1
|
Sreedharan S, Zouganelis G, Drake SJ, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:1-27. [PMID: 36474307 DOI: 10.1080/10937404.2022.2153456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of nanomaterials (NMs) into an ever-expanding number of daily used products has proven to be highly desirable in numerous industries and applications. Unfortunately, the same "nano" specific physicochemical properties, which make these materials attractive, may also contribute to hazards for individuals exposed to these materials. In 2021, it was estimated that 7 out of 10 deaths globally were accredited to chronic diseases, such as chronic liver disease, asthma, and cardiovascular-related illnesses. Crucially, it is also understood that a significant proportion of global populace numbering in the billions are currently living with a range of chronic undiagnosed health conditions. Due to the significant number of individuals affected, it is important that people suffering from chronic disease also be considered and incorporated in NM hazard assessment strategies. This review examined and analyzed the literature that focused on NM-induced adverse health effects in models which are representative of individuals exhibiting pre-existing medical conditions with focus on the pulmonary, cardiovascular, hepatic, gastrointestinal, and central nervous systems. The overall objective of this review was to outline available data, highlighting the important role of pre-existing disease in NM-induced toxicity with the aim of establishing a weight of evidence approach to inform the public on the potential hazards posed by NMs in both healthy and compromised persons in general population.
Collapse
|
2
|
Deng R, Ma P, Li B, Wu Y, Yang X. Development of allergic asthma and changes of intestinal microbiota in mice under high humidity and/or carbon black nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113786. [PMID: 35738102 DOI: 10.1016/j.ecoenv.2022.113786] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
In respiratory diseases, the induction of allergic asthma is one of the hottest issues of international concern. The adjuvant effect of air pollutants including nanoparticles (NPs) has be pointed out to facilitate the occurrence and development of allergic asthma. This work studied the development of allergic asthma upon exposures of carbon black nanoparticles (CB NPs, 30-50 nm) and/or high environmental humidity (90% relative humidity). The mechanisms involved were investigated from perspectives of the activation of oxidative stress and transient receptor potential vanilloid 1 (TRPV1) pathways and the alteration in intestinal microbiota. Both high humidity and CB NPs aggravated the airway hyperreactivity, remodeling, and inflammation in Balb/c mice sensitized by ovalbumin. The co-exposure of these two risk factors exhibited adjuvant effect on the development of asthma likely through activating oxidative stress pathway and TRPV1 pathway and then facilitating type I hypersensitivity. Additionally, exposures of high humidity and/or CB NPs reduced the richness of intestinal microbes, altered microbial community composition, and weakened corresponding biological functions, which may interact with the development of asthma. The findings will add new toxicological knowledge to the health risk assessment and management of co-exposures of NPs and other risk factors in the environment.
Collapse
Affiliation(s)
- Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| | - Ping Ma
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baizhan Li
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Yang Wu
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Institute of Eastern-Himalaya Biodiversity Research, Dali university, Dali 671003, China
| |
Collapse
|
3
|
|
4
|
Lugani Y, Sooch BS, Singh P, Kumar S. Nanobiotechnology applications in food sector and future innovations. MICROBIAL BIOTECHNOLOGY IN FOOD AND HEALTH 2021. [PMCID: PMC7499077 DOI: 10.1016/b978-0-12-819813-1.00008-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Mitarotonda R, Giorgi E, Desimone MF, De Marzi MC. Nanoparticles and Immune Cells. Curr Pharm Des 2019; 25:3960-3982. [DOI: 10.2174/1381612825666190926161209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles have gained ground in several fields. However, it is important to consider their potentially
hazardous effects on humans, flora, and fauna. Human exposure to nanomaterials can occur unintentionally
in daily life or in industrial settings, and the continuous exposure of the biological components (cells, receptors,
proteins, etc.) of the immune system to these particles can trigger an unwanted immune response (activation or
suppression). Here, we present different studies that have been carried out to evaluate the response of immune
cells in the presence of nanoparticles and their possible applications in the biomedical field.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Martín F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica, Buenos Aires, Argentina
| | - Mauricio C. De Marzi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Abstract
