aberrant growth or dysfunctions of the developing endoderm-derived organs, and it may be the underlying mechanism for the observed congenital diseases later in life. Based on the results, we proposed an adverse outcome pathway for the effects of MeHg exposure during human embryonic stem cells to definitive endoderm differentiation.
Collapse
Affiliation(s)
- Bai Li
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Xiaolei Jin
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Hing Man Chan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Moraes DD, Mousovich-Neto F, Cury SS, Oliveira J, Souza JDS, Freire PP, Dal-Pai-Silva M, Mori MADS, Fernandez GJ, Carvalho RF. The Transcriptomic Landscape of Age-Induced Changes in Human Visceral Fat and the Predicted Omentum-Liver Connectome in Males. Biomedicines 2023; 11:biomedicines11051446. [PMID: 37239116 DOI: 10.3390/biomedicines11051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Aging causes alterations in body composition. Specifically, visceral fat mass increases with age and is associated with age-related diseases. The pathogenic potential of visceral fat accumulation has been associated with its anatomical location and metabolic activity. Visceral fat may control systemic metabolism by secreting molecules that act in distal tissues, mainly the liver, through the portal vein. Currently, little is known about age-related changes in visceral fat in humans. Aiming to identify molecular and cellular changes occurring with aging in the visceral fat of humans, we analyzed publicly available transcriptomic data of 355 omentum samples from the Genotype-Tissue Expression portal (GTEx) of 20-79-year-old males and females. We identified the functional enrichment of genes associated with aging, inferred age-related changes in visceral fat cellularity by deconvolution analysis, profiled the senescence-associated secretory phenotype of visceral adipose tissue, and predicted the connectivity of the age-induced visceral fat secretome with the liver. We demonstrate that age induces alterations in visceral fat cellularity, synchronous to changes in metabolic pathways and a shift toward a pro-inflammatory secretory phenotype. Furthermore, our approach identified candidates such as ADIPOQ-ADIPOR1/ADIPOR2, FCN2-LPR1, and TF-TFR2 to mediate visceral fat-liver crosstalk in the context of aging. These findings cast light on how alterations in visceral fat with aging contribute to liver dysfunction and age-related disease etiology.
Collapse
Affiliation(s)
- Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato St., 255, Campinas 13083-862, SP, Brazil
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato St., 255, Campinas 13083-862, SP, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil
| | - Jakeline Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil
| | - Jeferson Dos Santos Souza
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil
| | - Marcelo Alves da Silva Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato St., 255, Campinas 13083-862, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
| | - Geysson Javier Fernandez
- Grupo Biologia y Control de Enfermedades Infeciosas (BCEI), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
4
|
Bose R, Spulber S, Ceccatelli S. The Threat Posed by Environmental Contaminants on Neurodevelopment: What Can We Learn from Neural Stem Cells? Int J Mol Sci 2023; 24:4338. [PMID: 36901772 PMCID: PMC10002364 DOI: 10.3390/ijms24054338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Exposure to chemicals may pose a greater risk to vulnerable groups, including pregnant women, fetuses, and children, that may lead to diseases linked to the toxicants' target organs. Among chemical contaminants, methylmercury (MeHg), present in aquatic food, is one of the most harmful to the developing nervous system depending on time and level of exposure. Moreover, certain man-made PFAS, such as PFOS and PFOA, used in commercial and industrial products including liquid repellants for paper, packaging, textile, leather, and carpets, are developmental neurotoxicants. There is vast knowledge about the detrimental neurotoxic effects induced by high levels of exposure to these chemicals. Less is known about the consequences that low-level exposures may have on neurodevelopment, although an increasing number of studies link neurotoxic chemical exposures to neurodevelopmental disorders. Still, the mechanisms of toxicity are not identified. Here we review in vitro mechanistic studies using neural stem cells (NSCs) from rodents and humans to dissect the cellular and molecular processes changed by exposure to environmentally relevant levels of MeHg or PFOS/PFOA. All studies show that even low concentrations dysregulate critical neurodevelopmental steps supporting the idea that neurotoxic chemicals may play a role in the onset of neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Otsuka S, Kawamura M, Fujino S, Nakamura F, Arai D, Fusetani N, Nakao Y. Coronarin D, a Metabolite from the Wild Turmeric, Curcuma aromatica, Promotes the Differentiation of Neural Stem Cells into Astrocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3300-3309. [PMID: 35245031 PMCID: PMC8931754 DOI: 10.1021/acs.jafc.2c00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/03/2023]
Abstract
Plants in the genus Curcuma have been widely used as traditional medicines in Asian countries. These plants contain bioactive compounds with neuroprotective properties or activities that increase neural stem cells (NSCs) and neurons. However, bioactive components in Curcuma that promote the differentiation of NSCs into astrocytes have not yet been reported. Here, the effects of Curcuma extracts on the in vitro differentiation of embryonic stem-cell-derived NSCs were evaluated. The extract of the wild turmeric, Curcuma aromatica, strongly promoted the differentiation of NSCs into astrocytes. Bioassay-guided isolation yielded coronarins C (1) and D (2), as well as (E)-labda-8(17),12-diene-15,16-dial (3) as the bioactive compounds. Coronarin D (2) markedly promoted the differentiation of NSCs into astrocytes up to approximately 4 times (3.64 ± 0.48) and increased the expression level of GFAP at the mRNA and protein level, while compounds 1 and 3 exhibited only weak effects, suggesting that the 15-hydroxy-Δ12-γ-lactone moiety is important for bioactivity. Moreover, compound 2 increased the number of pSTAT3-positive cells, suggesting that compound 2 promoted astrocytic differentiation through JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Satoshi Otsuka
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research
Institute for Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Midori Kawamura
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shutaro Fujino
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Fumiaki Nakamura
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daisuke Arai
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Nobuhiro Fusetani
- Research
Institute for Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Fisheries
and Oceans Hakodate, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Yoichi Nakao
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research
Institute for Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Diana Neely M, Xie S, Prince LM, Kim H, Tukker AM, Aschner M, Thimmapuram J, Bowman AB. Single cell RNA sequencing detects persistent cell type- and methylmercury exposure paradigm-specific effects in a human cortical neurodevelopmental model. Food Chem Toxicol 2021; 154:112288. [PMID: 34089799 DOI: 10.1016/j.fct.2021.112288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
The developing human brain is uniquely vulnerable to methylmercury (MeHg) resulting in lasting effects especially in developing cortical structures. Here we assess by single-cell RNA sequencing (scRNAseq) persistent effects of developmental MeHg exposure in a differentiating cortical human-induced pluripotent stem cell (hiPSC) model which we exposed to in vivo relevant and non-cytotoxic MeHg (0.1 and 1.0 μM) concentrations. The cultures were exposed continuously for 6 days either once only during days 4-10, a stage representative of neural epithelial- and radial glia cells, or twice on days 4-10 and days 14-20, a somewhat later stage which includes intermediate precursors and early postmitotic neurons. After the completion of MeHg exposure the cultures were differentiated further until day 38 and then assessed for persistent MeHg-induced effects by scRNAseq. We report subtle, but significant changes in the population size of different cortical cell types/stages and cell cycle. We also observe MeHg-dependent differential gene expression and altered biological processes as determined by Gene Ontology analysis. Our data demonstrate that MeHg results in changes in gene expression in human developing cortical neurons that manifest well after cessation of exposure and that these changes are cell type-, developmental stage-, and exposure paradigm-specific.
