1
|
Li T, Björvang RD, Hao J, Di Nisio V, Damdimopoulos A, Lindskog C, Papaikonomou K, Damdimopoulou P. Persistent organic pollutants dysregulate energy homeostasis in human ovaries in vitro. ENVIRONMENT INTERNATIONAL 2024; 187:108710. [PMID: 38701644 DOI: 10.1016/j.envint.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Exposure to persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), has historically been linked to population collapses in wildlife. Despite international regulations, these legacy chemicals are still currently detected in women of reproductive age, and their levels correlate with reduced ovarian reserve, longer time-to-pregnancy, and higher risk of infertility. However, the specific modes of action underlying these associations remain unclear. Here, we examined the effects of five commonly occurring POPs - hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (DDE), 2,3,3',4,4',5-hexachlorobiphenyl (PCB156), 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180), perfluorooctane sulfonate (PFOS) - and their mixture on human ovaries in vitro. We exposed human ovarian cancer cell lines COV434, KGN, and PA1 as well as primary ovarian cells for 24 h, and ovarian tissue containing unilaminar follicles for 6 days. RNA-sequencing of samples exposed to concentrations covering epidemiologically relevant levels revealed significant gene expression changes related to central energy metabolism in the exposed cells, indicating glycolysis, oxidative phosphorylation, fatty acid metabolism, and reactive oxygen species as potential shared targets of POP exposures in ovarian cells. Alpha-enolase (ENO1), lactate dehydrogenase A (LDHA), cytochrome C oxidase subunit 4I1 (COX4I1), ATP synthase F1 subunit alpha (ATP5A), and glutathione peroxidase 4 (GPX4) were validated as targets through qPCR in additional cell culture experiments in KGN. In ovarian tissue cultures, we observed significant effects of exposure on follicle growth and atresia as well as protein expression. All POP exposures, except PCB180, decreased unilaminar follicle proportion and increased follicle atresia. Immunostaining confirmed altered expression of LDHA, ATP5A, and GPX4 in the exposed tissues. Moreover, POP exposures modified ATP production in KGN and tissue culture. In conclusion, our results demonstrate the disruption of cellular energy metabolism as a novel mode of action underlying POP-mediated interference of follicle growth in human ovaries.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Jie Hao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, PR China.
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Research Program, Uppsala University, Uppsala, Sweden.
| | - Kiriaki Papaikonomou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Dou L, Mou F, Li J, Wang S. The endocrine disruptor hexachlorobenzene can cause oxidative damage in the testis of mice. Andrologia 2021; 53:e14195. [PMID: 34374107 DOI: 10.1111/and.14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Hexachlorobenzene is a widespread endocrine disruptor. However, the effect of hexachlorobenzene on the reproductive toxicity of male animals is not described in detail. To investigate the toxic effects of hexachlorobenzene in mouse testes, hexachlorobenzene (100, 400 and 1,600 mg/kg) is fed to mice. The morphology of the testes was analysed by haematoxylin and eosin staining. We also investigated the expression of biomarkers for oxidative stress. Database screening identified proteins that interact with hexachlorobenzene and the aryl hydrocarbon receptor, a weak ligand of hexachlorobenzene. Gene enrichment analysis and protein-protein interaction analyses were also performed. Real-time PCR detected the expression levels of the aryl hydrocarbon receptor in four different stages of testicular cells. We identified significantly increased activity levels of superoxide dismutase (p < 0.05) and catalase (p < 0.05) in mouse testes that had been subjected to oxidative damage. The cell thickness and the number of cell layers in the seminiferous tubules had decreased by varying degrees after the hexachlorobenzene treatment. Particularly, cytokines and proteins involved in transcriptional regulation showed enrichment. The highest levels of aryl hydrocarbon receptor expression were detected in the spermatocytic cell line. Hexachlorobenzene exposure caused testicular damage in mice. The toxicity characteristics of hexachlorobenzene were not dose-dependent.