PurposeNanotechnology as an emerging area if adequately harnessed could revolutionise food packaging and food processing industry worldwide. Although several benefits of nano-materials or particles in food packaging have been suggested, potential risks and health hazards of nano-materials or particles are possible as a result of migration of their particles into food materials. The purpose of this review therefore assessed nanotechnology and its applications in food packaging, consumer acceptability of nano-packaged foods and potential hazards and safety issues in nano-packaged foods.Design/methodology/approachThis review takes a critical assessment of previous literature on nanotechnology and its impact on food packaging, consumer health and safety.FindingsApplications of nanotechnology in food packaging could be divided into three main divisions: improved packaging, which involves mixing nano-materials into polymers matrix to improve temperature, humidity and gas barrier resistance of the packaging materials. Active packaging deals with direct interaction between nano-materials used for packaging and the food to protect it as anti-microbial or oxygen or ultra violet scavengers. Smart packaging could be used to sense biochemical or microbial changes in foods, as well as a tracker for food safety, to prevent food counterfeit and adulteration. The review also discussed bio-based food packaging which is biodegradable. Bio-based packaging could serve as veritable alternative to conventional packaging which is non-degradable plastic polymers which are not environmental friendly and could pose a threat to the environment. However, bio-based packaging could reduce material waste, elongate shelf life and enhance food quality. However, several challenges are envisaged in the use of nano-materials in food packaging due to knowledge gaps, possible interaction with food products and possible health risks that could result from the nano-materials used for food packaging.Originality/valueThe increase in growth and utilisation of nanotechnology signifies wide use of nano-materials especially in the food sector with arrays of potential benefits in the areas of food safety and quality, micronutrients and bioactive ingredients delivery, food processing and in packaging Active studies are being carried out to develop innovative packages such as smart, intelligent and active food packaging to enhance effective and efficient packaging, as well as balanced environmental issues. This review looks at the future of nano-packaged foodsvis-à-visthe roles played by stakeholders such as governments, regulatory agencies and manufacturers in looking into consumer health and safety issues related to the application of nano-materials in food packaging.
Collapse
|
7
|
Chu C, Zhou L, Xie H, Pei Z, Zhang M, Wu M, Zhang S, Wang L, Zhao C, Shi L, Zhang N, Niu Y, Zheng Y, Zhang R. Pulmonary toxicities from a 90-day chronic inhalation study with carbon black nanoparticles in rats related to the systemical immune effects. Int J Nanomedicine 2019; 14:2995-3013. [PMID: 31118618 PMCID: PMC6503190 DOI: 10.2147/ijn.s198376] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Recent years, there occurs heavy haze pollution in northern China during wintertime. The potential influence of airborne particulate matter (PM) on human health attracts great concern. The fuel-derived PM in the inhalable size range is dominated by aggregates of nanoparticles of Carbon black (CB). However, there are still lack of evidences especially regarding long-term exposure to explain the chronic effects of nanoscaled CB and the relative mechanism. Purpose: The objective of this study was to identify the potential mechanism of chronic effects of nanoscale CB. The systemic toxicity, immune suppression or activity and local toxicity were evaluated. Methods: 32 rats were divided into 2 groups: 30 mg/m3 CB exposure (nose only, 90 d, 6h/d) and control (clean air). Half of rats were scarified after exposure and another half of rats recovered for 14 days. Eight rats in each group were executed the lung function tests using a ventilated bias flow whole body plethysmograph (WBP). SDS-PAGE protocol was used to detect the deposition and retention of CB in lung of rats. HE staining was used to observe the changes of histopathology. Cell apoptosis was examined by TUNEL assay or flow cytometry. The levels of IL-6, IL-8, IL-17 and TNF-α in serum and lung tissue were evaluated with commercially available ELISA kit. The peripheral blood cell counts were detected by Auto 5-diff hematology analyzer. Results: The lung burden of CB was 16 mg in lung of rats after a 90-day exposure by MPPD. Fourteen percentages of the amount of CB accumulated at the end of the exposure period was cleared from the lung during the 14 dys recovery period. The lung function was significantly decreased and could not recover after a short time recovery. The fibroblasts and granuloma formation were found in lung. The levels of apoptosis and DNA damages were significantly increased in lung cells after CB inhalation. The cytokines levels in lung but not in serum were significantly increased in CB exposure group. The cell counts of WBC, monocytes and neutrophils had 1.72, 3.13, and 2.73-fold increases after CB exposure, respectively. The percentages of CD4+ lymphocytes and the rates of CD4+/CD8+ were statistically increased after CB exposure. The stimulation indexes of the peripheral blood lymphocytes were significantly decreased after CB exposure. In the CB exposure group, the disrupted histomorphology of thymus and spleen were found as well as the early apoptotic thymocytes had a 2.36-fold increase. Conclusion: CB induced the localized or direct toxicity and systemic immune toxicity. The direct and systemic immune responses had a combined effect on the lung damages caused by CB.