Collapse
Affiliation(s)
- M Diana Neely
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Anke M Tukker
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Dept of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Aaron B Bowman
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
8
|
de Leeuw VC, Pennings JLA, Hessel EVS, Piersma AH. Exploring the biological domain of the neural embryonic stem cell test (ESTn): Morphogenetic regulators, Hox genes and cell types, and their usefulness as biomarkers for embryotoxicity screening. Toxicology 2021; 454:152735. [PMID: 33636252 DOI: 10.1016/j.tox.2021.152735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
Animal-free assessment of compound-induced developmental neurotoxicity will most likely be based on batteries of multiple in vitro tests. The optimal battery is built by combining tests with complementary biological domains that together ideally cover all relevant toxicity pathways. Thus, biological domain definition, i.e. which biological processes and cell types are represented, is an important assay characteristic for determining the place of assays in testing strategies. The murine neural embryonic stem cell test (ESTn) is employed to predict the developmental neurotoxicity of compounds. The aim of this study was to explore the biological domain of ESTn according to three groups of biomarker genes of early (neuro)development: morphogenetic regulators, Hox genes and cell type markers for the ectodermal and neural lineages. These biomarker groups were selected based on their crucial regulatory role in (neuro)development. Analysis of these genes in a series of previously generated whole transcriptome datasets of ESTn showed that at day 7 in culture cell differentiation resembled hindbrain/branchial/thoracic development between E6.5-E12.5 in vivo, with subsequent development into a mixed cell culture containing different neural subtypes, astrocytes and oligodendrocytes by day 13. In addition, the selected biomarkers showed common and distinct responses to compound exposure. Monitoring the biological domain of ESTn through gene expression patterns of morphogenetic regulators, Hox genes and cell type markers proved instrumental in providing mechanistic understanding of compound effects on neural differentiation in ESTn, and can aid in positioning of the test in a battery of complementary in vitro tests in integrated approaches to testing and assessment.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
de Moraes D, Paiva BVB, Cury SS, Ludwig RG, Junior JPA, Mori MADS, Carvalho RF. Prediction of SARS-CoV Interaction with Host Proteins during Lung Aging Reveals a Potential Role for TRIB3 in COVID-19. Aging Dis 2021; 12:42-49. [PMID: 33532126 PMCID: PMC7801268 DOI: 10.14336/ad.2020.1112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
COVID-19 is prevalent in the elderly. Old individuals are more likely to develop pneumonia and respiratory failure due to alveolar damage, suggesting that lung senescence may increase the susceptibility to SARS-CoV-2 infection and replication. Considering that human coronavirus (HCoVs; SARS-CoV-2 and SARS-CoV) require host cellular factors for infection and replication, we analyzed Genotype-Tissue Expression (GTEx) data to test whether lung aging is associated with transcriptional changes in human protein-coding genes that potentially interact with these viruses. We found decreased expression of the gene tribbles homolog 3 (TRIB3) during aging in male individuals, and its protein was predicted to interact with HCoVs nucleocapsid protein and RNA-dependent RNA polymerase. Using publicly available lung single-cell data, we found TRIB3 expressed mainly in alveolar epithelial cells that express SARS-CoV-2 receptor ACE2. Functional enrichment analysis of age-related genes, in common with SARS-CoV-induced perturbations, revealed genes associated with the mitotic cell cycle and surfactant metabolism. Given that TRIB3 was previously reported to decrease virus infection and replication, the decreased expression of TRIB3 in aged lungs may help explain why older male patients are related to more severe cases of the COVID-19. Thus, drugs that stimulate TRIB3 expression should be evaluated as a potential therapy for the disease.
Collapse
Affiliation(s)
- Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Brunno Vivone Buquete Paiva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
- Faculty of Medicine, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Raissa Guimarães Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - João Pessoa Araújo Junior
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Marcelo Alves da Silva Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
10
|
de Leeuw VC, van Nieuwland M, Bokkers BGH, Piersma AH. Culture Conditions Affect Chemical-Induced Developmental Toxicity In Vitro: The Case of Folic Acid, Methionine and Methotrexate in the Neural Embryonic Stem Cell Test. Altern Lab Anim 2020; 48:173-183. [PMID: 33034509 DOI: 10.1177/0261192920961963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro tests are increasingly applied in chemical hazard assessment. Basic culture conditions may affect the outcome of in vitro tests and should be optimised to reduce false predictions. The neural embryonic stem cell test (ESTn) can predict early neurodevelopmental effects of chemicals, as it mimics the differentiation of stem cells towards the neuroectodermal lineage. Normal early neural differentiation depends crucially on folic acid (FA) and methionine (MET), both elements of the one-carbon (1C) cycle. The aim of this study was to assess the concentration-dependent influence of FA and MET on neural differentiation in the ESTn, and its consequences for assay sensitivity to methotrexate (MTX), a compound that interferes with the 1C cycle. Neural differentiation was inhibited below 0.007 mM and above 0.22 mM FA, while both stem cell viability (< 0.097 mM, > 1.52 mM) and neural differentiation (< 0.181 mM, > 1.35 mM) were affected when changing MET concentrations. A 10-day exposure to 13 nM MTX inhibited neural differentiation, especially in FA- and MET-deficient conditions. However, a 24-hour exposure to 39 nM MTX decreased neural cell and neural crest cell differentiation markers only when the concentration of FA in the medium was three times the standard concentration, which was expected to have a protective effect against MTX. These results show the importance of nutrient concentrations, exposure scenarios and timing of read-outs for cell differentiation and compound sensitivity in the ESTn. Caution should be taken when interpreting results from a single in vitro test, especially when extrapolating to effects on complex morphogenetic processes, like neural tube development.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Marieke van Nieuwland
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Radboudumc, Medical Faculty, Nijmegen, the Netherlands
| | - Bas G H Bokkers
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Mennen RH, de Leeuw VC, Piersma AH. Oxygen tension influences embryonic stem cell maintenance and has lineage specific effects on neural and cardiac differentiation. Differentiation 2020; 115:1-10. [PMID: 32738735 DOI: 10.1016/j.diff.2020.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
The importance of oxygen tension in in vitro cultures and its effect on embryonic stem cell (ESC) differentiation has been widely acknowledged. Research has mainly focussed on ESC maintenance or on one line of differentiation and only few studies have examined the potential relation between oxygen tension during ESC maintenance and differentiation. In this study we investigated the influence of atmospheric (20%) versus physiologic (5%) oxygen tension in ESC cultures and their differentiation within the cardiac and neural embryonic stem cell tests (ESTc, ESTn). Oxygen tension was set at 5% or 20% and cells were kept in these conditions from starting up cell culture until use for differentiation. Under these oxygen tensions, ESC culture showed no differences in proliferation and gene and protein expression levels. Differentiation was either performed in the same or in the alternative oxygen tension compared to ESC culture creating four different experimental conditions. Cardiac differentiation in 5% instead of 20% oxygen resulted in reduced development of spontaneously beating cardiomyocytes and lower expression of cardiac markers Nkx2.5, Myh6 and MF20 (myosin), regardless whether ESC had been cultured in 5% or 20% oxygen tension. As compared to the control (20% oxygen during stem cell maintenance and differentiation), neural differentiation in 5% oxygen with ESC cultured in 20% oxygen led to more cardiac and neural crest cell differentiation. The opposite experimental condition of neural differentiation in 20% oxygen with ESC cultured in 5% oxygen resulted in more glial differentiation. ESC that were maintained and differentiated in 5% oxygen showed an increase in neural crest and oligodendrocytes as compared to 20% oxygen during stem cell maintenance and differentiation. This study showed major effects on ESC differentiation in ESTc and ESTn of oxygen tension, which is an important variable to consider when designing and developing a stem cell-based in vitro system.
