1
|
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non-coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14:17588359221118010. [PMID: 35983027 PMCID: PMC9379276 DOI: 10.1177/17588359221118010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, Research and Education Centre, 4-10 South Street, Kogarah, NSW 2217, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
2
|
Huang X, Li S, Liu X, Huang S, Li S, Zhuo M. Analysis of conserved miRNAs in cynomolgus macaque genome using small RNA sequencing and homology searching. PeerJ 2020; 8:e9347. [PMID: 32728489 PMCID: PMC7357559 DOI: 10.7717/peerj.9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators that fine-tune diverse cellular activities. Cynomolgus macaques (Macaca fascicularis) are used extensively in biomedical and pharmaceutical research; however, substantially fewer miRNAs have been identified in this species than in humans. Consequently, we investigated conserved miRNA profiles in cynomolgus macaques by homology searching and small RNA sequencing. In total, 1,455 high-confidence miRNA gene loci were identified, 408 of which were also confirmed by RNA sequencing, including 73 new miRNA loci reported in cynomolgus macaques for the first time. Comparing miRNA expression with age, we found a positive correlation between sequence conservation and expression levels during miRNA evolution. Additionally, we found that the miRNA gene locations in cynomolgus macaque genome were very flexible. Most were embedded in intergenic spaces or introns and clustered together. Several miRNAs were found in certain gene locations, including 64 exon-resident miRNAs, six splice-site-overlapping miRNAs (SO-miRNAs), and two pairs of distinct mirror miRNAs. We also identified 78 miRNA clusters, 68 of which were conserved in the human genome, including 10 large miRNA clusters predicted to regulate diverse developmental and cellular processes in cynomolgus macaque. Thus, this study not only expands the number of identified miRNAs in cynomolgus macaques but also provides clues for future research on the differences in miRNA repertoire between macaques and humans.
Collapse
Affiliation(s)
- Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shijia Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoming Liu
- Guangzhou Tulip Information Technologies Ltd., Guangzhou, Guangdong, China
| | - Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Nicolaidou V, Koufaris C. Application of transcriptomic and microRNA profiling in the evaluation of potential liver carcinogens. Toxicol Ind Health 2020; 36:386-397. [PMID: 32419640 DOI: 10.1177/0748233720922710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocarcinogens are agents that increase the incidence of liver cancer in exposed animals or humans. It is now established that carcinogenic exposures have a widespread impact on the transcriptome, inducing both adaptive and adverse changes in the activities of genes and pathways. Chemical hepatocarcinogens have also been shown to affect expression of microRNA (miRNA), the evolutionarily conserved noncoding RNA that regulates gene expression posttranscriptionally. Considerable effort has been invested into examining the involvement of mRNA in chemical hepatocarcinogenesis and their potential usage for the classification and prediction of new chemical entities. For miRNA, there has been an increasing number of studies reported over the past decade, although not to the same degree as for transcriptomic studies. Current data suggest that it is unlikely that any gene or miRNA signature associated with short-term carcinogen exposure can replace the rodent bioassay. In this review, we discuss the application of transcriptomic and miRNA profiles to increase mechanistic understanding of chemical carcinogens and to aid in their classification.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
4
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
5
|
Ma J, Li Y, Yao L, Li X. Analysis of MicroRNA Expression Profiling Involved in MC-LR-Induced Cytotoxicity by High-Throughput Sequencing. Toxins (Basel) 2017; 9:toxins9010023. [PMID: 28067858 PMCID: PMC5308255 DOI: 10.3390/toxins9010023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/27/2022] Open
Abstract
In recent years, microRNAs (miRNAs) in toxicology have attracted great attention. However, the underlying mechanism of miRNAs in the cytotoxicity of microcystin-LR (MC-LR) is lacking. The objective of this study is to analyze miRNA profiling in HepG2 cells after 24 h of MC-LR-exposure to affirm whether and how miRNAs were involved in the cytotoxicity of MC-LR. The results showed that totally 21 and 37 miRNAs were found to be significantly altered in the MC-LR treated cells at concentrations of 10 and 50 μM, respectively, when compared to the control cells. In these two groups, 37,566 and 39,174 target genes were predicted, respectively. The further analysis showed that MC-LR-exposure promoted the expressions of has-miR-149-3p, has-miR-449c-5p, and has-miR-454-3p while suppressed the expressions of has-miR-4286, has-miR-500a-3p, has-miR-500a-5p, and has-miR-500b-5p in MC-LR-treated groups when compared to the control group. Moreover, the result of qPCR confirmed the above result, suggesting that these miRNAs may be involved in MC-LR-hepatotoxicity and they may play an important role in the hepatitis and liver cancer caused by MC-LR. The target genes for differentially expressed miRNAs in MC-LR treatment groups were significantly enriched to totally 23 classes of GO, in which three were significantly enriched in both 10 and 50 μM MC-LR groups. Moreover, the results of KEGG pathway analysis showed that MC-LR-exposure altered some important signaling pathways such as MAPK, biosynthesis of secondary metabolites, and pyrimidine and purine metabolism, which were possibly negatively regulated by the corresponding miRNAs and might play important role in MC-LR-mediated cytotoxicity in HepG2 cells.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lan Yao
