1
|
Recio L, Fowler J, Martin L, Swartz C. Genotoxicity assessment in HepaRG™ cells as a new approach methodology follow up to a positive response in the human TK6 cell micronucleus assay: Naphthalene case study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:458-465. [PMID: 37704589 DOI: 10.1002/em.22575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
We are evaluating the use of metabolically competent HepaRG™ cells combined with CometChip® for DNA damage and the micronucleus (MN) assay as a New Approach Methodology (NAM) alternative to animals for follow up genotoxicity assessment to in vitro positive genotoxic response. Naphthalene is genotoxic in human TK6 cells inducing a nonlinear dose-response for the induction of micronuclei in the presence of rat liver S9. of naphthalene. In HepaRG™ cells, naphthalene genotoxicity was assessed using either 6 (CometChip™) or 12 concentrations of naphthalene (MN assay) with the top dose used for assessment of genotoxicity for the Comet and MN assay was 1.25 and 1.74 mM respectively, corresponding to approximately 45% cell survival. In contrast to human TK6 cell with S9, naphthalene was not genotoxic in either the HepaRG™ MN assay or the Comet assay using CometChip®. The lack of genotoxicity in both the MN and comet assays in HepaRG™ cells is likely due to Phase II enzymes removing phenols preventing further bioactivation to quinones and efficient detoxication of naphthalene quinones or epoxides by glutathione conjugation. In contrast to CYP450 mediated metabolism, these Phase II enzymes are inactive in rat liver S9 due to lack of appropriate cofactors causing a positive genotoxic response. Rat liver S9-derived BMD10 over-predicts naphthalene genotoxicity when compared to the negative genotoxic response observed in HepaRG™ cells. Metabolically competent hepatocyte models like HepaRG™ cells should be considered as human-relevant NAMs for use genotoxicity assessments to reduce reliance on rodents.
Collapse
Affiliation(s)
- Leslie Recio
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, North Carolina, USA
| | - Jasmine Fowler
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, North Carolina, USA
| | - Lincoln Martin
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, North Carolina, USA
| | - Carol Swartz
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, North Carolina, USA
| |
Collapse
|
2
|
Meng F, Mei N, Yan J, Guo X, Richter PA, Chen T, De M. Comparative potency analysis of whole smoke solutions in the bacterial reverse mutation test. Mutagenesis 2021; 36:321-329. [PMID: 34131742 PMCID: PMC8742878 DOI: 10.1093/mutage/geab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Short-term in vitro genotoxicity assays are useful tools to assess whether new and emerging tobacco products potentially have reduced toxicity. We previously demonstrated that potency ranking by benchmark dose (BMD) analysis quantitatively identifies differences among several known carcinogens and toxic chemicals representing different chemical classes found in cigarette smoke. In this study, six whole smoke solution (WSS) samples containing both the particulate and gas phases of tobacco smoke were generated from two commercial cigarette brands under different smoking-machine regimens. Sixty test cigarettes of each brand were machine-smoked according to the International Organization for Standardization (ISO) puffing protocol. In addition, either 60 or 20 test cigarettes of each brand were machine-smoked with the Canadian Intense (CI) puffing protocol. All six WSSs were evaluated in the bacterial reverse mutation (Ames) test using Salmonella typhimurium strains, in the presence or absence of S9 metabolic activation. The resulting S9-mediated mutagenic concentration-responses for the four WSSs from 60 cigarettes were then compared using BMD modelling analysis and the mutagenic potency expressed as number of revertants per μl of the WSS. The quantitative approaches resulted in a similar rank order of mutagenic potency for the Ames test in both TA98 and TA100. Under the conditions of this study, these results indicate that quantitative analysis of the Ames test data can discriminate between the mutagenic potencies of WSSs on the basis of smoking-machine regimen (ISO vs. CI), and cigarette product (differences in smoke chemistry).
Collapse
Affiliation(s)
- Fanxue Meng
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Present address: 7870 Reflection Cove Dr., Fort Myers, FL 33907, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Patricia A. Richter
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
- Present address: Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Mamata De
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
3
|
Comparative genotoxic potential of 27 polycyclic aromatic hydrocarbons in three human cell lines. Toxicol Lett 2020; 326:99-105. [DOI: 10.1016/j.toxlet.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
|
4
|
Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells. Med Sci Monit 2018; 24:4295-4304. [PMID: 29933360 PMCID: PMC6045917 DOI: 10.12659/msm.908425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. Material/Methods The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. Results The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. Conclusions Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells.