Collapse
Affiliation(s)
- Regina H Mennen
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Victoria C de Leeuw
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Oliveira CS, Segatto ALA, Nogara PA, Piccoli BC, Loreto ÉLS, Aschner M, Rocha JBT. Transcriptomic and Proteomic Tools in the Study of Hg Toxicity: What Is Missing? Front Genet 2020; 11:425. [PMID: 32431728 PMCID: PMC7215068 DOI: 10.3389/fgene.2020.00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Mercury is a hazardous substance that has unique neurodevelopmental toxic effects in humans. However, the precise sequence of molecular events that culminate in Hg-induced neuropathology is still unknown. Though the omics studies have been generating an enormous amount of new data about Hg toxicity, our ability to interpret such a large quantity of information is still limited. In this opinion article, we will reinforce the necessity of new high throughput and accurate analytical proteomic methodologies, especially, thiol and selenol-proteome. Overall, we posit that improvements in thiol- and selenol-proteomic analyses will be pivotal in identifying the primary cellular targets of Hg. However, a better understanding of the complex cascades and molecular pathways involved in its toxicity will require extensive complementary studies in more complex systems.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Programa Pós-Graduação Stricto Sensu em Biotecnologia Aplicada a Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ana L. A. Segatto
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Pablo A. Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Bruna C. Piccoli
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Élgion L. S. Loreto
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
13
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Williams TA, Bernier NJ. Corticotropin-releasing factor protects against ammonia neurotoxicity in isolated larval zebrafish brains. J Exp Biol 2020; 223:jeb211540. [PMID: 31988165 DOI: 10.1242/jeb.211540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 08/26/2023]
Abstract
The physiological roles of corticotropin-releasing factor (CRF) have recently been extended to cytoprotection. Here, to determine whether CRF is neuroprotective in fish, the effects of CRF against high environmental ammonia (HEA)-mediated neurogenic impairment and cell death were investigated in zebrafish. In vivo, exposure of 1 day post-fertilization (dpf) embryos to HEA only reduced the expression of the determined neuron marker neurod1 In contrast, in 5 dpf larvae, HEA increased the expression of nes and sox2, neural progenitor cell markers, and reduced the expression of neurog1, gfap and mbpa, proneuronal cell, radial glia and oligodendrocyte markers, respectively, and neurod1 The N-methyl-d-aspartate (NMDA) receptor inhibitor MK801 rescued the HEA-induced reduction in neurod1 in 5 dpf larvae but did not affect the HEA-induced transcriptional changes in other neural cell types, suggesting that hyperactivation of NMDA receptors specifically contributes to the deleterious effects of HEA in determined neurons. As observed in vivo, HEA exposure elicited marked changes in the expression of cell type-specific markers in isolated 5 dpf larval brains. The addition of CRF reversed the in vitro effects of HEA on neurod1 expression and prevented an HEA-induced increase in cell death. Finally, the protective effects of CRF against HEA-mediated neurogenic impairment and cell death were prevented by the CRF type 1 receptor selective antagonist antalarmin. Together, these results provide novel evidence that HEA has developmental time- and cell type-specific neurotoxic effects, that NMDA receptor hyperactivation contributes to HEA-mediated impairment of determined neurons, and that CRF has neuroprotective properties in the larval zebrafish brain.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
15
|
Differential effects of fluoxetine and venlafaxine in the neural embryonic stem cell test (ESTn) revealed by a cell lineage map. Neurotoxicology 2019; 76:1-9. [PMID: 31593710 DOI: 10.1016/j.neuro.2019.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 01/21/2023]
Abstract
There is a need for in vitro tests for the evaluation of chemicals and pharmaceuticals that may cause developmental neurotoxicity (DNT) in humans. The neural embryonic stem cell test (ESTn) is such an in vitro test that mimics early neural differentiation. The aim of this study was to define the biological domain of ESTn based on the expression of selective markers for certain cell types, and to investigate the effects of two antidepressants, fluoxetine (FLX) and venlafaxine (VNX), on neural differentiation. A cell lineage map was made to track neural differentiation and the effects of FLX and VNX in ESTn. Whole transcriptome analysis revealed differentiation from an embryonic stem cell population to a mixed culture of neural progenitors, neurons and neural crest cells 7 days into differentiation. Maturing neurons, astrocytes and oligodendrocytes were present after 13 days. Exposure to FLX or VNX led to different expression patterns between compounds at both time points. On day 7, both compounds upregulated most of the stem cell- and immature neuron markers, but had distinct effects on neural subtype markers. FLX downregulated glycinergic markers and upregulated cholinergic markers, while VNX had the opposite effect. On day 13, FLX and VNX affected their specific therapeutic targets, represented by mainly serotonergic markers by FLX- and dopaminergic and noradrenergic markers in VNX-exposed cultures, as well as oligodendrocyte and glycinergic neuron markers. This proof of concept study shows the added value of assessing DNT in ESTn through a cell lineage map and gives mechanistic insight in the potential neurodevelopmental effects of FLX and VNX. More compounds should be tested to further evaluate the use of the cell lineage map.
Collapse
|
16
|
Kühne BA, Puig T, Ruiz-Martínez S, Crous-Masó J, Planas M, Feliu L, Cano A, García ML, Fritsche E, Llobet JM, Gómez-Catalán J, Barenys M. Comparison of migration disturbance potency of epigallocatechin gallate (EGCG) synthetic analogs and EGCG PEGylated PLGA nanoparticles in rat neurospheres. Food Chem Toxicol 2019; 123:195-204. [DOI: 10.1016/j.fct.2018.10.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
|
17
|
de Leeuw VC, Hessel EVS, Piersma AH. Look-alikes may not act alike: Gene expression regulation and cell-type-specific responses of three valproic acid analogues in the neural embryonic stem cell test (ESTn). Toxicol Lett 2018; 303:28-37. [PMID: 30578912 DOI: 10.1016/j.toxlet.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/20/2022]
Abstract
In vitro assays to assess developmental neurotoxicity of chemicals are highly desirable. The murine neural embryonic stem cell test (ESTn) can mimic parts of early differentiation of embryonic brain and may therefore be useful for this purpose. The aim of this study was to investigate whether this test is able to rank the toxic potencies of three valproic acid analogues and to study their mode of action by investigating their individual effects on four cell types: stem cells, neurons, astrocytes and neural crest cells. Using immunocytochemical read-outs and qPCR for cell type-specific genes, the effects of valproic acid (VPA), 2-ethylhexanoic acid (EHA) and 2-ethyl-4-methylpentanoic (EMPA) were assessed. VPA and EHA but not EMPA downregulated cell type-specific differentiation makers and upregulated stem cell related markers (Fut4, Cdh1) at different time points during differentiation. Expression of Gfap, a marker for astrocytes, was dramatically downregulated by VPA and EHA, but not by EMPA. This finding was verified using immunostainings. Based on the number and extent of genes regulated by the three compounds, relative potencies were determined as VPA > EHA > EMPA, which is consistent with in vivo developmental toxicity potency ranking of these compounds. Thus, ESTn using a combination of morphology, gene and protein expression readouts, may provide a medium-throughput system for monitoring the effects of compounds on differentiation of cell types in early brain development.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
18
|
Haider S, Black MB, Parks BB, Foley B, Wetmore BA, Andersen ME, Clewell RA, Mansouri K, McMullen PD. A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation. Front Pharmacol 2018; 9:1072. [PMID: 30333746 PMCID: PMC6176017 DOI: 10.3389/fphar.2018.01072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/05/2018] [Indexed: 01/05/2023] Open
Abstract
Efficient high-throughput transcriptomics (HTT) tools promise inexpensive, rapid assessment of possible biological consequences of human and environmental exposures to tens of thousands of chemicals in commerce. HTT systems have used relatively small sets of gene expression measurements coupled with mathematical prediction methods to estimate genome-wide gene expression and are often trained and validated using pharmaceutical compounds. It is unclear whether these training sets are suitable for general toxicity testing applications and the more diverse chemical space represented by commercial chemicals and environmental contaminants. In this work, we built predictive computational models that inferred whole genome transcriptional profiles from a smaller sample of surrogate genes. The model was trained and validated using a large scale toxicogenomics database with gene expression data from exposure to heterogeneous chemicals from a wide range of classes (the Open TG-GATEs data base). The method of predictor selection was designed to allow high fidelity gene prediction from any pre-existing gene expression data set, regardless of animal species or data measurement platform. Predictive qualitative models were developed with this TG-GATES data that contained gene expression data of human primary hepatocytes with over 941 samples covering 158 compounds. A sequential forward search-based greedy algorithm, combining different fitting approaches and machine learning techniques, was used to find an optimal set of surrogate genes that predicted differential expression changes of the remaining genome. We then used pathway enrichment of up-regulated and down-regulated genes to assess the ability of a limited gene set to determine relevant patterns of tissue response. In addition, we compared prediction performance using the surrogate genes found from our greedy algorithm (referred to as the SV2000) with the landmark genes provided by existing technologies such as L1000 (Genometry) and S1500 (Tox21), finding better predictive performance for the SV2000. The ability of these predictive algorithms to predict pathway level responses is a positive step toward incorporating mode of action (MOA) analysis into the high throughput prioritization and testing of the large number of chemicals in need of safety evaluation.