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
6
|
Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop. Regul Toxicol Pharmacol 2016; 82:127-139. [DOI: 10.1016/j.yrtph.2016.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
|
7
|
Huang H, Zhang K, Zhou Y, Ding X, Yu L, Zhu G, Guo J. MicroRNA-155 targets cyb561d2 in zebrafish in response to fipronil exposure. ENVIRONMENTAL TOXICOLOGY 2016; 31:877-886. [PMID: 25532856 DOI: 10.1002/tox.22099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs), which are a class of small noncoding RNAs, can modulate the expression of many protein-coding genes when an organism is exposed to an environmental chemical. We previously demonstrated that miR-155 was significantly downregulated in adult zebrafish (Danio rerio) in response to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile) exposure. However, the regulation of this miRNA's predicted target gene cyb561d2, which is a member of the cytochrome b561 (cyt b561) family involved in electron transfer, cell defence, and chemical stress, has not been experimentally validated to date. In this study, we evaluated the effects of fipronil on miR-155 and cyb561d2 in zebrafish. The expression of miR-155 was downregulated, whereas cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil. The dual luciferase report assay demonstrated that miR-155 interacted with cyb561d2 3'-untranslated regions (3'-UTR). The expression of cyb561d2 was reduced in both mRNA and protein levels when ZF4 cells were transfected with an miR-155 mimic, whereas its expression levels of both mRNA and protein were increased when endogenous miR-155 was inhibited by transfection with an miR-155 inhibitor. The results improved our understanding of molecular mechanism of toxicity upon fipronil exposure, and presents miR-155 as a potential novel toxicological biomarker for chemical exposure. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 877-886, 2016.
Collapse
Affiliation(s)
- Hannian Huang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Department of Applied Engineering, Zhejiang Economic & Trade Polytechnic, Hangzhou, 310018, People's Republic of China
| | - Kai Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yongyong Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xianfeng Ding
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Liang Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Jiangfeng Guo
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
8
|
Koufaris C. Human and primate-specific microRNAs in cancer: Evolution, and significance in comparison with more distantly-related research models. Bioessays 2016; 38:286-94. [DOI: 10.1002/bies.201500135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Costas Koufaris
- Department of Cytogenetics and Genomics; Cyprus institute of Neurology and Genetics; Nicosia Cyprus
| |
Collapse
|
9
|
Gulyaeva L, Chanyshev M, Kolmykov S, Ushakov D, Nechkin S. Effect of xenobiotics on microrna expression in rat liver. ACTA ACUST UNITED AC 2016; 62:154-9. [DOI: 10.18097/pbmc20166202154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using bioinformatics analysis we selected microRNAs which could bind 3'-UTR-region of cytochrome P450 (CYP) genes. Three microRNA miR-21, -221, -222, their potential targets might be mRNA for CYP1A1, and two microRNA miR-143, miR-152 for CYP2B1 accordingly were selected for experimental verification. Expression level of these microRNAs in rat liver upon benzo(a)pyrene (BP), phenobarbital (PB), and DDT induction was determined using RT-qPCR method. In rats treated by both BP, and DDT the hepatic content of miR-21, -221, -222 significantly demonstrated a 2-3-fold decrease. The decrease in miR expression was accompanied by a considerable (5.5-8.7-fold) increase in the CYP1A1-mediated EROD activity. The expression of miR-143 remained unchanged after the PB treatment, while the expression of miR-152 increased by 2 times, however, the (10.5-fold) increase in PROD activity of CYP2B was much higher. In the DDT-treated liver PROD activity increased by 20 times, the expression of miR-152 didn't change, and the expression of miR-143 increased by 2 times. The bioinformatics analysis of interactions between microRNAs and targets showed that the studied miRs can potentially bind 3'-end of AhR, ESR1, GR, CCND1, PTEN mRNA. Thus, the expression profile of miR-21, -221, -222, -143, -152 might change under the xenobiotics exposure. In silico analysis confirmed, that microRNAs target not only cytochrome P450 mRNA but also other genes, including those involved in hormonal carcinogenesis, they also can be regulated with studied miRs
Collapse
Affiliation(s)
- L.F. Gulyaeva
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - M.D. Chanyshev
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | | | - D.S. Ushakov
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - S.S. Nechkin