Collapse
Affiliation(s)
- Xiangquan Liu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingying Wu
- Department of Preventive Medicine, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Wenyan Shi
- Department of Clinical Nutrition, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Wenhua Shi
- Department of Occupational Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Hekun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaonan Wu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
5
|
Guo X, Heflich RH, Dial SL, De M, Richter PA, Mei N. Quantitative differentiation of whole smoke solution-induced mutagenicity in the mouse lymphoma assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:103-113. [PMID: 29119619 PMCID: PMC8142256 DOI: 10.1002/em.22151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In vitro genotoxicity dose-response data have been investigated for their utility in modeling and assessing potential differences in mutagenic responses between machine-generated whole smoke solutions (WSSs) from combusted cigarette tobacco products. Our previous study observed that potency ranking by benchmark dose (BMD) analysis was a useful modeling approach for quantitative assessment of differences between the mutagenicity of several structurally diverse chemical constituents of cigarette smoke. To follow-up on these observations, we used the mouse lymphoma assay (MLA) to evaluate the mutagenicity of WSSs prepared from two commercial cigarettes smoked under two different smoking machine regimens. L5178Y cells were exposed to ≥5 concentrations of each WSS for 4 hr ± S9 activation. S9 reduced the cytotoxicity and enhanced the mutagenicity of the WSSs. The resulting S9-mediated mutagenicity dose-responses were compared between test articles using BMD analysis, the lowest dose exceeding the Global Evaluation Factor, the no observed or lowest observed genotoxic effect level, and the mutagenic potency. The BMD10 , BMD50 , BMD100 , and BMD200 , indicating a 10%, 50%, 100%, or 200% increase in the background mutant frequency, respectively, were calculated using the PROAST software package. Overall, the quantitative approaches resulted in a similar rank order of mutagenic potency for the MLA tested WSSs, with potency increasing with the level of tar. The BMD approach using covariate analysis produced the most informative comparisons. Differences in potency were associated with the number of cigarettes smoked, the cigarette product smoked, and the smoking machine protocol used to prepare the sample. Under the conditions of this study, these results suggest that our hypothesis of modeling MLA data using the BMD approach to quantitatively discriminate between the mutagenic potential of WSSs from combustible cigarettes might be an useful method. Environ. Mol. Mutagen. 59:103-113, 2018. Published 2017. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Robert H. Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Stacey L. Dial
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Mamata De
- Center for Tobacco Products, Silver Spring, Maryland
| | | | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| |
Collapse
|
6
|
Bogen KT, Heilman JM. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites. Crit Rev Toxicol 2016; 45 Suppl 1:1-56. [PMID: 26414780 DOI: 10.3109/10408444.2015.1052367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 1999 California state agency cancer potency (CP) evaluation of methyl tert-butyl ether (MTBE) assumed linear risk extrapolations from tumor data were plausible because of limited evidence that MTBE or its metabolites could damage DNA, and based such extrapolations on data from rat gavage and rat and mouse inhalation studies indicating elevated tumor rates in male rat kidney, male rat Leydig interstitial cells, and female rat leukemia/lymphomas. More recent data bearing on MTBE cancer potency include a rodent cancer bioassay of MTBE in drinking water; several new studies of MTBE genotoxicity; several similar evaluations of MTBE metabolites, formaldehyde, and tert-butyl alcohol or TBA; and updated evaluations of carcinogenic mode(s) of action (MOAs) of MTBE and MTBE metabolite's. The lymphoma/leukemia data used in the California assessment were recently declared unreliable by the U.S. Environmental Protection Agency (EPA). Updated characterizations of MTBE CP, and its uncertainty, are currently needed to address a variety of decision goals concerning historical and current MTBE contamination. To this end, an extensive review of data sets bearing on MTBE and metabolite genotoxicity, cytotoxicity, and tumorigenicity was applied to reassess MTBE CP and related uncertainty in view of MOA considerations. Adopting the traditional approach that cytotoxicity-driven cancer MOAs are inoperative at very low, non-cytotoxic dose levels, it was determined that MTBE most likely does not increase cancer risk unless chronic exposures induce target-tissue toxicity, including in sensitive individuals. However, the corresponding expected (or plausible upper bound) CP for MTBE conditional on a hypothetical linear (e.g., genotoxic) MOA was estimated to be ∼2 × 10(-5) (or 0.003) per mg MTBE per kg body weight per day for adults exposed chronically over a lifetime. Based on this conservative estimate of CP, if MTBE is carcinogenic to humans, it is among the weakest 10% of chemical carcinogens evaluated by EPA.
