1
|
Sandougah K, AlJohar R, Aladhadhi D, AlHazmi YT, Kariri MN, Bin Abdulrahman KA. Awareness of Gadolinium Toxicity Among Non-radiologists in Saudi Arabia. Cureus 2022; 14:e21104. [PMID: 35165563 PMCID: PMC8829821 DOI: 10.7759/cureus.21104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
|
2
|
Fretellier N, Rasschaert M, Bocanegra J, Robert P, Factor C, Seron A, Idée JM, Corot C. Safety and Gadolinium Distribution of the New High-Relaxivity Gadolinium Chelate Gadopiclenol in a Rat Model of Severe Renal Failure. Invest Radiol 2021; 56:826-836. [PMID: 34091462 DOI: 10.1097/rli.0000000000000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the toxicological profile of gadopiclenol, a new high-relaxivity macrocyclic gadolinium-based contrast agent (GBCA), in renally impaired rats, in comparison with 2 other macrocyclic GBCAs, gadoterate meglumine and gadobutrol, and 1 linear and nonionic GBCA, gadodiamide. METHODS Renal failure was induced by adding 0.75% wt/wt adenine to the diet for 3 weeks. During the second week of adenine-enriched diet, the animals (n = 8/group × 5 groups) received 5 consecutive intravenous injections of GBCA at 2.5 mmol/kg per injection, resulting in a cumulative dose of 12.5 mmol/kg or saline followed by a 3-week treatment-free period after the last injection. The total (elemental) gadolinium (Gd) concentration in different tissues (brain, cerebellum, femoral epiphysis, liver, skin, heart, kidney, spleen, plasma, urine, and feces) was measured by inductively coupled plasma mass spectrometry. Transmission electron microscopy (and electron energy loss spectroscopy analysis of metallic deposits) was used to investigate the presence and localization of Gd deposits in the skin. Relaxometry was used to evaluate the presence of dissociated Gd in the skin, liver, and bone. Skin histopathology was performed to investigate the presence of nephrogenic systemic fibrosis-like lesions. RESULTS Gadodiamide administrations were associated with high morbidity-mortality but also with macroscopic and microscopic skin lesions in renally impaired rats. No such effects were observed with gadopiclenol, gadoterate, or gadobutrol. Overall, elemental Gd concentrations were significantly higher in gadodiamide-treated rats than in rats treated with the other GBCAs for all tissues except the liver (where no significant difference was found with gadopiclenol) and the kidney and the heart (where statistically similar Gd concentrations were observed for all GBCAs). No plasma biochemical abnormalities were observed with gadopiclenol or the control GBCAs. Histopathology revealed a normal skin structure in the rats treated with gadopiclenol, gadoterate, and gadobutrol, contrary to those treated with gadodiamide. No evidence of Gd deposits on collagen fibers and inclusions in fibroblasts was found with gadopiclenol and its macrocyclic controls, unlike with gadodiamide. Animals of all test groups had Gd-positive lysosomal inclusions in the dermal macrophages. However, the textures differed for the different products (speckled texture for gadodiamide and rough-textured appearance for the 2 tested macrocyclic GBCAs). CONCLUSIONS No evidence of biochemical toxicity or pathological abnormalities of the skin was observed, and similar to other macrocyclic GBCAs, gadoterate and gadobutrol, tissue retention of Gd was found to be low (except in the liver) in renally impaired rats treated with the new high-relaxivity GBCA gadopiclenol.