Collapse
Affiliation(s)
- Saad Haider
- ScitoVation, Research Triangle Park, NC, United States
| | | | | | - Briana Foley
- ScitoVation, Research Triangle Park, NC, United States
| | | | | | | | | | | |
Collapse
|
19
|
Sub-Nanomolar Methylmercury Exposure Promotes Premature Differentiation of Murine Embryonic Neural Precursor at the Expense of Their Proliferation. TOXICS 2018; 6:toxics6040061. [PMID: 30308979 PMCID: PMC6315723 DOI: 10.3390/toxics6040061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental pollutant that is known to be neurotoxic, particularly during fetal development. However, the mechanisms responsible for MeHg-induced changes in adult neuronal function, when their exposure occurred primarily during fetal development, are not yet understood. We hypothesized that fetal MeHg exposure could affect neural precursor development leading to long-term neurotoxic effects. Primary cortical precursor cultures obtained from embryonic day 12 were exposed to 0 µM, 0.25 µM, 0.5 µM, 2.5 µM, and 5 µM MeHg for 48 or 72 h. All of the concentrations tested in the study did not affect cell viability. Intriguingly, we observed that cortical precursor exposed to 0.25 µM MeHg showed increased neuronal differentiation, while its proliferation was inhibited. Reduced neuronal differentiation, however, was observed in the higher dose groups. Our results suggest that micromolar MeHg exposure may deplete the pool of neural precursors by increasing premature neuronal differentiation, which can lead to long-term neurological effects in adulthood as opposed to the higher MeHg doses that cause more immediate toxicity during infant development.
Collapse
|
20
|
Attoff K, Gliga A, Lundqvist J, Norinder U, Forsby A. Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation and validation of 30 neural mRNA biomarkers for estimation of developmental neurotoxicity. PLoS One 2017; 12:e0190066. [PMID: 29261810 PMCID: PMC5738075 DOI: 10.1371/journal.pone.0190066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Despite its high relevance, developmental neurotoxicity (DNT) is one of the least studied forms of toxicity. Current guidelines for DNT testing are based on in vivo testing and they require extensive resources. Transcriptomic approaches using relevant in vitro models have been suggested as a useful tool for identifying possible DNT-generating compounds. In this study, we performed whole genome microarray analysis on the murine progenitor cell line C17.2 following 5 and 10 days of differentiation. We identified 30 genes that are strongly associated with neural differentiation. The C17.2 cell line can be differentiated into a co-culture of both neurons and neuroglial cells, giving a more relevant picture of the brain than using neuronal cells alone. Among the most highly upregulated genes were genes involved in neurogenesis (CHRDL1), axonal guidance (BMP4), neuronal connectivity (PLXDC2), axonogenesis (RTN4R) and astrocyte differentiation (S100B). The 30 biomarkers were further validated by exposure to non-cytotoxic concentrations of two DNT-inducing compounds (valproic acid and methylmercury) and one neurotoxic chemical possessing a possible DNT activity (acrylamide). Twenty-eight of the 30 biomarkers were altered by at least one of the neurotoxic substances, proving the importance of these biomarkers during differentiation. These results suggest that gene expression profiling using a predefined set of biomarkers could be used as a sensitive tool for initial DNT screening of chemicals. Using a predefined set of mRNA biomarkers, instead of the whole genome, makes this model affordable and high-throughput. The use of such models could help speed up the initial screening of substances, possibly indicating alerts that need to be further studied in more sophisticated models.
Collapse
Affiliation(s)
- Kristina Attoff
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Lundqvist
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Anna Forsby
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| |
Collapse
|
21
|
Piersma AH, Hessel EV, Staal YC. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod Toxicol 2017; 72:53-61. [PMID: 28591664 DOI: 10.1016/j.reprotox.2017.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
This review explores the usefulness retinoic acid (RA) related physiological factors as possible biomarkers of embryotoxicity. RA is involved in the morphogenesis of the early embryo as well as in the development and maturation of a wide variety of organ anlagen. The region-specific homeostasis of RA in the embryo is in many ways the driving force determining developmental cell proliferation versus differentiation. As a consequence, RA concentrations are carefully controlled in time and space in the developing embryo. RA deficiency and overdosing both result in characteristic patterns of malformations that may involve many different organ systems. The central role of RA in embryo development provides us with a set of sensitive biomarkers that may be employed in developmental toxicity testing. This includes the synthesizing and metabolizing enzymes of RA, but also a myriad of related morphogenetic factors and their genes, of which the expression may be affected by changes in RA balance. Several examples of embryotoxicants interfering with the homeostasis of RA and related parameters have been described. A preliminary adverse outcome pathway framework for RA mediated malformations has been published. Expansion of this framework and its application in developmental toxicity testing may allow the detection of a large variety of embryotoxicants with diverse modes of action. RA homeostasis therefore provides a promising set of molecular tools that may be employed in the advancement of mode of action driven animal-free developmental toxicity testing.
Collapse
Affiliation(s)
- Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Ellen V Hessel
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Yvonne C Staal
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
22
|
Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:119-154. [PMID: 28379072 PMCID: PMC6317349 DOI: 10.1080/10937404.2017.1289834] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) toxicity continues to represent a global health concern. Given that human populations are mostly exposed to low chronic levels of mercurial compounds (methylmercury through fish, mercury vapor from dental amalgams, and ethylmercury from vaccines), the need for more sensitive and refined tools to assess the effects and/or susceptibility to adverse metal-mediated health risks remains. Traditional biomarkers, such as hair or blood Hg levels, are practical and provide a reliable measure of exposure, but given intra-population variability, it is difficult to establish accurate cause-effect relationships. It is therefore important to identify and validate biomarkers that are predictive of early adverse effects prior to adverse health outcomes becoming irreversible. This review describes the predominant biomarkers used by toxicologists and epidemiologists to evaluate exposure, effect and susceptibility to Hg compounds, weighing on their advantages and disadvantages. Most importantly, and in light of recent findings on the molecular mechanisms underlying Hg-mediated toxicity, potential novel biomarkers that might be predictive of toxic effect are presented, and the applicability of these parameters in risk assessment is examined.