Collapse
|
7
|
Guo X, Heflich RH, Dial SL, Richter PA, Moore MM, Mei N. Quantitative analysis of the relative mutagenicity of five chemical constituents of tobacco smoke in the mouse lymphoma assay. Mutagenesis 2016; 31:287-96. [PMID: 26001754 PMCID: PMC6419102 DOI: 10.1093/mutage/gev039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quantifying health-related biological effects, like genotoxicity, could provide a way of distinguishing between tobacco products. In order to develop tools for using genotoxicty data to quantitatively evaluate the risk of tobacco products, we tested five carcinogens found in cigarette smoke, 4-aminobiphenyl (4-ABP), benzo[a]pyrene (BaP), cadmium (in the form of CdCl2), 2-amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in the mouse lymphoma assay (MLA). The resulting mutagenicity dose responses were analyzed by various quantitative approaches and their strengths and weaknesses for distinguishing responses in the MLA were evaluated. L5178Y/Tk (+/-) 3.7.2C mouse lymphoma cells were treated with four to seven concentrations of each chemical for 4h. Only CdCl2 produced a positive response without metabolic activation (S9); all five chemicals produced dose-dependent increases in cytotoxicity and mutagenicity with S9. The lowest dose exceeding the global evaluation factor, the benchmark dose producing a 10%, 50%, 100% or 200% increase in the background frequency (BMD10, BMD50, BMD100 and BMD200), the no observed genotoxic effect level (NOGEL), the lowest observed genotoxic effect level (LOGEL) and the mutagenic potency expressed as a mutant frequency per micromole of chemical, were calculated for all the positive responses. All the quantitative metrics had similar rank orders for the agents' ability to induce mutation, from the most to least potent as CdCl2(-S9) > BaP(+S9) > CdCl2(+S9) > MeIQ(+S9) > 4-ABP(+S9) > NNK(+S9). However, the metric values for the different chemical responses (i.e. the ratio of the greatest value to the least value) for the different chemicals ranged from 16-fold (BMD10) to 572-fold (mutagenic potency). These results suggest that data from the MLA are capable of discriminating the mutagenicity of various constituents of cigarette smoke, and that quantitative analyses are available that can be useful in distinguishing between the exposure responses.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA and
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA and
| | - Stacey L Dial
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA and
| | - Patricia A Richter
- Center for Tobacco Products, Silver Spring, MD 20993, USA Present address: Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341, USA
| | - Martha M Moore
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA and Ramboll Environ, 124 West Capitol Avenue, Suite 1890, Little Rock, AR 72201, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA and
| |
Collapse
|
8
|
Sahu SC, Roy S, Zheng J, Ihrie J. Contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by the cytokinesis-block micronucleus assay. J Appl Toxicol 2016; 36:532-42. [DOI: 10.1002/jat.3279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology; Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration; Laurel MD 20708 USA
| | - Shambhu Roy
- Bioreliance Corporation; Rockville MD 20850 USA
| | - Jiwen Zheng
- Division of Chemistry and Material Sciences; Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U. S. Food and Drug Administration; Silver Spring MD 20993 USA
| | - John Ihrie
- Division of Public Health Information and Analytics; Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration; College Park 20740 USA
| |
Collapse
|
9
|
Zhang F, Zhang Y, Wang K, Liu G, Yang M, Zhao Z, Li S, Cai J, Cao J. Protective effect of diallyl trisulfide against naphthalene-induced oxidative stress and inflammatory damage in mice. Int J Immunopathol Pharmacol 2016; 29:205-16. [PMID: 26813860 DOI: 10.1177/0394632015627160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the possible protective effects of diallyl trisulfide (DATS) against naphthalene-induced oxidative and inflammatory damage in the livers and lungs of mice. Elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels showed significant hepatic damage after the challenge with 100 mg/kg naphthalene. Hepatic malondialdehyde (MDA) contents and the activity of myeloperoxidase (MPO) increased significantly, accompanying a decrease in the hepatic activity of total superoxide dismutase (SOD) and glutathione (GSH) levels after the naphthalene damage. In addition, the serum levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 8 (IL-8) increased significantly in the groups damaged with naphthalene. The main parameters related to oxidative stress and inflammatory responses in the lungs, including the NO, MPO, and GSH contents, were determined, and the histopathological and immunohistochemical changes in the lung and liver tissues were also observed. In the DATS-treated groups, all of the oxidative and inflammatory damage in the serum, liver, and lung tissues were significantly prevented.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yongchun Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong, PR China
| | - Kaiming Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guangpu Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Min Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| | - Shanzhong Li
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| | - Jianhua Cai
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| | - Jimin Cao
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| |
Collapse
|
10
|
Sahu SC, Njoroge J, Bryce SM, Zheng J, Ihrie J. Flow cytometric evaluation of the contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells. J Appl Toxicol 2016; 36:521-31. [DOI: 10.1002/jat.3276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; U. S. Food and Drug Administration; Laurel MD 20708 USA
| | - Joyce Njoroge
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; U. S. Food and Drug Administration; Laurel MD 20708 USA
| | | | - Jiwen Zheng
- Division of Chemistry and Material Sciences, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health; U.S.Food and Drug Administration; Silver Spring MD 20993 USA
| | - John Ihrie
- Division of Public Health Information and Analytics, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition; U.S. Food and Drug Administration; College Park MD 20740 USA
| |
Collapse
|
11
|
Pampanin DM, Le Goff J, Skogland K, Marcucci CR, Øysæd KB, Lorentzen M, Jørgensen KB, Sydnes MO. Biological effects of polycyclic aromatic hydrocarbons (PAH) and their first metabolic products in in vivo exposed Atlantic cod (Gadus morhua). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:633-646. [PMID: 27484143 DOI: 10.1080/15287394.2016.1171993] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The monitoring of the presence of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment is a worldwide activity since some of these compounds are well-established carcinogens and mutagens. Contaminants in this class are in fact regarded as priority hazardous substances for environmental pollution (Water Framework Directive 2000/60/EC). In this study, Atlantic cod (Gadus morhua) was selected to assess in vivo effects of two PAH and their first metabolic products, namely, the corresponding trans-dihydrodiols, using biological markers. Fish were exposed for 1 wk to a single PAH (naphthalene or chrysene) and its synthetic metabolites ((1R,2R)-1,2-dihydronaphthalene-1,2-diol and (1R,2R)-1,2-dihydrochrysene-1,2-diol) by intraperitoneal injection in a continuous seawater flow system. After exposure, PAH metabolism including PAH metabolites in bile and ethoxyresorufin O-deethylase (EROD) activity, oxidative stress glutathione S-transferases (GST) and catalase (CAT) activities, and genotoxicity such as DNA adducts were evaluated, as well as general health conditions including condition index (CI), hepatosomatic index (HSI), and gonadosomatic index (GSI). PAH metabolite values were low and not significantly different when measured with the fixed-wavelength fluorescence screening method, while the gas chromatography-mass spectroscopy (GC-MS) method showed an apparent dose response in fish exposed to naphthalene. DNA adduct levels ≥0.16 × 10(-8) relative adduct level (RAL) were detected. It should be noted that 0.16 × 10(-8) RAL is considered the maximal acceptable background level for this species. The other biomarkers activities of catalase, GST, and EROD did not display a particular compound- or dose-related response. The GSI values were significantly lower in some chrysene- and in both naphthalene- and naphthalene diol-exposed groups compared to control.