Collapse
Affiliation(s)
- Nathalie Fretellier
- From the Research and Innovation Department, Guerbet, Aulnay-sous-Bois, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Laniyonu A, Ouyang Y, Cohen J, Awe S, Dina O, Biade S, Hargus S, Kokate T. Nonclinical Product Developmental Strategies, Safety Considerations and Toxicity Profiles of Medical Imaging and Radiopharmaceuticals Products. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Nong Q, Chen X, Hu L, Huang Y, Luan T, Liu H, Chen B. Identification and characterization of Gd-binding proteins in NIH-3T3 cells. Talanta 2020; 219:121281. [DOI: 10.1016/j.talanta.2020.121281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022]
|
5
|
Physicochemical and Pharmacokinetic Profiles of Gadopiclenol: A New Macrocyclic Gadolinium Chelate With High T1 Relaxivity. Invest Radiol 2020; 54:475-484. [PMID: 30973459 PMCID: PMC6661244 DOI: 10.1097/rli.0000000000000563] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives We aimed to evaluate gadopiclenol, a newly developed extracellular nonspecific macrocyclic gadolinium-based contrast agent (GBCA) having high relaxivity properties, which was designed to increase lesion detection and characterization by magnetic resonance imaging. Methods We described the molecular structure of gadopiclenol and measured the r1 and r2 relaxivity properties at fields of 0.47 and 1.41 T in water and human serum. Nuclear magnetic relaxation dispersion profile measurements were performed from 0.24 mT to 7 T. Protonation and complexation constants were determined using pH-metric measurements, and we investigated the acid-assisted dissociation of gadopiclenol, gadodiamide, gadobutrol, and gadoterate at 37°C and pH 1.2. Applying the relaxometry technique (37°C, 0.47 T), we investigated the risk of dechelation of gadopiclenol, gadoterate, and gadodiamide in the presence of ZnCl2 (2.5 mM) and a phosphate buffer (335 mM). Pharmacokinetics studies of radiolabeled 153Gd-gadopiclenol were performed in Beagle dogs, and protein binding was measured in rats, dogs, and humans plasma and red blood cells. Results Gadopiclenol [gadolinium chelate of 2,2′,2″-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,6,9-triyl)tris(5-((2,3-dihydroxypropyl)amino)-5-oxopentanoic acid); registry number 933983-75-6] is based on a pyclen macrocyclic structure. Gadopiclenol exhibited a very high relaxivity in water (r1 = 12.2 mM−1·s−1 at 1.41 T), and the r1 value in human serum at 37°C did not markedly change with increasing field (r1 = 12.8 mM−1·s−1 at 1.41 T and 11.6 mM−1·s−1 at 3 T). The relaxivity data in human serum did not indicate protein binding. The nuclear magnetic relaxation dispersion profile of gadopiclenol exhibited a high and stable relaxivity in a strong magnetic field. Gadopiclenol showed high kinetic inertness under acidic conditions, with a dissociation half-life of 20 ± 3 days compared with 4 ± 0.5 days for gadoterate, 18 hours for gadobutrol, and less than 5 seconds for gadodiamide and gadopentetate. The pharmacokinetic profile in dogs was typical of extracellular nonspecific GBCAs, showing distribution in the extracellular compartment and no metabolism. No protein binding was found in rats, dogs, and humans. Conclusions Gadopiclenol is a new extracellular and macrocyclic Gd chelate that exhibited high relaxivity, no protein binding, and high kinetic inertness. Its pharmacokinetic profile in dogs was similar to that of other extracellular nonspecific GBCAs.