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia; Novosibirsk State Pedagogical University, Novosibirsk, Russia
| |
Collapse
|
10
|
Segal CV, Koufaris C, Powell C, Gooderham NJ. Effects of treatment with androgen receptor ligands on microRNA expression of prostate cancer cells. Toxicology 2015; 333:45-52. [PMID: 25846647 DOI: 10.1016/j.tox.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/26/2022]
Abstract
Post-transcriptional regulation by microRNA (miRNA) is an important aspect of androgen receptor (AR) signalling in prostate cancer cells. However, the global profiling of miRNA expression in prostate cancer cells following treatment with AR ligands has not been reported so far. In this study we examined the effect of treatment with two AR agonists (mibolerone (MIB) and dihydrotestosterone (DHT)) and an AR antagonist (bicalutamide (BIC)) on miRNA expression in the human androgen-dependent LNCaP prostate cancer cell line using microarray technology and verification of selected miRNA using quantitative real-time PCR (qRT-PCR). No miRNA was identified as differentially expressed following treatment with the AR antagonist BIC. In contrast, a number of common and compound-specific alterations in miRNA expression were observed following treatment with AR agonists. Unexpectedly it was found that treatment with the AR agonists resulted in the repression of miR-221, a miRNA previously established to be involved with prostate cancer development. This observation indicates that this miRNA may have a more complex role in prostate cancer development than considered previously. Treatment with MIB led to an induction of miR-210 expression, a hypoxia-related miRNA. This miRNA is reported to be involved in cell adaptation to hypoxia and thus induction in conditions of normoxia may be important in driving metabolic changes observed in prostate cancer. Thus examining the effect of AR agonists and antagonists on miRNA expression can provide novel insights into the response of cells to AR ligands and subsequent downstream events.
Collapse
Affiliation(s)
- Corrinne V Segal
- Department of Surgery & Cancer, Biomolecular Medicine, Imperial College London, London SW72AZ, UK
| | - Costas Koufaris
- Department of Cytogenetics and Genomics, Cyprus Institute of Neurology and Genetics, Cyprus
| | | | - Nigel J Gooderham
- Department of Surgery & Cancer, Biomolecular Medicine, Imperial College London, London SW72AZ, UK.
| |
Collapse
|
11
|
Nicolaidou V, Koufaris C. MicroRNA responses to environmental liver carcinogens: Biological and clinical significance. Clin Chim Acta 2015; 445:25-33. [PMID: 25773117 DOI: 10.1016/j.cca.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Abstract
A large number of biological, chemical, and dietary factors have been implicated in the development of liver cancer. These involve complex and protracted interactions between genetic, epigenetic, and environmental factors. The survival rate for patients diagnosed with late-stage liver cancer is currently low due to the aggressive nature of the disease and resistance to therapy. An increasing body of evidence has offered support for the crucial role of non-coding microRNA (miRNA) in directing hepatic responses to environmental risk factors for liver cancer. In this review we focus on miRNA responses to environmental liver cancer risk factors and their potential biological and clinical significance.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Cyprus; Center for the study of Haematological Malignancies, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Cytogenetics and Genomic, Cyprus Institute of Neurology and Genetics, Cyprus.
| |
Collapse
|
12
|
Marrone AK, Beland FA, Pogribny IP. Noncoding RNA response to xenobiotic exposure: an indicator of toxicity and carcinogenicity. Expert Opin Drug Metab Toxicol 2014; 10:1409-22. [PMID: 25171492 DOI: 10.1517/17425255.2014.954312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Human exposure to certain environmental and occupational chemicals is one of the major risk factors for noncommunicable diseases, including cancer. Therefore, it is desirable to take advantage of subtle exposure-related adverse cellular events for early disease detection and to identify potential dangers caused by new and currently under-evaluated drugs and chemicals. Nongenotoxic events due to carcinogen/toxicant exposure are a general hallmark of sustained cellular stress leading to tumorigenesis. These processes are globally regulated via noncoding RNAs (ncRNAs). Tumorigenesis-associated genotoxic and nongenotoxic events lead to the altered expression of ncRNAs and may provide a mechanistic link between chemical exposure and tumorigenesis. Current advances in toxicogenomics are beginning to provide valuable insight into gene-chemical interactions at the transcriptome level. AREAS COVERED In this review, we summarize recent information about the impact of xenobiotics on ncRNAs. Evidence highlighted in this review suggests a critical role of ncRNAs in response to carcinogen/toxicant exposure. EXPERT OPINION Benefits for the use of ncRNAs in carcinogenicity assessment include remarkable tissue specificity, early appearance, low baseline variability, and their presence and stability in biological fluids, which suggests that the incorporation of ncRNAs in the evaluation of cancer risk assessment may enhance substantially the efficiency of toxicity and carcinogenicity testing.