Collapse
Affiliation(s)
- Lu Dou
- Central Laboratory, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Fangzheng Mou
- Internal Medicine of Traditional Chinese Medicine, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Jing Li
- Central Laboratory, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China.,College of Life Sciences, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Shuhong Wang
- Department of Andrology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| |
Collapse
|
3
|
Maner J, Burkard M, Cassano JC, Nash SMB, Schirmer K, Suter MJF. Hexachlorobenzene exerts genotoxic effects in a humpback whale cell line under stable exposure conditions. RSC Adv 2019; 9:39447-39457. [PMID: 35540658 PMCID: PMC9076109 DOI: 10.1039/c9ra05352b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Humpback whales, like other polar wildlife, accumulate persistent organic pollutants. In Southern hemisphere populations, hexachlorobenzene (HCB) dominates the contaminant profiles. HCB is linked to a variety of health effects and is classified as a group 2B carcinogen, but the mechanism of action is a matter of contention. Potential toxicological effects to humpback whales remain entirely unknown. The recently established humpback whale fibroblast cell line (HuWa) offers an in vitro model for toxicological investigations. We here combine this novel cell line with a passive dosing strategy to investigate whale-specific toxicity of HCB. The relevant partitioning coefficients were determined to produce stable and predictable exposure concentrations in small-scale bioassays. The system was used to assess acute toxicity as well as genotoxicity of HCB to the HuWa cell line. While we found some transient reductions in metabolic activity, measured with the indicator dye alamarBlue, no clear acute toxic effects were discernible. Yet, a significant increase in DNA damage, detected in the alkaline comet assay, was found in HuWa cells exposed to 10 μg L-1 HCB during the sensitive phase of cell attachment. Collectively, this work provides a ready-to-use passive dosing system and delivers evidence that HCB elicits genotoxicity in humpback whale cells.
Collapse
Affiliation(s)
- Jenny Maner
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| | - Michael Burkard
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Juan Carlos Cassano
- Empa, Swiss Laboratories for Material Science and Technology, Particle-Biology Interactions Laboratory 9014 St Gallen Switzerland
| | - Susan M Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Kristin Schirmer
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne 1015 Lausanne Switzerland
| | - Marc J-F Suter
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| |
Collapse
|
4
|
Miret NV, Pontillo CA, Zárate LV, Kleiman de Pisarev D, Cocca C, Randi AS. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. ENVIRONMENTAL RESEARCH 2019; 173:330-341. [PMID: 30951959 DOI: 10.1016/j.envres.2019.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Breast cancer incidence is increasing globally and exposure to endocrine disruptors has gained importance as a potential risk factor. Hexachlorobenzene (HCB) was once used as a fungicide and, despite being banned, considerable amounts are still released into the environment. HCB acts as an endocrine disruptor in thyroid, uterus and mammary gland and was classified as possibly carcinogenic to human. This review provides a thorough analysis of results obtained in the last 15 years of research and evaluates data from assays in mammary gland and breast cancer in diverse animal models. We discuss the effects of environmentally relevant HCB concentrations on the normal mammary gland and different stages of carcinogenesis, and attempt to elucidate its mechanisms of action at molecular level. HCB weakly binds to the aryl hydrocarbon receptor (AhR), activating both membrane (c-Src) and nuclear pathways. Through c-Src stimulation, AhR signaling interacts with other membrane receptors including estrogen receptor-α, insulin-like growth factor-1 receptor, epidermal growth factor receptor and transforming growth factor beta 1 receptors. In this way, several pathways involved in mammary morphogenesis and breast cancer development are modified, inducing tumor progression. HCB thus stimulates epithelial cell proliferation, preneoplastic lesions and alterations in mammary gland development as well as neoplastic cell migration and invasion, metastasis and angiogenesis in breast cancer. In conclusion, our findings support the hypothesis that the presence and bioaccumulation of HCB in high-fat tissues and during highly sensitive time windows such as pregnancy, childhood and adolescence make exposure a risk factor for breast tumor development.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, CP1113, Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Vriens A, Nawrot TS, Janssen BG, Baeyens W, Bruckers L, Covaci A, De Craemer S, De Henauw S, Den Hond E, Loots I, Nelen V, Schettgen T, Schoeters G, Martens DS, Plusquin M. Exposure to Environmental Pollutants and Their Association with Biomarkers of Aging: A Multipollutant Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5966-5976. [PMID: 31041867 DOI: 10.1021/acs.est.8b07141] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mitochondrial DNA (mtDNA) content and telomere length are putative aging biomarkers and are sensitive to environmental stressors, including pollutants. Our objective was to identify, from a set of environmental exposures, which exposure is associated with leukocyte mtDNA content and telomere length in adults. This study includes 175 adults from 50 to 65 years old from the cross-sectional Flemish Environment and Health study, of whom leukocyte telomere length and mtDNA content were determined using qPCR. The levels of exposure of seven metals, 11 organohalogens, and four perfluorinated compounds (PFHxS, PFNA, PFOA, PFOS) were measured. We performed sparse partial least-squares regression analyses followed by ordinary least-squares regression to assess the multipollutant associations. While accounting for possible confounders and coexposures, we identified that urinary cadmium (6.52%, 95% confidence interval, 1.06, 12.28), serum hexachlorobenzene (2.89%, 018, 5.68), and perfluorooctanesulfonic acid (11.38%, 5.97, 17.08) exposure were positively associated ( p < 0.05) with mtDNA content, while urinary copper (-9.88%, -14.82, -4.66) and serum perfluorohexanesulfonic acid (-4.75%, -8.79, -0.54) exposure were inversely associated with mtDNA content. Urinary antimony (2.69%, 0.45, 4.99) and mercury (1.91%, 0.42, 3.43) exposure were positively associated with leukocyte telomere length, while urinary copper (-3.52%, -6.60, -0.34) and serum perfluorooctanesulfonic acid (-3.64%, -6.60, -0.60) showed an inverse association. Our findings support the hypothesis that environmental pollutants interact with molecular hallmarks of aging.