Collapse
|
6
|
Does Age Interfere With Gadolinium Toxicity and Presence in Brain and Bone Tissues?: A Comparative Gadoterate Versus Gadodiamide Study in Juvenile and Adult Rats. Invest Radiol 2019; 54:61-71. [PMID: 30394964 PMCID: PMC6310471 DOI: 10.1097/rli.0000000000000517] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The main objective of the study was to assess the effect of age on target tissue total gadolinium (Gd) retention after repeated administration of gadodiamide (linear) or gadoterate (macrocyclic) Gd-based contrast agent (GBCA) in rats. The secondary objective was to assess the potential developmental and long-term consequences of GBCA administration during neonatal and juvenile periods. MATERIALS AND METHODS A total of 20 equivalent human clinical doses (cumulated dose, 12 mmol Gd/kg) of either gadoterate or gadodiamide were administered concurrently by the intravenous route to healthy adult and juvenile rats. Saline was administered to juvenile rats forming the control group. In juvenile rats, the doses were administered from postnatal day 12, that is, once the blood-brain barrier is functional as in humans after birth. The tests were conducted on 5 juvenile rats per sex and per group and on 3 adult animals per sex and per group. T1-weighted magnetic resonance imaging of the cerebellum was performed at 4.7 T during both the treatment and treatment-free periods. Behavioral tests were performed in juvenile rats. Rats were euthanatized at 11 to 12 weeks (ie, approximately 3 months) after the last administration. Total Gd concentrations were measured in plasma, skin, bone, and brain by inductively coupled plasma mass spectrometry. Cerebellum samples from the juvenile rats were characterized by histopathological examination (including immunohistochemistry for glial fibrillary acidic protein or GFAP, and CD68). Lipofuscin pigments were also studied by fluorescence microscopy. All tests were performed blindly on randomized animals. RESULTS Transient skin lesions were observed in juvenile rats (5/5 females and 2/4 males) and not in adult rats having received gadodiamide. Persisting (up to completion of the study) T1 hyperintensity in the deep cerebellar nuclei (DCNs) was observed only in gadodiamide-treated rats. Quantitatively, a slightly higher progressive increase in the DCN/brain stem ratio was observed in adult rats compared with juvenile rats, whereas no difference was noted visually. In all tissues, total Gd concentrations were higher (10- to 30-fold higher) in the gadodiamide-treated groups than in the gadoterate groups. No age-related differences were observed except in bone marrow where total Gd concentrations in gadodiamide-treated juvenile rats were higher than those measured in adults and similar to those measured in cortical bone tissue. No significant treatment-related effects were observed in histopathological findings or in development, behavior, and biochemistry parameters. However, in the elevated plus maze test, a trend toward an anxiogenic effect was observed in the gadodiamide group compared with other groups (nonsignificant). Moreover, in the balance beam test, a high number of trials were excluded in the gadodiamide group because rats (mainly males) did not completely cross the beam, which may also reflect an anxiogenic effect. CONCLUSIONS No T1 hyperintensity was observed in the DCN after administration of the macrocyclic GBCA gadoterate regardless of age as opposed to administration of the linear GBCA gadodiamide. Repeated administration of gadodiamide in neonatal and juvenile rats resulted in similar total Gd retention in the skin, brain, and bone to that in adult rats with sex having no effect, whereas Gd distribution in bone marrow was influenced by age. Further studies are required to assess the form of the retained Gd and to investigate the potential risks associated with Gd retention in bone marrow in juvenile animals treated with gadodiamide. Regardless of age, total Gd concentration in the brain and bone was 10- to 30-fold higher after administration of gadodiamide compared with gadoterate.
Collapse
|
7
|
Weng Q, Hu X, Zheng J, Xia F, Wang N, Liao H, Liu Y, Kim D, Liu J, Li F, He Q, Yang B, Chen C, Hyeon T, Ling D. Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS NANO 2019; 13:6801-6812. [PMID: 31141658 DOI: 10.1021/acsnano.9b01511] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used for T1-weighted magnetic resonance imaging (MRI) in clinic diagnosis. However, a major drawback of GBCAs is that they can increase the toxicological risk of nephrogenic systemic fibrosis (NSF) in patients with advanced renal dysfunction. Hence, safer alternatives to GBCAs are currently in demand, especially for patients with renal diseases. Here we investigated the potential of polyethylene glycol (PEG)-stabilized iron oxide nanoclusters (IONCs) as biocompatible T1MRI contrast agents and systematically evaluated their NSF-related risk in rats with renal failure. We profiled the distribution, excretion, histopathological alterations, and fibrotic gene expressions after administration of IONCs and GBCAs. Our results showed that, compared with GBCAs, IONCs exhibited dramatically improved biosafety and a much lower risk of causing NSF, suggesting the feasibility of substituting GBCAs with IONCs in clinical MRI diagnosis of patients with renal diseases.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Center for Drug Safety Evaluation and Research , Zhejiang University , Hangzhou 310058 , China