Collapse
Affiliation(s)
- April K Marrone
- Commissioner Fellow, Research Chemist,National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|
13
|
Gooderham N, Koufaris C. Using microRNA profiles to predict and evaluate hepatic carcinogenic potential. Toxicol Lett 2014; 228:127-32. [DOI: 10.1016/j.toxlet.2014.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 01/17/2023]
|
14
|
Koufaris C, Wright J, Osborne M, Currie RA, Gooderham NJ. Time and dose-dependent effects of phenobarbital on the rat liver miRNAome. Toxicology 2013; 314:247-53. [PMID: 24157574 DOI: 10.1016/j.tox.2013.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022]
Abstract
In a previous study we had shown that treatment of male Fischer rats with exogenous chemicals for three months resulted in prominent, mode-of-action dependent effects on liver microRNA (miRNA) (Koufaris et al., 2012). Here we investigated how the effects of chemicals on liver miRNA in male Fischer rats relate to the length and dose of exposure to phenobarbital (PB), a drug with multiple established hepatic effects. Importantly, although acute PB treatment (1-7 days) had significant effects on liver mRNA and the expected effects on the liver phenotype (transient hyperplasia, hepatomegaly, cytochrome P450 induction), limited effects on liver miRNA were observed. However, at 14 days of PB treatment clear dose-dependent effects on miRNA were observed. The main effect of PB treatment from days 1 to 90 on liver miRNA was found to be the persistent, progressive, and highly correlated induction of the miR-200a/200b/429 and miR-96/182 clusters, occurring after the termination of the xenobiotic-induced transient hyperplasia. Moreover, in agreement with their reported functions in the literature we found associations between perturbations of miR-29b and miR-200a/200b by PB with global DNA methylation and zeb1/zeb2 proteins respectively. Our data suggest that miRNA are unlikely to play an important role in the acute responses of the adult rodent liver to PB treatment. However, the miRNA responses to longer PB exposures suggest a potential role for maintaining liver homeostasis in response to sub-chronic and chronic xenobiotic-induced perturbations. Similar studies for more chemicals are needed to clarify whether the temporal and dose pattern of miRNA-toxicant interaction identified here for PB are widely applicable to other xenobiotics.
Collapse
Affiliation(s)
- Costas Koufaris
- Surgery and Cancer, Imperial College London, SW72AZ, UK; Department of Cytogenetics and Genomics, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
15
|
Mor E, Shomron N. Species-specific microRNA regulation influences phenotypic variability: perspectives on species-specific microRNA regulation. Bioessays 2013; 35:881-8. [PMID: 23864354 DOI: 10.1002/bies.201200157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenotypic divergence among animal species may be due in part to species-specific (SS) regulation of gene expression by small, non-coding regulatory RNAs termed "microRNAs". This phenomenon can be modulated by several variables. First, microRNA genes vary by their level of conservation, many of them being SS, or unique to a particular evolutionary lineage. Second, microRNA expression levels vary spatially and temporally in different species. Lastly, while microRNAs bind the 3'UTR of target genes in order to silence their expression, the binding sites themselves are often non-conserved. The variability of the miRNA-target paradigm between different species is thus multifactorial, and this paradigm has only just started to gain attention from researchers in various fields. Here we present and discuss recent findings regarding the characteristics and implications of SS microRNA regulation.
Collapse
Affiliation(s)
- Eyal Mor
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
16
|
Moorthi A, Vimalraj S, Avani C, He Z, Partridge NC, Selvamurugan N. Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment. Int J Biol Macromol 2013; 56:181-5. [PMID: 23469762 DOI: 10.1016/j.ijbiomac.2013.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/13/2013] [Accepted: 02/20/2013] [Indexed: 11/25/2022]
Abstract
Osteoblast differentiation is tightly regulated by post transcriptional regulators such as microRNAs (miRNAs). Several bioactive materials including nano-bioglass ceramic particles (nBGC) influence differentiation of the osteoblasts, but the molecular mechanisms of nBGC-stimulation of osteoblast differentiation via miRNAs are not yet determined. In this study, we identified that nBGC-treatment stimulated miR-30c expression in human osteoblastic cells (MG63). The bioinformatics tools identified its regulatory network, molecular function, biological processes and its target genes involved in negative regulation of osteoblast differentiation. TGIF2 and HDAC4 were found to be its putative target genes and their expression was down regulated by nBGC-treatment in MG63 cells. Thus, this study advances our understanding of nBGC action on bone cells and supports utilization of nBGC in bone tissue engineering.
Collapse
Affiliation(s)
- A Moorthi
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|