Collapse
Affiliation(s)
- Chen Chu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Heran Xie
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Zijie Pei
- Department of Pathology, Medical School, China Three Gorge University, Yichang, 443002, People's Republic of China
| | - Mengyue Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Shaohui Zhang
- Department of Experimental Center, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Luqi Wang
- Riodiology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, People's Republic of China
| | - Chunfang Zhao
- Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Lei Shi
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuxin Zheng
- Department of Toxicology, Public Health College, Qingdao University, Qingdao, 266000, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The explosive growth of the nanotechnology industry has necessitated the examination of engineered nanomaterials (ENMs) for their toxicity. The unique properties that make ENMs useful also make them a health risk, and individuals with pre-existing diseases such as asthma are likely more susceptible. This review summarizes the current literature on the ability of ENMs to both exacerbate and directly cause asthma. RECENT FINDINGS Recent studies highlight the ability of metal nanoparticles (NPs) and carbon nanotubes (CNTs) to not only exacerbate pre-existing asthma in animal models but also initiate allergic airway disease directly. CNTs alone are shown to cause airway mucus production, elevated serum IgE levels, and increased TH2 cytokine levels, all key indicators of asthma. The ability of ENMs to modulate the immune response in asthma varies depending on their physicochemical properties and exposure timing. CNTs consistently exacerbate asthma, as do Ni and TiO2 NPs, whereas some NPs like Au attenuate asthma. Evidence is strong that ENMs can contribute to allergic airway disease; however, more work is required to determine their mechanisms, and more epidemiological studies are needed to validate results from animal models.
Collapse
|
9
|
In vitro immunomodulation of splenocytes from DO11.10 mice by the food colouring agent amaranth. Food Chem Toxicol 2017; 110:395-401. [DOI: 10.1016/j.fct.2017.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
|
10
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
11
|
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2017; 107:1278-1293. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Nanoparticles have emerged as a boon for the public health applications such as drug delivery, diagnostic, and imaging. Biodegradable and non-bio degradable nanoparticles have been used at a large scale level to increase the efficiency of the biomedical process at the cellular, animal and human level. Exponential use of nanoparticles reinforces the adverse immunological changes at the human health level. Physical and chemical properties of nanoparticles often lead to a variety of immunotoxic effects such as activation of stress-related genes, membrane disruption, and release of pro-inflammatory cytokines. Delivered nanoparticles in animal or human interact with various components of the immune system such as lymphocytes, macrophages, neutrophils etc. Nanoparticles delivered above the threshold level damages the cellular physiology by the generation of reactive oxygen and nitrogen species. This review article represents the potential of nanoparticles in the field of nanomedicine and provides the critical evidence which leads to develop immunotoxicity in living cells and organisms by altering immunological responses.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
12
|
Engineered Nanomaterials and Occupational Allergy. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2017. [DOI: 10.1007/978-981-10-0351-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Abstract
Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted.