| | | | - Jiahuan Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | | | | | | | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Dokyoon Kim
- Department of Bionano Engineering , Hanyang University , Ansan 15588 , Korea
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
| | - Jianan Liu
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | | | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
8
|
Li L, Zhang T, Li C, Xie L, Li N, Hou T, Wang Y, Wang B. Potential therapeutic effects of Cordyceps cicadae and Paecilomyces cicadae on adenine-induced chronic renal failure in rats and their phytochemical analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 13:103-117. [PMID: 30587931 PMCID: PMC6304081 DOI: 10.2147/dddt.s180543] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Natural Cordyceps cicadae (C. cicadae) has been utilized extensively in traditional Chinese medicine to treat chronic renal diseases, heart palpitations, infantile convulsions, and dizziness. However, given its slow growth and immoderate exploitation, C. cicadae resources have been severely depleted. By contrast, Paecilomyces cicadae (P. cicadae), as the anamorph stage of C. cicadae, is easy to cultivate, and this kind of cultivated P. cicadae has good and controllable quality. Purpose This study aimed to compare the therapeutic effects of C. cicadae and P. cicadae on adenine-induced chronic renal failure (CRF) rats. In accordance with the aforementioned studies, our work subsequently analyzed the intrinsic relationships between the efficacy and pharmacodynamic substances of C. cicadae and P. cicadae to conclude whether or not P. cicadae could be used as an alternative to C. cicadae in treating CRF. Methods Rats were administered with C. cicadae (1.0 g/kg) or P. cicadae (1.0 g/kg) by gavage for 4 weeks. Furthermore, we applied Fourier transform infrared spectroscopy, gas chromatography–mass spectrometry, liquid chromatography–tandem mass spectrometry, and ultraviolet spectrophotometry to comprehensively detect and analyze the chemical constituent differences from ten batches each of C. cicadae and P. cicadae. Results This study revealed that both C. cicadae and P. cicadae exerted obvious therapeutic effects on CRF and were more consistent with their chemical compositions. Conclusion P. cicadae can be used as an alternative to C. cicadae for treating CRF to cater to market demands.
Collapse
Affiliation(s)
- Ling Li
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Chunru Li
- Zhejiang BioAsia Pharmaceutical Co., Ltd., Pinghu, Zhejiang, China,
| | - Lu Xie
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianling Hou
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Yuqin Wang
- Zhejiang BioAsia Pharmaceutical Co., Ltd., Pinghu, Zhejiang, China,
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| |
Collapse
|
9
|
Chen W, Liu B, Chen J, Liu G, Liu X. Targeted tumor MRI with gadobutrol-loaded anti-HER2 immunoliposomes. Acta Radiol 2017; 58:573-580. [PMID: 27565629 DOI: 10.1177/0284185116664225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Immunoliposomes have been used to deliver MR contrast agents to cancer tissue by targeting tumor associated antigens, thus enabling the visualization of biological processes at the cellular level. Purpose To develop and evaluate the feasibility of specific HER2 targeted liposomal MR contrast agent. Material and Methods Gd-loaded anti-HER2 immunolipomes (Gd-ILs) and non-targeted PEGylated liposomes (Gd-NTLs) were prepared and characterized. Tumor bearing animals were randomized into three groups: Gd- ILs, Gd- NTLs and gadobutrol. Animals were imaged prior and 5, 15, 60, 120 and 180 min after i.v. injection of different contrast agents. The signal intensity enhancement percentage, signal- to- noise ratio and contrast- to -noise ratio was used to qualify tumor enhancement of different groups. After imaging, tumors were excised for histological examination. Results In vivo dynamic MR images, the specific targeted contrast agent bound to tumor tissue and result in a gradual and persisting enhancement for at least 3 hours in mice bearing tumor xenografts, reaching a maximum of 87.7% enhancement after 120 min post-injection. Gd-ILs demonstrated superior tumor enhancement over control non target contrast agent and gadobutrol in HER2 overexpressing tumors at 60, 120 and 180 min post- injection. The SNR and CNR of Gd-ILs in the tumors were significantly greater than that of Gd-NTLs at 60, 120, 180 min post- injection. Conclusion The results indicate the feasibility of Gd-ILs providing prolonged circulation, specific tumor enhancement and cancer cell recognition as targeted contrast agent.