Collapse
Affiliation(s)
- Vasco Branco
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| | - Sam Caito
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Marcelo Farina
- c Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - João Teixeira da Rocha
- d Departamento Bioquímica e Biologia Molecular , Universidade Federal de Santa Maria , Santa Maria , RS , Brazil
| | - Michael Aschner
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Cristina Carvalho
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
23
|
Chen X, Han T, Fisher JE, Harrouk W, Tassinari MS, Merry GE, Sloper D, Fuscoe JC, Hansen DK, Inselman AL. Transcriptomics analysis of early embryonic stem cell differentiation under osteoblast culture conditions: Applications for detection of developmental toxicity. Reprod Toxicol 2017; 69:75-83. [PMID: 28189605 DOI: 10.1016/j.reprotox.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/30/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Abstract
The mouse embryonic stem cell test (mEST) is a promising in vitro assay for predicting developmental toxicity. In the current study, early differentiation of D3 mouse embryonic stem cells (mESCs) under osteoblast culture conditions and embryotoxicity of cadmium sulfate were examined. D3 mESCs were exposed to cadmium sulfate for 24, 48 or 72h, and whole genome transcriptional profiles were determined. The results indicate a track of differentiation was identified as mESCs differentiate. Biological processes that were associated with differentiation related genes included embryonic development and, specifically, skeletal system development. Cadmium sulfate inhibited mESC differentiation at all three time points. Functional pathway analysis indicated biological pathways affected included those related to skeletal development, renal and reproductive function. In summary, our results suggest that transcriptional profiles are a sensitive indicator of early mESC differentiation. Transcriptomics may improve the predictivity of the mEST by suggesting possible modes of action for tested chemicals.
Collapse
Affiliation(s)
- Xinrong Chen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - J Edward Fisher
- Center for Drug Evaluation and Research, Food and Drug Administration, United States.
| | - Wafa Harrouk
- Center for Drug Evaluation and Research, Food and Drug Administration, United States.
| | - Melissa S Tassinari
- Center for Drug Evaluation and Research, Food and Drug Administration, United States.
| | - Gwenn E Merry
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Deborah K Hansen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Amy L Inselman
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| |
Collapse
|
24
|
Farina M, Aschner M. Methylmercury-Induced Neurotoxicity: Focus on Pro-oxidative Events and Related Consequences. ADVANCES IN NEUROBIOLOGY 2017; 18:267-286. [DOI: 10.1007/978-3-319-60189-2_13] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Antunes Dos Santos A, Appel Hort M, Culbreth M, López-Granero C, Farina M, Rocha JBT, Aschner M. Methylmercury and brain development: A review of recent literature. J Trace Elem Med Biol 2016; 38:99-107. [PMID: 26987277 PMCID: PMC5011031 DOI: 10.1016/j.jtemb.2016.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/02/2016] [Indexed: 02/02/2023]
Abstract
Methylmercury (MeHg) is a potent environmental pollutant, which elicits significant toxicity in humans. The central nervous system (CNS) is the primary target of toxicity, and is particularly vulnerable during development. Maternal exposure to MeHg via consumption of fish and seafood can have irreversible effects on the neurobehavioral development of children, even in the absence of symptoms in the mother. It is well documented that developmental MeHg exposure may lead to neurological alterations, including cognitive and motor dysfunction. The neurotoxic effects of MeHg on the developing brain have been extensively studied. The mechanism of toxicity, however, is not fully understood. No single process can explain the multitude of effects observed in MeHg-induced neurotoxicity. This review summarizes the most current knowledge on the effects of MeHg during nervous system development considering both, in vitro and in vivo experimental models. Considerable attention was directed towards the role of glutamate and calcium dyshomeostasis, mitochondrial dysfunction, as well as the effects of MeHg on cytoskeletal components/regulators.
Collapse
Affiliation(s)
| | - Mariana Appel Hort
- Institute of Biological Sciences, Federal University of Rio Grande, Campus Carreiros, Rio Grande do Sul, Brazil
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Caridad López-Granero
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Joao B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
26
|
McMullen PD, Pendse S, Adeleye Y, Carmichael PL, Andersen ME, Clewell RA. Using Transcriptomics to Evaluate Thresholds in Genotoxicity Dose–Response. TOXICOGENOMICS IN PREDICTIVE CARCINOGENICITY 2016. [DOI: 10.1039/9781782624059-00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several genotoxic chemicals have been reported to produce threshold-shaped dose–response curves for mutation and genotoxicity assays, both in vivo and in vitro, challenging the current default practice for risk assessment of genotoxic chemicals, which assumes a linear dose–response below the lowest tested dose. Statistical methods cannot determine whether a biological threshold exists with sufficient confidence to overturn this assumption of linearity. Indeed, to truly define the shape of the dose–response curves, we must look to the underlying biology and develop targeted experiments to identify and measure the key processes governing the response of the cell to DNA damage. This chapter describes a series of studies aimed at defining the key transcriptional responses. Two approaches were taken to evaluate transcriptional responses preventing micronucleus induction: (1) comparison of gene signatures for several prototype compounds at a single chemical dose that led to a similar activation of the p53-DNA damage pathway (i.e. 1.5-fold increase in total p53); and (2) evaluation of a subset of chemicals with in-depth dose–response studies. The goal of these efforts was to determine the transcriptional pathways responsible for maintaining homeostasis at low levels of DNA damage, i.e., the biological underpinning of threshold-shaped dose–response curves for mutagenicity.
Collapse
Affiliation(s)
| | - Salil Pendse
- The Hamner Institutes for Health Sciences Research Triangle Park NC USA
| | | | | | | | | |
Collapse
|
27
|
Colaianna M, Ilmjärv S, Peterson H, Kern I, Julien S, Baquié M, Pallocca G, Bosgra S, Sachinidis A, Hengstler JG, Leist M, Krause KH. Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay. Arch Toxicol 2016; 91:365-391. [PMID: 27015953 PMCID: PMC5225183 DOI: 10.1007/s00204-016-1690-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
Identification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell line CGR8 (ESCs). The test system uses ESCs at two differentiation stages: undifferentiated ESCs and ESC-derived neurons. Under each condition, concentration–response curves were obtained for three parameters: activity of the tubulin alpha 1 promoter (typically activated in early neurons), activity of the elongation factor 1 alpha promoter (active in all cells), and total DNA content (proportional to the number of surviving cells). We tested 37 compounds from the ESNATS test battery, which includes polypeptide hormones, environmental pollutants (including methylmercury), and clinically used drugs (including valproic acid and tyrosine kinase inhibitors). Different classes of compounds showed distinct concentration–response profiles. Plotting of the lowest observed adverse effect concentrations (LOAEL) of the neuronal promoter activity against the general promoter activity or against cytotoxicity, allowed the differentiation between neurotoxic/DNT substances and non-neurotoxic controls. Reporter activity responses in neurons were more susceptible to neurotoxic compounds than the reporter activities in ESCs from which they were derived. To relate the effective/toxic concentrations found in our study to relevant in vivo concentrations, we used a reverse pharmacokinetic modeling approach for three exemplary compounds (teriflunomide, geldanamycin, abiraterone). The dual luminescence reporter assay described in this study allows high-throughput, and should be particularly useful for the prioritization of the neurotoxic potential of a large number of compounds.