Collapse
|
14
|
Fine JH, Bondy GS, Coady L, Pearce B, Ross N, Tayabali AF, Halappanavar S, Caldwell D, Curran I, Lefebvre DE. Immunomodulation by gastrointestinal carbon black nanoparticle exposure in ovalbumin T cell receptor transgenic mice. Nanotoxicology 2016; 10:1422-1430. [PMID: 27534448 DOI: 10.1080/17435390.2016.1225131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans could become exposed to carbon black nanoparticles (CBNPs) in consumer products or an occupational setting. In rodent models, acute respiratory, subcutaneous, and direct immune cell exposure to CBNPs has been shown to enhance allergic sensitization to co-administered ovalbumin (OVA) protein from chicken egg. However, little is known about the effects of ingested CBNPs on immunological responses and oral tolerance to food antigens. We hypothesized that ingestion of CBNPs would enhance the development of food allergy to OVA. Allergy prone DO11.10 mice were orally exposed to CBNPs every second day for 2 weeks (total dose 10.8 (LOW) or 108 μg (HI)), with and without (±) co-administered OVA. Systemic immune parameters were measured at necropsy. Exposure to OVA resulted in significant increases in serum anti-OVA IgG1, anti-OVA IgM, and anti-OVA IgA antibodies relative to vehicle control. Immunophenotyping revealed a reduction in the number of OVA-specific CD4+ T helper cells upon OVA ± CBNPHI treatment in the spleen. Yet, secretion of the allergy-associated Th2 cytokines IL-4, IL-9, and IL-13 was greater in OVA323-339 peptide-pulsed splenocytes from OVA + CBNPHI-treated mice compared with control. Transcriptome analysis at necropsy of splenocytes from OVA + CBNPHI dose mice compared with OVA mice revealed increases in the allergy associated genes Il4 and Stat6 and decreases in Csf3r and Retnlg. Although oral exposure to high-dose CBNPs did not impact OVA-specific antibody production relative to OVA, we did observe increased expression of genes and cytokines associated with allergy in peripheral splenocytes. This work suggests that CBNP gastrointestinal exposure may potentiate allergy pathways.
Collapse
Affiliation(s)
- Jason H Fine
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Genevieve S Bondy
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Laurie Coady
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Bevan Pearce
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Nikia Ross
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Azam F Tayabali
- b Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Environments and Consumer Safety Branch, Health Canada , Ottawa , ON , Canada
| | - Sabina Halappanavar
- b Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Environments and Consumer Safety Branch, Health Canada , Ottawa , ON , Canada
| | - Don Caldwell
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Ivan Curran
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - David E Lefebvre
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| |
Collapse
|
15
|
Development of nanostructures in the diagnosis of drug hypersensitivity reactions. Curr Opin Allergy Clin Immunol 2016; 16:300-7. [DOI: 10.1097/aci.0000000000000282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Radauer-Preiml I, Andosch A, Hawranek T, Luetz-Meindl U, Wiederstein M, Horejs-Hoeck J, Himly M, Boyles M, Duschl A. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Part Fibre Toxicol 2016; 13:3. [PMID: 26772182 PMCID: PMC4715273 DOI: 10.1186/s12989-016-0113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/04/2016] [Indexed: 01/10/2023] Open
Abstract
Background Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule ‘corona’. Hence, the ‘corona’ defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Methods Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. Results The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was found. Conclusion In summary, this study presents that conjugation of allergens to ENMs can modulate the human allergic response, and that protease activity can be increased. Cross-linking of IgE receptors and degranulation of human basophils due to epitope alignment of nanoparticle-coated allergens. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0113-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabella Radauer-Preiml
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | - Ancuela Andosch
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Salzburg, Austria.
| | - Thomas Hawranek
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria.
| | - Ursula Luetz-Meindl
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Salzburg, Austria.
| | - Markus Wiederstein
- Department of Molecular Biology, Division of Structural Biology and Bioinformatics, University of Salzburg, Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | - Martin Himly
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | | | - Albert Duschl
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| |
Collapse
|
17
|
Kroker M, Sydlik U, Autengruber A, Cavelius C, Weighardt H, Kraegeloh A, Unfried K. Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model. Part Fibre Toxicol 2015; 12:20. [PMID: 26141115 PMCID: PMC4491258 DOI: 10.1186/s12989-015-0093-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/15/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Exposure of the airways to carbonaceous nanoparticles can contribute to the development of immune diseases both via the aggravation of the allergic immune response in sensitized individuals and by adjuvant mechanisms during the sensitization against allergens. The cellular and molecular mechanisms involved in these adverse pathways are not completely understood. We recently described that the reduction of carbon nanoparticle-induced lung inflammation by the application of the compatible solute ectoine reduced the aggravation of the allergic response in an animal system. In the current study we investigated the influence of carbon nanoparticles on the sensitization of animals to ovalbumin via the airways. Ectoine was used as a preventive strategy against nanoparticle-induced neutrophilic lung inflammation. METHODS Balb/c mice were repetitively exposed to the antigen ovalbumin after induction of airway inflammation by carbon nanoparticles, either in the presence or in the absence of ectoine. Allergic sensitization was monitored by measurement of immunoglobulin levels and immune responses in lung and lung draining lymph nodes after challenge. Furthermore the role of dendritic cells in the effect of carbon nanoparticles was studied in vivo in the lymph nodes but also in vitro using bone marrow derived dendritic cells. RESULTS Animals exposed to antigen in the presence of carbon nanoparticles showed increased effects with respect to ovalbumin sensitization, to the allergic airway inflammation after challenge, and to the specific TH2 response in the lymph nodes. The presence of ectoine during the sensitization significantly reduced these parameters. The number of antigen-loaded dendritic cells in the draining lymph nodes was identified as a possible cause for the adjuvant effect of the nanoparticles. In vitro assays indicate that the direct interaction of the particles with dendritic cells is not able to trigger CCR7 expression, while this endpoint is achieved by lung lavage fluid from nanoparticle-exposed animals. CONCLUSIONS Using the intervention strategy of applying ectoine into the airways of animals we were able to demonstrate the relevance of neutrophilic lung inflammation for the adjuvant effect of carbon nanoparticles on allergic sensitization.