Collapse
Affiliation(s)
- Weicui Chen
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Bo Liu
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Jun Chen
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Guoqing Liu
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Xian Liu
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| |
Collapse
|
10
|
Rasschaert M, Idée JM, Robert P, Fretellier N, Vives V, Violas X, Ballet S, Corot C. Moderate Renal Failure Accentuates T1 Signal Enhancement in the Deep Cerebellar Nuclei of Gadodiamide-Treated Rats. Invest Radiol 2017; 52:255-264. [PMID: 28067754 PMCID: PMC5383202 DOI: 10.1097/rli.0000000000000339] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/02/2022]
Abstract
OBJECTIVES The purpose of this preclinical study was to investigate whether moderate chronic kidney disease is a factor in potentiating gadolinium (Gd) uptake in the brain. MATERIALS AND METHODS A comparative study was performed on renally impaired (subtotal nephrectomy) rats versus rats with normal renal function. The animals received 4 daily injections of 0.6 mmol Gd/kg a week for 5 weeks (cumulative dose of 12 mmol Gd/kg) of gadodiamide or saline solution. The MR signal enhancement in the deep cerebellar nuclei was monitored by weekly magnetic resonance imaging examinations. One week after the final injection, the total Gd concentration was determined by inductively coupled plasma mass spectrometry in different regions of the brain including the cerebellum, plasma, cerebrospinal fluid, parietal bone, and femur. RESULTS After the administration of gadodiamide, the subtotal nephrectomy group presented a significantly higher T1 signal enhancement in the deep cerebellar nuclei and a major increase in the total Gd concentration in all the studied structures, compared with the normal renal function group receiving the same linear Gd-based contrast agent. Those potentiated animals also showed a pronounced hypersignal in the choroid plexus, still persistent 6 days after the last injection, whereas low concentration of Gd was found in the cerebrospinal fluid (<0.05 μmol/L) at this time point. Plasma Gd concentration was then around 1 μmol/L. Interestingly, plasma Gd was predominantly in a dissociated and soluble form (around 90% of total Gd). Total Gd concentrations in the brain, cerebellum, plasma, and bones correlated with creatinine clearance in both the gadodiamide-treated groups. CONCLUSIONS Renal insufficiency in rats potentiates Gd uptake in the cerebellum, brain, and bones.
Collapse
Affiliation(s)
- Marlène Rasschaert
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Jean-Marc Idée
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Philippe Robert
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Nathalie Fretellier
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Véronique Vives
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Xavier Violas
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Sébastien Ballet
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Claire Corot
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| |
Collapse
|
11
|
Giorgi H, Ammerman J, Briffaux JP, Fretellier N, Corot C, Bourrinet P. Non-clinical safety assessment of gadoterate meglumine (Dotarem®) in neonatal and juvenile rats. Regul Toxicol Pharmacol 2015; 73:960-70. [DOI: 10.1016/j.yrtph.2015.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/27/2022]
|
12
|
Wáng YXJ, Schroeder J, Siegmund H, Idée JM, Fretellier N, Jestin-Mayer G, Factor C, Deng M, Kang W, Morcos SK. Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant Imaging Med Surg 2015; 5:534-45. [PMID: 26435917 DOI: 10.3978/j.issn.2223-4292.2015.05.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To assess the retention of gadolinium (Gd) in skin, liver, and bone following gadodiamide or gadoteric acid administration. METHODS Gd was measured in skin, liver and femur bone in female rats 10 weeks after administration of 17.5 mmol Gd/kg over 5 days of Gd agents. Rat skin microscopy, energy filtering transmission electron microscopy and elemental analysis were performed, and repeated after receiving the same dosage of gadodiamide in rats with osteoporosis induced with bilateral ovariectomy (OVX). The OVX was performed 60 days after the last injection of gadodiamide and animals sacrificed 3 weeks later. RESULTS Gd concentration was 180-fold higher in the skin, 25-fold higher in the femur, and 30-fold higher in the liver in rats received gadodiamide than rats received gadoteric acid. The retention of Gd in the skin with gadodiamide was associated with an increase in dermal cellularity, and Gd encrustation of collagen fibers and deposition inside the fibroblasts and other cells. No differences in Gd concentration in liver, skin, and femur were observed between rats receiving gadodiamide with or without OVX. CONCLUSIONS Gd tissue retention with gadodiamide was higher than gadoteric acid. Tissues Gd deposition did not alter following gadodiamide administration to ovariectomized rats.