Collapse
Affiliation(s)
- Daniela M Pampanin
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
| | | | - Karianne Skogland
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
| | - Cristian R Marcucci
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| | - Kjell Birger Øysæd
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
| | - Marianne Lorentzen
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| | - Kåre B Jørgensen
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| | - Magne O Sydnes
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| |
Collapse
|
12
|
Bailey LA, Nascarella MA, Kerper LE, Rhomberg LR. Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Crit Rev Toxicol 2015; 46:1-42. [PMID: 26202831 PMCID: PMC4732411 DOI: 10.3109/10408444.2015.1061477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022]
Abstract
Inhalation of naphthalene causes olfactory epithelial nasal tumors in rats (but not in mice) and benign lung adenomas in mice (but not in rats). The limited available human data have not identified an association between naphthalene exposure and increased respiratory cancer risk. Assessing naphthalene's carcinogenicity in humans, therefore, depends entirely on experimental evidence from rodents. We evaluated the respiratory carcinogenicity of naphthalene in rodents, and its potential relevance to humans, using our Hypothesis-Based Weight-of-Evidence (HBWoE) approach. We systematically and comparatively reviewed data relevant to key elements in the hypothesized modes of action (MoA) to determine which is best supported by the available data, allowing all of the data from each realm of investigation to inform interpretation of one another. Our analysis supports a mechanism that involves initial metabolism of naphthalene to the epoxide, followed by GSH depletion, cytotoxicity, chronic inflammation, regenerative hyperplasia, and tumor formation, with possible weak genotoxicity from downstream metabolites occurring only at high cytotoxic doses, strongly supporting a non-mutagenic threshold MoA in the rat nose. We also conducted a dose-response analysis, based on the likely MoA, which suggests that the rat nasal MoA is not relevant in human respiratory tissues at typical environmental exposures. Our analysis illustrates how a thorough WoE evaluation can be used to support a MoA, even when a mechanism of action cannot be fully elucidated. A non-mutagenic threshold MoA for naphthalene-induced rat nasal tumors should be considered as a basis to determine human relevance and to guide regulatory and risk-management decisions.
Collapse
|
13
|
Buick JK, Moffat I, Williams A, Swartz CD, Recio L, Hyduke DR, Li H, Fornace AJ, Aubrecht J, Yauk CL. Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:520-34. [PMID: 25733247 PMCID: PMC4506226 DOI: 10.1002/em.21940] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/24/2014] [Accepted: 01/14/2015] [Indexed: 05/21/2023]
Abstract
The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the molecular pathways involved in the response, is becoming more common. In a companion article, a genomic biomarker was developed in human TK6 cells to classify chemicals as genotoxic or nongenotoxic. Because TK6 cells are not metabolically competent, we set out to broaden the utility of the biomarker for use with chemicals requiring metabolic activation. Specifically, chemical exposures were conducted in the presence of rat liver S9. The ability of the biomarker to classify genotoxic (benzo[a]pyrene, BaP; aflatoxin B1, AFB1) and nongenotoxic (dexamethasone, DEX; phenobarbital, PB) agents correctly was evaluated. Cells were exposed to increasing chemical concentrations for 4 hr and collected 0 hr, 4 hr, and 20 hr postexposure. Relative survival, apoptosis, and micronucleus frequency were measured at 24 hr. Transcriptome profiles were measured with Agilent microarrays. Statistical modeling and bioinformatics tools were applied to classify each chemical using the genomic biomarker. BaP and AFB1 were correctly classified as genotoxic at the mid- and high concentrations at all three time points, whereas DEX was correctly classified as nongenotoxic at all concentrations and time points. The high concentration of PB was misclassified at 24 hr, suggesting that cytotoxicity at later time points may cause misclassification. The data suggest that the use of S9 does not impair the ability of the biomarker to classify genotoxicity in TK6 cells. Finally, we demonstrate that the biomarker is also able to accurately classify genotoxicity using a publicly available dataset derived from human HepaRG cells.
