1
|
Cheng L, Maboh RN, Wang H, Mao GW, Wu XY, Chen H. Naoxintong Capsule Activates the Nrf2/HO-1 Signaling Pathway and Suppresses the p38α Signaling Pathway Via Estrogen Receptors to Ameliorate Heart Remodeling in Female Mice With Postmenopausal Hypertension. J Cardiovasc Pharmacol 2022; 80:158-170. [PMID: 35500215 DOI: 10.1097/fjc.0000000000001285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Limited treatments are available for alleviating heart remodeling in postmenopausal hypertension. The cardioprotective effect of naoxintong (NXT) has been widely accepted. This study aimed to explore the effects of NXT on pathological heart remodeling in a postmenopausal hypertension mouse model in vivo and H9c2 cardiomyocytes in vitro. In vivo, ovariectomy combined with chronic angiotensin II infusion was used to establish the postmenopausal hypertension animal model. NXT significantly ameliorated cardiac remodeling as indicated by a reduced ratio of heart weight/body weight and left ventricle weight/body weight, left ventricular wall thickness, diameter of cardiomyocytes, and collagen deposition in the heart. NXT also significantly increased the expression of estrogen receptors (ERs) and downregulated the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2). In vitro, NXT treatment greatly suppressed angiotensin II-induced cardiac hypertrophy, cardiac fibrosis, and excessive oxidative stress as proven by reducing the diameter of H9c2 cardiomyocytes, expression of hypertrophy and fibrosis markers, intracellular reactive oxygen species, and oxidative enzymes. Mechanistically, NXT significantly upregulated the expression of ERs, which activated the Nrf2/HO-1 signaling pathway and inhibited the phosphorylation of the p38α pathway. Collectively, the results indicated that NXT administration might attenuate cardiac remodeling through upregulating the expression of ERs, which activated the Nrf2/HO-1 signaling pathway, inhibited the phosphorylation of the p38α signaling pathway, and reduced oxidative stress.
Collapse
Affiliation(s)
- Lan Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Rene Nfornah Maboh
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Gao-Wei Mao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Xiao-Ying Wu
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and.,Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
3
|
Merches K, Breunig L, Fender J, Brand T, Bätz V, Idel S, Kollipara L, Reinders Y, Sickmann A, Mally A, Lorenz K. The potential of remdesivir to affect function, metabolism and proliferation of cardiac and kidney cells in vitro. Arch Toxicol 2022; 96:2341-2360. [PMID: 35579693 PMCID: PMC9110936 DOI: 10.1007/s00204-022-03306-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Remdesivir is a prodrug of a nucleoside analog and the first antiviral therapeutic approved for coronavirus disease. Recent cardiac safety concerns and reports on remdesivir-related acute kidney injury call for a better characterization of remdesivir toxicity and understanding of the underlying mechanisms. Here, we performed an in vitro toxicity assessment of remdesivir around clinically relevant concentrations (Cmax 9 µM) using H9c2 rat cardiomyoblasts, neonatal mouse cardiomyocytes (NMCM), rat NRK-52E and human RPTEC/TERT1 cells as cell models for the assessment of cardiotoxicity or nephrotoxicity, respectively. Due to the known potential of nucleoside analogs for the induction of mitochondrial toxicity, we assessed mitochondrial function in response to remdesivir treatment, early proteomic changes in NMCM and RPTEC/TERT1 cells and the contractile function of NMCM. Short-term treatments (24 h) of H9c2 and NRK-52E cells with remdesivir adversely affected cell viability by inhibition of proliferation as determined by significantly decreased 3H-thymidine uptake. Mitochondrial toxicity of remdesivir (1.6–3.1 µM) in cardiac cells was evident by a significant decrease in oxygen consumption, a collapse of mitochondrial membrane potential and an increase in lactate secretion after a 24–48-h treatment. This was supported by early proteomic changes of respiratory chain proteins and intermediate filaments that are typically involved in mitochondrial reorganization. Functionally, an impedance-based analysis showed that remdesivir (6.25 µM) affected the beat rate and contractility of NMCM. In conclusion, we identified adverse effects of remdesivir in cardiac and kidney cells at clinically relevant concentrations, suggesting a careful evaluation of therapeutic use in patients at risk for cardiovascular or kidney disease.
Collapse
Affiliation(s)
- Katja Merches
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Erlangen, Germany
| | - Leonie Breunig
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Julia Fender
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Vanessa Bätz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Svenja Idel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Angela Mally
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany. .,PGS Toxicology and Environmental Protection, University of Leipzig, Johannisallee 28, Leipzig, Germany.