Collapse
Affiliation(s)
- Yì-Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Joseph Schroeder
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Heiko Siegmund
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Jean-Marc Idée
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Nathalie Fretellier
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Gaëlle Jestin-Mayer
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Cecile Factor
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Min Deng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Wei Kang
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Sameh K Morcos
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idée JM, Ballet S, Corot C. T1-Weighted Hypersignal in the Deep Cerebellar Nuclei After Repeated Administrations of Gadolinium-Based Contrast Agents in Healthy Rats: Difference Between Linear and Macrocyclic Agents. Invest Radiol 2015; 50:473-80. [PMID: 26107651 PMCID: PMC4494686 DOI: 10.1097/rli.0000000000000181] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To prospectively compare in healthy rats the effect of multiple injections of macrocyclic (gadoterate meglumine) and linear (gadodiamide) gadolinium-based contrast agents (GBCAs) on T1-weighted signal intensity in the deep cerebellar nuclei (DCN), including the dentate nucleus. MATERIALS AND METHODS Healthy rats (n = 7/group) received 20 intravenous injections of 0.6 mmol of gadolinium (Gd) per kilogram (4 injections per week during 5 weeks) of gadodiamide, gadoterate meglumine, or hyperosmolar saline (control group). Brain T1-weighted magnetic resonance imaging was performed before and once a week during the 5 weeks of injections and during 5 additional weeks (treatment-free period). Gadolinium concentrations were measured with inductively coupled plasma mass spectrometry in plasma and brain. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. RESULTS A significant and persistent T1 signal hyperintensity in DCN was observed only in gadodiamide-treated rats. The DCN-to-cerebellar cortex signal ratio was significantly increased from the 12th injection of gadodiamide (1.070 ± 0.024) compared to the gadoterate meglumine group (1.000 ± 0.033; P < 0.001) and control group (1.019 ± 0.022; P < 0.001) and did not significantly decrease during the treatment-free period. Total Gd concentrations in the gadodiamide group were significantly higher in the cerebellum (3.66 ± 0.91 nmol/g) compared with the gadoterate meglumine (0.26 ± 0.12 nmol/g; P < 0.05) and control (0.06 ± 0.10 nmol/g; P < 0.05) groups. CONCLUSIONS Repeated administrations of the linear GBCA gadodiamide to healthy rats are associated with progressive and persistent T1 signal hyperintensity in the DCN, with Gd deposition in the cerebellum in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.
Collapse
Affiliation(s)
- Philippe Robert
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | - Stéphane Lehericy
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | - Sylvie Grand
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | - Xavier Violas
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | - Nathalie Fretellier
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | - Jean-Marc Idée
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | - Sébastien Ballet
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | - Claire Corot
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut du Cerveau et de la Moelle Epinière (ICM), Centre de Neuroimagerie de Recherche (CENIR), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225, Paris; Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France; and ‡INSERM, U836, Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
14
|
Physico-chimie et profil toxicologique d’agents de contraste pour l’imagerie par résonance magnétique, les chélates de gadolinium. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 73:266-76. [DOI: 10.1016/j.pharma.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
|
15
|
Distribution profile of gadolinium in gadolinium chelate-treated renally-impaired rats: role of pharmaceutical formulation. Eur J Pharm Sci 2015; 72:46-56. [PMID: 25736527 DOI: 10.1016/j.ejps.2015.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 12/30/2022]
Abstract
