1
|
Kim GW, Oh CH, Kim JC, Yoon W, Jeong YY, Kim YH, Kim JK, Park JG, Kang HK, Jeong GW. Noninvasive biomarkers for acute hepatotoxicity induced by 1,3-dichloro-2-propanol: hyperpolarized 13C dynamic MR spectroscopy. Magn Reson Imaging 2016; 34:159-65. [DOI: 10.1016/j.mri.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 01/04/2023]
|
2
|
Bakermans AJ, Abdurrachim D, van Nierop BJ, Koeman A, van der Kroon I, Baartscheer A, Schumacher CA, Strijkers GJ, Houten SM, Zuurbier CJ, Nicolay K, Prompers JJ. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations. NMR IN BIOMEDICINE 2015; 28:1218-1227. [PMID: 26269430 PMCID: PMC4573916 DOI: 10.1002/nbm.3371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 05/31/2023]
Abstract
(31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo mouse myocardial energy homeostasis with (31)P MRS under physiological conditions.
Collapse
Affiliation(s)
- Adrianus J. Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bastiaan J. van Nierop
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anneke Koeman
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge van der Kroon
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Antonius Baartscheer
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cees A. Schumacher
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gustav J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander M. Houten
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, and Department of Pediatrics, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jeanine J. Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
3
|
Chmelík M, Valkovič L, Wolf P, Bogner W, Gajdošík M, Halilbasic E, Gruber S, Trauner M, Krebs M, Trattnig S, Krššák M. Phosphatidylcholine contributes to in vivo (31)P MRS signal from the human liver. Eur Radiol 2015; 25:2059-66. [PMID: 25576233 DOI: 10.1007/s00330-014-3578-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To demonstrate the overlap of the hepatic and bile phosphorus ((31)P) magnetic resonance (MR) spectra and provide evidence of phosphatidylcholine (PtdC) contribution to the in vivo hepatic (31)P MRS phosphodiester (PDE) signal, suggested in previous reports to be phosphoenolpyruvate (PEP). METHODS Phantom measurements to assess the chemical shifts of PEP and PtdC signals were performed at 7 T. A retrospective analysis of hepatic 3D (31)P MR spectroscopic imaging (MRSI) data from 18 and five volunteers at 3 T and 7 T, respectively, was performed. Axial images were inspected for the presence of gallbladder, and PDE signals in representative spectra were quantified. RESULTS Phantom experiments demonstrated the strong pH-dependence of the PEP chemical shift and proved the overlap of PtdC and PEP (~2 ppm relative to phosphocreatine) at hepatic pH. Gallbladder was covered in seven of 23 in vivo 3D-MRSI datasets. The PDE(gall)/γ-ATP(liver) ratio was 4.8-fold higher (p = 0.001) in the gallbladder (PDE(gall)/γ-ATP(liver) = 3.61 ± 0.79) than in the liver (PDE(liver)/γ-ATP(liver) = 0.75 ± 0.15). In vivo 7 T (31)P MRSI allowed good separation of PDE components. The gallbladder is a strong source of contamination in adjacent (31)P MR hepatic spectra due to biliary phosphatidylcholine. CONCLUSIONS In vivo (31)P MR hepatic signal at 2.06 ppm may represent both phosphatidylcholine and phosphoenolpyruvate, with a higher phosphatidylcholine contribution due to its higher concentration. KEY POINTS • In vivo (31)P MRS from the gallbladder shows a dominant biliary phosphatidylcholine signal at 2.06 ppm. • Intrahepatic (31)P MRS signal at 2.06 ppm may represent both intrahepatic phosphatidylcholine and phosphoenolpyruvate. • In vivo (31)P MRS has the potential to monitor hepatic phosphatidylcholine.
Collapse
Affiliation(s)
- Marek Chmelík
- MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|