Collapse
Affiliation(s)
- Annette Vriens
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
- Department of Public Health & Primary Care , Leuven University , Leuven 3000 , Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry , Vrije Universiteit Brussel , Brussels 1050 , Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics , Hasselt University , Diepenbeek 3590 , Belgium
| | | | - Sam De Craemer
- Department of Analytical and Environmental Chemistry , Vrije Universiteit Brussel , Brussels 1050 , Belgium
| | - Stefaan De Henauw
- Department of Public Health , Ghent University , Ghent 9000 , Belgium
| | - Elly Den Hond
- Provincial Institute for Hygiene , Antwerp 2000 , Belgium
| | | | - Vera Nelen
- Provincial Institute for Hygiene , Antwerp 2000 , Belgium
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty , RWTH Aachen University , Aachen 52062 , Germany
| | - Greet Schoeters
- Environmental Risk and Health , Flemish Institute for Technological Research (VITO) , Mol 2400 , Belgium
| | - Dries S Martens
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| |
Collapse
|
6
|
Huang H, Lv W, Chen Y, Zheng X, Hu Y, Wang R, Huang M, Tang H. The Role of NADPH Oxidase in the Inhibition of Trichophyton rubrum by 420-nm Intense Pulsed Light. Front Microbiol 2018; 8:2636. [PMID: 29375505 PMCID: PMC5767184 DOI: 10.3389/fmicb.2017.02636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives: To evaluate the effect of intense pulsed light (IPL) on Trichophyton rubrum and investigate its mechanism of action. Methods: The viability of fungi treated with IPL alone and with IPL combined with an NADPH oxidase inhibitor (DPI) pretreatment was determined by MTT assays. The reactive oxygen species (ROS) were quantified with a DCFH-DA fluorescent probe. Malondialdehyde (MDA) content and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined by commercial kits. The transcription of the Nox gene was quantified using quantitative real-time PCR (qRT-PCR) analysis, and micromorphology was observed using scanning electron microscopy (SEM). In addition, fungal keratinase activity was detected by measuring dye release from keratin azure. Results: The growth declined with statistical significance after 6 h of treatment (P < 0.001). The ROS and MDA content increased after IPL treatment, whereas the SOD and GSH-Px activity decreased. Nox gene expression was upregulated, and the micromorphology was damaged. Keratinase activity decreased. Fungi that received DPI pretreatment exhibited contrasting outcomes. Conclusion: We found that 420-nm IPL significantly inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism involves Nox as a factor that mediates 420-nm IPL-induced oxidative damage of T. rubrum.
Collapse
Affiliation(s)
- Hao Huang
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Weibiao Lv
- Clinical Laboratory, Shunde Hospital, Southern Medical University, Foshan, China
| | - Ying Chen
- Department of Dermatology, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, China
| | - Xiufeng Zheng
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yong Hu
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Ruihua Wang
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Meiling Huang
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Hongfeng Tang
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
7
|
Starek-Świechowicz B, Budziszewska B, Starek A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol Rep 2017; 69:1232-1239. [DOI: 10.1016/j.pharep.2017.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
|
8
|
Miret N, Rico-Leo E, Pontillo C, Zotta E, Fernández-Salguero P, Randi A. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-β1 and aryl hydrocarbon receptor signaling. Toxicol Appl Pharmacol 2017; 334:192-206. [DOI: 10.1016/j.taap.2017.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
|
9
|
黄 昊, 汤 红, 陈 颖, 郑 秀, 胡 勇, 王 瑞, 黄 美. [Effect of intense pulsed light on Trichophyton rubrum growth in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:853-857. [PMID: 28669966 PMCID: PMC6744133 DOI: 10.3969/j.issn.1673-4254.2017.06.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect of 420 nm intense pulsed light on Trichophyton rubrum growth in vitro and explore the mechanism. METHODS The fungal conidia were divided into treatment group with intense pulse light irradiation and control group without irradiation. The surface areas of the fungal colonies were photographed before irradiation and on the 2nd and 3rd days after irradiation to observe the changes in fungal growth. The viability of the fungus in suspension was detected at 6 h after irradiation using MTT assay. The intracellular reactive oxygen species (ROS) level in the fungus was determined using DCFH-DA fluorescent probe, and the MDA content was detected using TBA method. RESULTS Intense pulse light (420 nm) irradiation caused obvious injuries in Trichophyton rubrum with the optimal effective light dose of 12 J/cm2 in 12 pulses. At 6 h after the irradiation, the fungus in suspension showed a 30% reduction of viability (P<0.05), and the fungal colonies showed obvious growth arrest without further expansion. Compared to the control group, the irradiated fungus showed significant increases in ROS level and MDA content (P<0.05). CONCLUSION Intense pulse light (420 nm) irradiation can induce oxidative stress in Trichophyton rubrum to lead to fungal injuries and death.