While not acutely toxic, chronic hepatic effect of certain gadolinium chelates (GC), used as contrast agent for magnetic resonance imaging, might represent a risk in renally-impaired patients due to free gadolinium accumulation in the liver. To answer this question, this study investigated the consequences of the presence of small amounts of either a soluble gadolinium salt ("free" Gd) or low-stability chelating impurity in the pharmaceutical solution of gadoteric acid, a macrocyclic GC with high thermodynamic and kinetic stabilities, were investigated in renally-impaired rats. Renal failure was induced by adding 0.75% adenine in the diet for three weeks. The pharmaceutical and commercial solution of gadoteric acid was administered (5 daily intravenous injections of 2.5 mmol Gd/kg) either alone or after being spiked with either "free" gadolinium (i.e., 0.04% w/v) or low-stability impurity (i.e., 0.06 w/v). Another GC, gadodiamide (low thermodynamic and kinetic stabilities) was given as its commercial solution at a similar dose. Non-chelated gadolinium was tested at two doses (0.005 and 0.01 mmol Gd/kg) as acetate salt. Gadodiamide induced systemic toxicity (mortality, severe epidermal and dermal lesions) and substantial tissue Gd retention. The addition of very low amounts of "free", non-chelated gadolinium or low thermodynamic stability impurity to the pharmaceutical solution of the thermodynamically stable GC gadoteric acid resulted in substantial capture of metal by the liver, similar to what was observed in "free" gadolinium salt-treated rats. Relaxometry studies strongly suggested the presence of free and soluble gadolinium in the liver. Electron microscopy examinations revealed the presence of free and insoluble gadolinium deposits in hepatocytes and Kupffer cells of rats treated with gadoteric acid solution spiked with low-stability impurity, free gadolinium and gadodiamide, but not in rats treated with the pharmaceutical solution of gadoteric acid. The presence of impurities in the GC pharmaceutical solution may have long-term biological consequences.
Collapse
|
16
|
Fretellier N, Maazouz M, Luseau A, Baudimont F, Jestin-Mayer G, Bourgery S, Rasschaert M, Bruneval P, Factor C, Mecieb F, Idée JM, Corot C. Safety profiles of gadolinium chelates in juvenile rats differ according to the risk of dissociation. Reprod Toxicol 2014; 50:171-9. [DOI: 10.1016/j.reprotox.2014.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/08/2014] [Accepted: 10/28/2014] [Indexed: 12/01/2022]
|
17
|
Idée JM, Fretellier N, Robic C, Corot C. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update. Crit Rev Toxicol 2014; 44:895-913. [PMID: 25257840 DOI: 10.3109/10408444.2014.955568] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jean-Marc Idée
- Guerbet, Research & Innovation Division , Aulnay-sous-Bois , France
| | | | | | | |
Collapse
|
18
|
Gaur N, Flora G, Yadav M, Tiwari A. A review with recent advancements on bioremediation-based abolition of heavy metals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:180-93. [PMID: 24362580 DOI: 10.1039/c3em00491k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
There has been a significant rise in the levels of heavy metals (Pb, As, Hg and Cd) due to their increased industrial usage causing a severe concern to public health. The accumulation of heavy metals generates oxidative stress in the body causing fatal effects to important biological processes leading to cell death. Therefore, there is an imperative need to explore efficient and effective methods for the eradication of these heavy metals as against the conventionally used uneconomical and time consuming strategies that have numerous environmental hazards. One such eco-friendly, low cost and efficient alternative to target heavy metals is bioremediation technology that utilizes various microorganisms, green plants or enzymes for the abolition of heavy metals from polluted sites. This review comprehensively discusses toxicological manifestations of heavy metals along with the detailed description of bioremediation technologies employed such as phytoremediation and biosorption for the potential removal of these metals. It also updates readers about recent advances in bioremediation technologies like the use of nanoparticles, non-living biomass and transgenic crops.
Collapse
Affiliation(s)
- Nisha Gaur
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, M.P., India.
| | | | | | | |
Collapse
|
19
|
Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal 2013; 93:136-46. [PMID: 24257444 DOI: 10.1016/j.jpba.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
The investigation of microbial infections relies to a large part on animal models of infection, if host pathogen interactions or the host response are considered. Especially for the assessment of novel therapeutic agents, animal models are required. Non-invasive imaging methods to study such models have gained increasing importance over the recent years. In particular, magnetic resonance imaging (MRI) affords a variety of diagnostic options, and can be used for longitudinal studies. In this review, we introduce the most important MRI modalities that show how MRI has been used for the investigation of animal models of infection previously and how it may be applied in the future.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany.
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany
| |
Collapse
|