Collapse
Affiliation(s)
- Marilena Colaianna
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Ilse Kern
- Department of Pediatrics, Geneva University Hospital, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Stephanie Julien
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Giorgia Pallocca
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Sieto Bosgra
- TNO, Zeist, The Netherlands.,BioMarin Pharmaceutical Inc., Leiden, The Netherlands
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. .,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
28
|
Pallocca G, Grinberg M, Henry M, Frickey T, Hengstler JG, Waldmann T, Sachinidis A, Rahnenführer J, Leist M. Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol 2015; 90:159-80. [PMID: 26705709 PMCID: PMC4710658 DOI: 10.1007/s00204-015-1658-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023]
Abstract
The in vitro test battery of the European research consortium ESNATS (‘novel stem cell-based test systems’) has been used to screen for potential human developmental toxicants. As part of this effort, the migration of neural crest (MINC) assay has been used to evaluate chemical effects on neural crest function. It identified some drug-like compounds in addition to known environmental toxicants. The hits included the HSP90 inhibitor geldanamycin, the chemotherapeutic arsenic trioxide, the flame-retardant PBDE-99, the pesticide triadimefon and the histone deacetylase inhibitors valproic acid and trichostatin A. Transcriptome changes triggered by these substances in human neural crest cells were recorded and analysed here to answer three questions: (1) can toxicants be individually identified based on their transcript profile; (2) how can the toxicity pattern reflected by transcript changes be compacted/dimensionality-reduced for practical regulatory use; (3) how can a reduced set of biomarkers be selected for large-scale follow-up? Transcript profiling allowed clear separation of different toxicants and the identification of toxicant types in a blinded test study. We also developed a diagrammatic system to visualize and compare toxicity patterns of a group of chemicals by giving a quantitative overview of altered superordinate biological processes (e.g. activation of KEGG pathways or overrepresentation of gene ontology terms). The transcript data were mined for potential markers of toxicity, and 39 transcripts were selected to either indicate general developmental toxicity or distinguish compounds with different modes-of-action in read-across. In summary, we found inclusion of transcriptome data to largely increase the information from the MINC phenotypic test.
Collapse
Affiliation(s)
- Giorgia Pallocca
- Department of In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457, Constance, Germany.
| | - Marianna Grinberg
- Department of Statistics, TU Dortmund University, 44139, Dortmund, Germany
| | - Margit Henry
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - Tancred Frickey
- Department of Bioinformatics, University of Konstanz, 78457, Constance, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Tanja Waldmann
- Department of In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457, Constance, Germany
| | - Agapios Sachinidis
- Department of Bioinformatics, University of Konstanz, 78457, Constance, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44139, Dortmund, Germany
| | - Marcel Leist
- Department of In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457, Constance, Germany
| |
Collapse
|
29
|
Ando T, Kato R, Honda H. Differential variability and correlation of gene expression identifies key genes involved in neuronal differentiation. BMC SYSTEMS BIOLOGY 2015; 9:82. [PMID: 26586157 PMCID: PMC4653947 DOI: 10.1186/s12918-015-0231-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/10/2015] [Indexed: 01/29/2023]
Abstract
Background Understanding the dynamics of stem cell differentiation processes at the molecular level is a central challenge in developmental biology and regenerative medicine. Although the dynamic behaviors of differentiation regulators have been partially characterized, the architecture regulating the underlying molecular systems remains unclear. Result System-level analysis of transcriptional data was performed to characterize the dynamics of molecular networks in neural differentiation of stem cells. Expression of a network module of genes tightly co-expressed in mouse embryonic stem (ES) cells fluctuated greatly among cell populations before differentiation, but became stable following neural differentiation. During the neural differentiation process, genes exhibiting both differential variance and differential correlation between undifferentiated and differentiating states were related to developmental functions such as body axis development, neuronal movement, and transcriptional regulation. Furthermore, these genes were genetically associated with neuronal differentiation, providing support for the idea they are not only differentiation markers but could also play important roles in neural differentiation. Comparisons with transcriptional data from human induced pluripotent stem (iPS) cells revealed that the system of genes dynamically regulated during neural differentiation is conserved between mouse and human. Conclusions The results of this study provide a systematic analytical framework for identifying key genes involved in neural differentiation by detecting their dynamical behaviors, as well as a basis for understanding the dynamic molecular mechanisms underlying the processes of neural differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0231-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatsuya Ando
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan.
| | - Hiroyuki Honda
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
30
|
Fujimura M, Usuki F. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats. Toxicol Appl Pharmacol 2015; 288:19-25. [DOI: 10.1016/j.taap.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022]
|
31
|
Schulpen SHW, Pennings JLA, Piersma AH. Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci 2015; 146:311-20. [PMID: 25979313 DOI: 10.1093/toxsci/kfv094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Differentiating pluripotent stem cells in vitro have proven useful for the study of developmental toxicity. Here, we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC)-based neurodevelopmental toxicity test (hESTn). During neural differentiation the cells were exposed, for either 1 or 7 days, to noncytotoxic concentration ranges of valproic acid (VPA) or carbamazepine (CBZ), antiepileptic drugs known to cause neurodevelopmental toxicity. The effects observed on gene expression and correlated processes and pathways were in line with processes associated with neural development and pharmaceutical mode of action. In general, VPA showed a higher number of genes and molecular pathways affected than CBZ. The response kinetics differed between both compounds, with CBZ showing higher response magnitudes at day 1, versus VPA at day 7. With this study, we demonstrated the potential and biological relevance of the application of this hESC-based differentiation assay in combination with transcriptomics, as a tool to study neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Sjors H W Schulpen
- *Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands and Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen L A Pennings
- *Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands and
| | - Aldert H Piersma
- *Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands and Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Tonk ECM, Pennings JLA, Piersma AH. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod Toxicol 2014; 55:104-13. [PMID: 25461899 DOI: 10.1016/j.reprotox.2014.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds.
Collapse
Affiliation(s)
- Elisa C M Tonk
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
33
|
van Dartel DA, Schulpen SH, Theunissen PT, Bunschoten A, Piersma AH, Keijer J. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification. Toxicology 2014; 324:76-87. [DOI: 10.1016/j.tox.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023]
|
34
|
Smirnova L, Block K, Sittka A, Oelgeschläger M, Seiler AEM, Luch A. MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One 2014; 9:e98892. [PMID: 24896083 PMCID: PMC4045889 DOI: 10.1371/journal.pone.0098892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/08/2014] [Indexed: 01/10/2023] Open
Abstract
Studying chemical disturbances during neural differentiation of murine embryonic stem cells (mESCs) has been established as an alternative in vitro testing approach for the identification of developmental neurotoxicants. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development and ESC differentiation and specification. Thus, neural differentiation of mESCs in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed changes in miRNome and transcriptome during neural differentiation of mESCs exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neurally differentiating mESCs upon VPA treatment. Based on miRNA profiling we observed that VPA shifts the lineage specification from neural to myogenic differentiation (upregulation of muscle-abundant miRNAs, mir-206, mir-133a and mir-10a, and downregulation of neural-specific mir-124a, mir-128 and mir-137). These findings were confirmed on the mRNA level and via immunochemistry. Particularly, the expression of myogenic regulatory factors (MRFs) as well as muscle-specific genes (Actc1, calponin, myosin light chain, asporin, decorin) were found elevated, while genes involved in neurogenesis (e.g. Otx1, 2, and Zic3, 4, 5) were repressed. These results were specific for valproate treatment and―based on the following two observations―most likely due to the inhibition of histone deacetylase (HDAC) activity: (i) we did not observe any induction of muscle-specific miRNAs in neurally differentiating mESCs exposed to the unrelated developmental neurotoxicant sodium arsenite; and (ii) the expression of muscle-abundant mir-206 and mir-10a was similarly increased in cells exposed to the structurally different HDAC inhibitor trichostatin A (TSA). Based on our results we conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. The observed lineage shift into myogenesis, where miRNAs may play an important role, could be one of the developmental neurotoxic mechanisms of VPA.