Collapse
Affiliation(s)
- 昊 黄
- />南方医科大学附属顺德第一人民医院皮肤科,广东 佛山 528300Department of Dermatology, Shunde First People's Hospital Affiliated to Southern Medical University, Foshan 528300, China
| | - 红峰 汤
- />南方医科大学附属顺德第一人民医院皮肤科,广东 佛山 528300Department of Dermatology, Shunde First People's Hospital Affiliated to Southern Medical University, Foshan 528300, China
| | - 颖 陈
- />南方医科大学附属顺德第一人民医院皮肤科,广东 佛山 528300Department of Dermatology, Shunde First People's Hospital Affiliated to Southern Medical University, Foshan 528300, China
| | - 秀芬 郑
- />南方医科大学附属顺德第一人民医院皮肤科,广东 佛山 528300Department of Dermatology, Shunde First People's Hospital Affiliated to Southern Medical University, Foshan 528300, China
| | - 勇 胡
- />南方医科大学附属顺德第一人民医院皮肤科,广东 佛山 528300Department of Dermatology, Shunde First People's Hospital Affiliated to Southern Medical University, Foshan 528300, China
| | - 瑞华 王
- />南方医科大学附属顺德第一人民医院皮肤科,广东 佛山 528300Department of Dermatology, Shunde First People's Hospital Affiliated to Southern Medical University, Foshan 528300, China
| | - 美玲 黄
- />南方医科大学附属顺德第一人民医院皮肤科,广东 佛山 528300Department of Dermatology, Shunde First People's Hospital Affiliated to Southern Medical University, Foshan 528300, China
| |
Collapse
|
10
|
Enhanced cyclooxygenase-2 expression levels and metalloproteinase 2 and 9 activation by Hexachlorobenzene in human endometrial stromal cells. Biochem Pharmacol 2016; 109:91-104. [DOI: 10.1016/j.bcp.2016.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/29/2016] [Indexed: 11/18/2022]
|
11
|
Shen Q, Zhou W, Li H, Hu L, Mo H. ROS Involves the Fungicidal Actions of Thymol against Spores of Aspergillus flavus via the Induction of Nitric Oxide. PLoS One 2016; 11:e0155647. [PMID: 27196096 PMCID: PMC4872997 DOI: 10.1371/journal.pone.0155647] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023] Open
Abstract
Aspergillus flavus is a well-known pathogenic fungus for both crops and human beings. The acquisition of resistance to azoles by A. flavus is leading to more failures occurring in the prevention of infection by A. flavus. In this study, we found that thymol, one of the major chemical constituents of the essential oil of Monarda punctate, had efficient fungicidal activity against A. flavus and led to sporular lysis. Further studies indicated that thymol treatment induced the generation of both ROS and NO in spores, whereas NO accumulation was far later than ROS accumulation in response to thymol. By blocking ROS production with the inhibitors of NADPH oxidase, NO generation was also significantly inhibited in the presence of thymol, which indicated that ROS induced NO generation in A. flavus in response to thymol treatment. Moreover, the removal of either ROS or NO attenuated lysis and death of spores exposed to thymol. The addition of SNP (exogenous NO donor) eliminated the protective effects of the inhibitors of NADPH oxidase on thymol-induced lysis and death of spores. Taken together, it could be concluded that ROS is involved in spore death induced by thymol via the induction of NO.
Collapse
Affiliation(s)
- Qingshan Shen
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Wei Zhou
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongbo Li
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Haizhen Mo
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
12
|
Chiappini F, Pontillo C, Randi A, Alvarez L, Kleiman de Pisarev DL. Hexachlorobenzene induces TGF-β1 expression, which is a regulator of p27 and cyclin D1 modifications. Toxicol Lett 2014; 230:1-9. [DOI: 10.1016/j.toxlet.2014.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022]
|