Collapse
Affiliation(s)
- Matthias Kroker
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Ulrich Sydlik
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Andrea Autengruber
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | | | | | | | - Klaus Unfried
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
18
|
Horie M, Stowe M, Tabei M, Kuroda E. Pharyngeal aspiration of metal oxide nanoparticles showed potential of allergy aggravation effect to inhaled ovalbumin. Inhal Toxicol 2015; 27:181-90. [DOI: 10.3109/08958378.2015.1026618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Na J, Yang H, Bae S, Lim KM. Analysis of Statistical Methods Currently used in Toxicology Journals. Toxicol Res 2014; 30:185-92. [PMID: 25343012 PMCID: PMC4206745 DOI: 10.5487/tr.2014.30.3.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Statistical methods are frequently used in toxicology, yet it is not clear whether the methods employed by the studies are used consistently and conducted based on sound statistical grounds. The purpose of this paper is to describe statistical methods used in top toxicology journals. More specifically, we sampled 30 papers published in 2014 from Toxicology and Applied Pharmacology, Archives of Toxicology, and Toxicological Science and described methodologies used to provide descriptive and inferential statistics. One hundred thirteen endpoints were observed in those 30 papers, and most studies had sample size less than 10, with the median and the mode being 6 and 3 & 6, respectively. Mean (105/113, 93%) was dominantly used to measure central tendency, and standard error of the mean (64/113, 57%) and standard deviation (39/113, 34%) were used to measure dispersion, while few studies provide justifications regarding why the methods being selected. Inferential statistics were frequently conducted (93/113, 82%), with one-way ANOVA being most popular (52/93, 56%), yet few studies conducted either normality or equal variance test. These results suggest that more consistent and appropriate use of statistical method is necessary which may enhance the role of toxicology in public health.
Collapse
Affiliation(s)
- Jihye Na
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyeri Yang
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
20
|
Lefebvre DE, Venema K, Gombau L, Valerio LG, Raju J, Bondy GS, Bouwmeester H, Singh RP, Clippinger AJ, Collnot EM, Mehta R, Stone V. Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 2014; 9:523-42. [PMID: 25119418 DOI: 10.3109/17435390.2014.948091] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered metal/mineral, lipid and biochemical macromolecule nanomaterials (NMs) have potential applications in food. Methodologies for the assessment of NM digestion and bioavailability in the gastrointestinal tract are nascent and require refinement. A working group was tasked by the International Life Sciences Institute NanoRelease Food Additive project to review existing models of the gastrointestinal tract in health and disease, and the utility of these models for the assessment of the uptake of NMs intended for food. Gastrointestinal digestion and absorption could be addressed in a tiered approach using in silico computational models, in vitro non-cellular fluid systems and in vitro cell culture models, after which the necessity of ex vivo organ culture and in vivo animal studies can be considered. Examples of NM quantification in gastrointestinal tract fluids and tissues are emerging; however, few standardized analytical techniques are available. Coupling of these techniques to gastrointestinal models, along with further standardization, will further strengthen methodologies for risk assessment.
Collapse
Affiliation(s)
- David E Lefebvre
- Regulatory Toxicology Research Division, Food Directorate, Health Canada , Ottawa , Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|