Collapse
Affiliation(s)
- Lena Smirnova
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
- * E-mail:
| | - Katharina Block
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Andreas Luch
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
35
|
Waldmann T, Rempel E, Balmer NV, König A, Kolde R, Gaspar JA, Henry M, Hescheler J, Sachinidis A, Rahnenführer J, Hengstler JG, Leist M. Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol 2014; 27:408-20. [PMID: 24383497 PMCID: PMC3958134 DOI: 10.1021/tx400402j] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Information on design principles
governing transcriptome changes
upon transition from safe to hazardous drug concentrations or from
tolerated to cytotoxic drug levels are important for the application
of toxicogenomics data in developmental toxicology. Here, we tested
the effect of eight concentrations of valproic acid (VPA; 25–1000
μM) in an assay that recapitulates the development of human
embryonic stem cells to neuroectoderm. Cells were exposed to the drug
during the entire differentiation process, and the number of differentially
regulated genes increased continuously over the concentration range
from zero to about 3000. We identified overrepresented transcription
factor binding sites (TFBS) as well as superordinate cell biological
processes, and we developed a gene ontology (GO) activation profiler,
as well as a two-dimensional teratogenicity index. Analysis of the
transcriptome data set by the above biostatistical and systems biology
approaches yielded the following insights: (i) tolerated (≤25
μM), deregulated/teratogenic (150–550 μM), and
cytotoxic (≥800 μM) concentrations could be differentiated.
(ii) Biological signatures related to the mode of action of VPA, such
as protein acetylation, developmental changes, and cell migration,
emerged from the teratogenic concentrations range. (iii) Cytotoxicity
was not accompanied by signatures of newly emerging canonical cell
death/stress indicators, but by catabolism and decreased expression
of cell cycle associated genes. (iv) Most, but not all of the GO groups
and TFBS seen at the highest concentrations were already overrepresented
at 350–450 μM. (v) The teratogenicity index reflected
this behavior, and thus differed strongly from cytotoxicity. Our findings
suggest the use of the highest noncytotoxic drug concentration for
gene array toxicogenomics studies, as higher concentrations possibly
yield wrong information on the mode of action, and lower drug levels
result in decreased gene expression changes and thus a reduced power
of the study.
Collapse
Affiliation(s)
- Tanja Waldmann
- Doerenkamp-Zbinden Chair for in Vitro Toxicology and Biomedicine, University of Konstanz , 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Robinson JF, Piersma AH. Toxicogenomic approaches in developmental toxicology testing. Methods Mol Biol 2013; 947:451-73. [PMID: 23138921 DOI: 10.1007/978-1-62703-131-8_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of toxicogenomic applications provides new tools to characterize, classify, and potentially predict teratogens. However, due to the vast number of experimental and statistical procedural steps, toxicogenomic studies are challenging. Here, we guide researchers through the basic framework of conducting toxicogenomic investigations in the field of developmental toxicology, providing examples of biological and technical factors that may influence response and interpretation. Furthermore, we review current, diverse applications of toxicogenomic-based approaches in teratology testing, including exposure-response characterization (dose and duration), chemical classification studies, and cross-model comparisons study designs. This review is intended to guide scientists through the challenging and complex structure of conducting toxicogenomic analyses, while considering the many applications of using toxicogenomics in study designs and the future of these types of "omics" approaches in developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- Laboratory for Health Protection Research-National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | |
Collapse
|
37
|
Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2012; 62:575-94. [PMID: 23266600 DOI: 10.1016/j.neuint.2012.12.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as -SH and -SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
38
|
Theunissen PT, Pennings JLA, van Dartel DAM, Robinson JF, Kleinjans JCS, Piersma AH. Complementary Detection of Embryotoxic Properties of Substances in the Neural and Cardiac Embryonic Stem Cell Tests. Toxicol Sci 2012; 132:118-30. [DOI: 10.1093/toxsci/kfs333] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Bose R, Onishchenko N, Edoff K, Janson Lang AM, Ceccatelli S. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol Sci 2012; 130:383-90. [PMID: 22918959 DOI: 10.1093/toxsci/kfs257] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Methylmercury (MeHg) is an environmental contaminant with recognized neurotoxic effects, particularly to the developing nervous system. In the present study, we show that nanomolar concentrations of MeHg can induce long-lasting effects in neural stem cells (NSCs). We investigated short-term direct and long-term inherited effects of exposure to MeHg (2.5 or 5.0 nM) using primary cultures of rat embryonic cortical NSCs. We found that MeHg had no adverse effect on cell viability but reduced NSC proliferation and altered the expression of cell cycle regulators (p16 and p21) and senescence-associated markers. In addition, we demonstrated a decrease in global DNA methylation in the exposed cells, indicating that epigenetic changes may be involved in the mechanisms underlying the MeHg-induced effects. These changes were observed in cells directly exposed to MeHg (parent cells) and in their daughter cells cultured under MeHg-free conditions. In agreement with our in vitro data, a trend was found for decreased cell proliferation in the subgranular zone in the hippocampi of adult mice exposed to low doses of MeHg during the perinatal period. Interestingly, this impaired proliferation had a measurable impact on the total number of neurons in the hippocampal dentate gyrus. Importantly, this effect could be reversed by chronic antidepressant treatment. Our study provides novel evidence for programming effects induced by MeHg in NSCs and supports the idea that developmental exposure to low levels of MeHg may result in long-term consequences predisposing to neurodevelopmental disorders and/or neurodegeneration.
Collapse
Affiliation(s)
- Raj Bose
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
40
|
Pennings JLA, Theunissen PT, Piersma AH. An optimized gene set for transcriptomics based neurodevelopmental toxicity prediction in the neural embryonic stem cell test. Toxicology 2012; 300:158-67. [PMID: 22760166 DOI: 10.1016/j.tox.2012.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 11/16/2022]
Abstract
The murine neural embryonic stem cell test (ESTn) is an in vitro model for neurodevelopmental toxicity testing. Recent studies have shown that application of transcriptomics analyses in the ESTn is useful for obtaining more accurate predictions as well as mechanistic insights. Gene expression responses due to stem cell neural differentiation versus toxicant exposure could be distinguished using the Principal Component Analysis based differentiation track algorithm. In this study, we performed a de novo analysis on combined raw data (10 compounds, 19 exposures) from three previous transcriptomics studies to identify an optimized gene set for neurodevelopmental toxicity prediction in the ESTn. By evaluating predictions of 200,000 randomly selected gene sets, we identified genes which significantly contributed to the prediction reliability. A set of 100 genes was obtained, predominantly involved in (neural) development. Further stringency restrictions resulted in a set of 29 genes that allowed for 84% prediction accuracy (area under the curve 94%). We anticipate these gene sets will contribute to further improve ESTn transcriptomics studies aimed at compound risk assessment.
Collapse
Affiliation(s)
- Jeroen L A Pennings
- Laboratory for Health Protection Research (GBO), National Institute for Public Health and the Environment, (RIVM), Bilthoven, The Netherlands.
| | | | | |
Collapse
|
41
|
Theunissen PT, Robinson JF, Pennings JLA, van Herwijnen MH, Kleinjans JCS, Piersma AH. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn). Toxicol Appl Pharmacol 2012; 262:330-40. [PMID: 22634333 DOI: 10.1016/j.taap.2012.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/24/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO-BP) were identified after 24h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO-BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO-BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO-BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.
Collapse
Affiliation(s)
- P T Theunissen
- Laboratory for Health Protection Research, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Fretham SJ, Caito S, Martinez-Finley EJ, Aschner M. Mechanisms and Modifiers of Methylmercury-Induced Neurotoxicity. Toxicol Res (Camb) 2012; 1:32-38. [PMID: 27795823 DOI: 10.1039/c2tx20010d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The neurotoxic consequences of methylmercury (MeHg) exposure have long been known, however a complete understanding of the mechanisms underlying this toxicity is elusive. Recent epidemiological and experimental studies have provided many mechanistic insights, particularly into the contribution of genetic and environmental factors that interact with MeHg to modify toxicity. This review will outline cellular processes directly and indirectly affected by MeHg, including oxidative stress, cellular signaling and gene expression, and discuss genetic, environmental and nutritional factors capable of modifying MeHg toxicity.