Collapse
Affiliation(s)
- Julie K. Buick
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Ivy Moffat
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
- Water and Air Quality Bureau, Health CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carol D. Swartz
- Integrated Laboratory Systems Inc.Research Triangle ParkNorth Carolina
| | - Leslie Recio
- Integrated Laboratory Systems Inc.Research Triangle ParkNorth Carolina
| | - Daniel R. Hyduke
- Biological Engineering DepartmentUtah State UniversityLoganUtah
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Heng‐Hong Li
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer Inc.GrotonConnecticut
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| |
Collapse
|
14
|
Peng C, Muthusamy S, Xia Q, Lal V, Denison MS, Ng JC. Micronucleus formation by single and mixed heavy metals/loids and PAH compounds in HepG2 cells. Mutagenesis 2015; 30:593-602. [DOI: 10.1093/mutage/gev021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
15
|
Assessment of micronuclei and sister chromatid exchange frequency in the petroleum industry workers in province of Vojvodina, Republic of Serbia. Food Chem Toxicol 2014; 69:63-8. [DOI: 10.1016/j.fct.2014.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023]
|
16
|
Kedderis GL, Shepard KG, Recio L. Cytotoxicity of naphthalene toward cells from target and non-target organs in vitro. Chem Biol Interact 2013; 209:85-95. [PMID: 24361489 DOI: 10.1016/j.cbi.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/02/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
Abstract
Chronic inhalation exposure to high concentrations of naphthalene produced nasal tumors in rats and lung tumors in female mice. Naphthalene bioactivation is required for target organ toxicity and cytotoxicity in target organs may be involved in tumor development. The present studies characterized the dose-response relationships for naphthalene-induced glutathione (GSH) depletion, effects on cellular ATP, and cytotoxicity in cells from both target (lung, nasal epithelium) and non-target (liver) organs in vitro using cells from F-344 rats, B6C3F1 mice and humans. The cells were incubated with various concentrations of naphthalene in sealed glass flasks for 3h, then placed in monolayer culture in fresh media for 24h to examine the repair or progression of damage. Naphthalene was a low potency cytotoxicant in vitro, with 500 μM frequently observed as a no-observed adverse effect concentration or lowest observed adverse effect concentration. Naphthalene exposure produced dose-dependent decreases in cellular GSH, ATP and viability in rat, mouse and human hepatocytes at concentrations >500 μM. Human nasal respiratory epithelial cells exhibited greater naphthalene cytotoxicity than rat or mouse nasal respiratory epithelial cell preparations. Rat nasal respiratory epithelial cell preparations metabolized naphthalene through pathways leading to the preferential formation of 1,2-naphthoquinone GSH conjugates rather than 1,4-naphthoquinone GSH conjugates observed in rat hepatocytes or mouse nasal respiratory epithelial cells, consistent with the suggestion that this bioactivation pathway may be involved in rat nasal tumor development. Naphthalene exposures of ≥500 μM decreased cellular GSH and ATP in rat, mouse and human lung cell preparations. The variability of the responses of the human lung cell preparations was consistent with the known variability of CYP activities in human lung tissue. The results of these studies can be used as the basis for future studies of the mechanisms involved in naphthalene-induced cytotoxicity and the relevance of the bioactivation pathways for human exposure to naphthalene.
Collapse
Affiliation(s)
| | - Kim G Shepard
- Integrated Laboratory Systems Inc., Research Triangle Park, NC 27709, United States
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC 27709, United States
| |
Collapse
|
17
|
Richtwerte für Naphthalin und Naphthalin-ähnliche Verbindungen in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013. [DOI: 10.1007/s00103-013-1836-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Piccirillo VJ, Bird MG, Lewis RJ, Bover WJ. Preliminary evaluation of the human relevance of respiratory tumors observed in rodents exposed to naphthalene. Regul Toxicol Pharmacol 2012; 62:433-40. [PMID: 22342949 DOI: 10.1016/j.yrtph.2012.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/24/2012] [Accepted: 01/28/2012] [Indexed: 11/17/2022]
Abstract
Inhalation bioassays in mice and rats exposed to naphthalene (NA) show incidences of lung and nasal cancer, respectively. This paper describes a preliminary mode of action (MOA)/human relevance (HR) framework for NA. Species differences in both carcinogenic and cytotoxic responses between the rodent and human have been noted based on qualitative and quantitative differences in metabolism. Some occur at the initial oxidation of NA in the rat through CYP2F, versus CYP2A13 metabolism in the human respiratory system and which results in a difference in the specific naphthoquinone formed. Normally, subsequent reactive metabolites are then conjugated through glutathione, but high dose exposures, as in the rat bioassay, result in glutathione depletion, and the availability of 1,2-naphthoquinone for other conjugation. In the rat nose, it is proposed that a naphthoquinone imine is formed via a species and site-specific aryl amidase acting on an amino acid conjugate of the quinone. Such a quinone imine is believed to be the active agent in Alachlor and phenacetin, resulting in the same profile of respiratory tumors in the rat as NA. Based on the MOA and the limited epidemiological data indicating no human evidence of nasal or lung tumor risk, the carcinogenic response observed in rats does not appear relevant to the human.
Collapse
|