Collapse
Affiliation(s)
- Stephanie Jb Fretham
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Caito
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ebany J Martinez-Finley
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
43
|
He X, Imanishi S, Sone H, Nagano R, Qin XY, Yoshinaga J, Akanuma H, Yamane J, Fujibuchi W, Ohsako S. Effects of methylmercury exposure on neuronal differentiation of mouse and human embryonic stem cells. Toxicol Lett 2012; 212:1-10. [PMID: 22555245 DOI: 10.1016/j.toxlet.2012.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 12/19/2022]
Abstract
The establishment of more efficient in vitro approaches has been widely acknowledged as a critical need for toxicity testing. In this study, we examined the effects of methylmercury (MeHg), which is a well-known developmental neurotoxicant, in two neuronal differentiation systems of mouse and human embryonic stem cells (mESCs and hESCs, respectively). Embryoid bodies were generated from gathering of mESCs and hESCs using a micro-device and seeded onto ornithine-laminin-coated plates to promote proliferation and neuronal differentiation. The cells were exposed to MeHg from the start of neuronal induction until the termination of cultures, and significant reductions of mESCs and hESCs were observed in the cell viability assays at 1,10,100 and 1000nM, respectively. Although the mESC derivatives were more sensitive than the hESC derivatives to MeHg exposure in terms of cell viability, the morphological evaluation demonstrated that the neurite length and branch points of hESC derivatives were more susceptible to a low concentration of MeHg. Then, the mRNA levels of differentiation markers were examined using quantitative RT-PCR analysis and the interactions between MeHg exposure and gene expression levels were visualized using a network model based on a Bayesian algorithm. The Bayesian network analysis showed that a MeHg-node was located on the highest hierarchy in the hESC derivatives, but not in the mESC derivatives, suggesting that MeHg directly affect differentiation marker genes in hESCs. Taken together, effects of MeHg were observed in our neuronal differentiation systems of mESCs and hESCs using a combination of morphological and molecular markers. Our study provided possible, but limited, evidences that human ESC models might be more sensitive in particular endpoints in response to MeHg exposure than that in mouse ESC models. Further investigations that expand on the findings of the present paper may solve problems that occur when the outcomes from laboratory animals are extrapolated for human risk evaluation.
Collapse
Affiliation(s)
- Xiaoming He
- Division of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kumar KK, Aboud AA, Bowman AB. The potential of induced pluripotent stem cells as a translational model for neurotoxicological risk. Neurotoxicology 2012; 33:518-29. [PMID: 22330734 DOI: 10.1016/j.neuro.2012.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 12/12/2022]
Abstract
An important goal of neurotoxicological research is to provide relevant and accurate risk assessment of environmental and pharmacological agents for populations and individuals. Owing to the challenges of human subject research and the real possibility of species specific toxicological responses, neuronal lineages derived from human embryonic stem cells (hESCs) and human neuronal precursors have been offered as a potential solution for validation of neurotoxicological data from model organism systems in humans. More recently, with the advent of induced pluripotent stem cell (iPSC) technology, there is now the possibility of personalized toxicological risk assessment, the ability to predict individual susceptibility to specific environmental agents, by this approach. This critical advance is widely expected to facilitate analysis of cellular physiological pathways in the context of human neurons and the underlying genetic factors that lead to disease. Thus this technology opens the opportunity, for the first time, to characterize the physiological, toxicological, pharmacological and molecular properties of living human neurons with identical genetic determinants as human patients. Furthermore, armed with a complete clinical history of the patients, human iPSC (hiPSC) studies can theoretically compare patients and at risk groups with distinct sensitivities to particular environmental agents, divergent clinical outcomes, differing co-morbidities, and so forth. Thus iPSCs and neuronal lineages derived from them may reflect the unique genetic blueprint of the individuals from which they are generated. Indeed, iPSC technology has the potential to revolutionize scientific approaches to human health. However, before this overarching goal can be reached a number of technical and theoretical challenges must be overcome. This review seeks to provide a realistic assessment of hiPSC technology and its application to risk assessment and mechanistic studies in the area of neurotoxicology. We seek to identify, prioritize, and detail the primary hurdles that need to be overcome if personalized toxicological risk assessment using patient-derived iPSCs is to succeed.
Collapse
Affiliation(s)
- Kevin K Kumar
- Department of Neurology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States
| | | | | |
Collapse
|
45
|
Robinson JF, Pennings JLA, Piersma AH. A review of toxicogenomic approaches in developmental toxicology. Methods Mol Biol 2012; 889:347-371. [PMID: 22669676 DOI: 10.1007/978-1-61779-867-2_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the use of gene expression profiling (i.e., toxicogenomics or transcriptomics) has been established as the vanguard "omics" technology to investigate exposure-induced molecular changes that underlie the development of disease. As this technology quickly advances, researchers are striving to keep pace in grasping the complexity of toxicogenomic response while at the same time determine its applicability for the field of developmental toxicology. Initial studies suggest toxicogenomics to be a promising tool for multiple types of study designs, including exposure-response investigations (dose and duration), chemical classification, and model comparisons. In this review, we examine the use of toxicogenomics in developmental toxicology, discussing biological and technical factors that influence response and interpretation. Additionally, we provide a framework to guide toxicogenomic investigations in the field of developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | | | | |
Collapse
|
46
|
Louisse J, Verwei M, Woutersen RA, Blaauboer BJ, Rietjens IMCM. Towardin vitrobiomarkers for developmental toxicity and their extrapolation to thein vivosituation. Expert Opin Drug Metab Toxicol 2011; 8:11-27. [DOI: 10.1517/17425255.2012.639762] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Theunissen PT, Robinson JF, Pennings JLA, de Jong E, Claessen SMH, Kleinjans JCS, Piersma AH. Transcriptomic concentration-response evaluation of valproic acid, cyproconazole, and hexaconazole in the neural embryonic stem cell test (ESTn). Toxicol Sci 2011; 125:430-8. [PMID: 22045034 DOI: 10.1093/toxsci/kfr293] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative developmental toxicity assays are urgently needed to reduce animal use in regulatory developmental toxicology. We previously designed an in vitro murine neural embryonic stem cell test (ESTn) as a model for neurodevelopmental toxicity testing (Theunissen et al., 2010). Toxicogenomic approaches have been suggested for incorporation into the ESTn to further increase predictivity and to provide mechanistic insights. Therefore, in this study, using a transcriptomic approach, we investigated the concentration-dependent effects of three known (neuro) developmental toxicants, two triazoles, cyproconazole (CYP) and hexaconazole (HEX), and the anticonvulsant valproic acid (VPA). Compound effects on gene expression during neural differentiation and corresponding regulated gene ontology (GO) terms were identified after 24 h of exposure in relation to morphological changes on day 11 of culture. Concentration-dependent responses on individual gene expression and on biological processes were determined for each compound, providing information on mechanism and concentration-response characteristics. All compounds caused enrichment of the embryonic development process. CYP and VPA but not HEX significantly enriched the neuron development process. Furthermore, specific responses for triazole compounds and VPA were observed within the GO-term sterol metabolic process. The incorporation of transcriptomics in the ESTn was shown to enable detection of effects, which precede morphological changes and provide a more sensitive measure of concentration-dependent effects as compared with classical morphological assessments. Furthermore, mechanistic insight can be instrumental in the extrapolation of effects in the ESTn to human hazard assessment.
Collapse
Affiliation(s)
- Peter T Theunissen
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Robinson JF, Theunissen PT, van Dartel DA, Pennings JL, Faustman EM, Piersma AH. Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology. Reprod Toxicol 2011; 32:180-8. [DOI: 10.1016/j.reprotox.2011.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 12/14/2022]
|