| |
Collapse
|
4
|
Zhao W, Yuan Y, Feng B, Sun Y, Jiang H, Zhao W, Zheng Y, Zhao L, Chen T, Bai Y, Hang P, Chen Y, Du Z. Aloe-emodin relieves zidovudine-induced injury in neonatal rat ventricular myocytes by regulating the p90rsk/p-bad/bcl-2 signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103540. [PMID: 33161113 DOI: 10.1016/j.etap.2020.103540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/25/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/AIMS Zidovudine (3'-azido-2',3'-deoxythymidine; AZT) is a first-line drug for treatment of human immunodeficiency virus infection (HIV). However, its application is limited by cardiotoxicity due to cardiomyocyte injury. This study investigated whether Aloe-emodin (AE), an anthraquinone compound, protects against AZT-induced cardiomyocyte toxicity. METHODS MTT, JC-1 assays and TUNEL were examined to verify the protective effect of AE against AZT-induced cardiomyocyte injury. Western blotting was performed to explore the anti-apoptotic effect of AE using anti-apoptotic proteins p90rsk, p-bad, and bcl-2 and pro-apoptotic proteins apaf-1, cleaved-caspase-3, and cytochrome c. RESULTS We observed a protective effect of AE against cell viability decrease and TUNEL positive cells increase induced by AZT, which was counteracted by BI-D1870. Western blot analysis found that AE significantly inhibited cardiomyocyte apoptosis by activating p90rsk/p-bad/bcl-2 signaling pathway. Furthermore, BI-D1870 counteracted the anti-apoptotic effect of AE. CONCLUSIONS Taken together, these results indicate that AE attenuated AZT-induced cardiomyocyte apoptosis by activating p90rsk.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Ye Yuan
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China
| | - Burong Feng
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Yue Sun
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Huiwei Jiang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Wei Zhao
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Yuyang Zheng
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Lihui Zhao
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Yan Bai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China
| | - Pengzhou Hang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China
| | - Yingfu Chen
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China
| | - Zhimin Du
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions, Harbin, China; College of Pharmacy of Harbin Medical University, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
5
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
6
|
Qi C, Liu X, Xiong T, Wang D. Tempol prevents isoprenaline-induced takotsubo syndrome via the reactive oxygen species/mitochondrial/anti-apoptosis /p38 MAPK pathway. Eur J Pharmacol 2020; 886:173439. [PMID: 32871175 DOI: 10.1016/j.ejphar.2020.173439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Takotsubo Syndrome (TS) is a kind of acute cardiac syndrome with a complex pathophysiological mechanism that remains to be elucidated. The relationship between TS and reactive oxygen species has received increasing attention over in recent years. Therefore, the relationship between TS and reactive oxygen species was investigated in vivo and in vitro. Isoprenaline (ISO) was used to induce TS and tempol (quercetin) was selected as a scavenger to eliminate reactive oxygen species in animal experiments, and echocardiography was used to determine the incidence of TS. The H9C2 cells were cultured with different reagents to investigate the detailed mechanism; Reactive oxygen species levels and mitochondrial function were evaluated. Cell apoptosis rate was analyzed by TUNEL staining and the proteins involved in the signaling pathways were examined by Western blotting. It was found that a high dose of tempol almost eliminated TS and protected the cardiac function. Moreover, tempol also decreased the reactive oxygen species levels and reduced lipid droplet deposition in myocardial tissue. In terms of the cultured cells, tempol preconditioning decreased reactive oxygen species production as well as lipid droplet deposition, and protected the mitochondrial function by reducing mitochondrial swelling, thereby maintaining the mitochondrial membrane potential (ΔΨm) at a level that was higher than that of controls. Furthermore, tempol could reduce cells apoptosis after ISO treatment and decrease the protein level of p38, which is a member of the MAPK family, which and thus plays an important role in regulating cells apoptosis. This antiapoptotic effect of tempol was similar to that of a control reagent, SB203580, which is a specific inhibitor of phospha-p38 (p-p38). This study demonstrated, for the first time, a sudden increase in reactive oxygen species and effects of the downstream cascades play core roles in the development of TS.
Collapse
Affiliation(s)
- Chunlei Qi
- Department of Cardiology, The Third Affiliated Hospital of Nanjing Medical University; Sir Run Run Hospital Affiliated to Nanjing Medical University, 109#, Longmian Ave, Nanjing, Jiangsu, China.
| | - Xuesong Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, 172#, Tongzipo Ave, Changsha, HuNan, China
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital of Central South University, 172#, Tongzipo Ave, Changsha, HuNan, China
| | - Daxin Wang
- Clinical Medical College Yangzhou University, 88(#) South University Ave, Yangzhou; Jiangsu, China; Department of Medical Research Centre, Northern Jiangsu People's Hospital, 98#,West Nantong Ave, Yangzhou, Jiangsu, Zip code, 225009, China.
| |
Collapse
|
7
|
Ye S, Xu P, Huang M, Chen X, Zeng S, Wang Q, Chen J, Li K, Gao W, Liu R, Liu J, Shao Y, Zhang H, Xu Y, Zhang Q, Zhong Z, Wei Z, Wang J, Hao B, Huang W, Liu Q. The heterocyclic compound Tempol inhibits the growth of cancer cells by interfering with glutamine metabolism. Cell Death Dis 2020; 11:312. [PMID: 32366855 PMCID: PMC7198543 DOI: 10.1038/s41419-020-2499-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Tempol (4-hydroxy-2,2,6,6-Tetramethylpiperidine-1-oxyl, TPL), a nitroxide compound, inhibits proliferation and increases the vulnerability of cancer cells to apoptosis induced by cytotoxic agents. However, the molecular mechanism of TPL inhibiting cancer cell proliferation has not been fully understood. In this study, we evaluated the metabolic effect of TPL on cancer cells and explored its cancer therapeutic potential. Extracellular flow assays showed that TPL inhibited cellular basal and maximal oxygen consumption rates of mitochondrial. 13C metabolic flux analysis showed that TPL treatment had minimal effect on glycolysis. However, we found that TPL inhibits glutamine metabolism by interfering with the oxidative tricarboxylic acid cycle (TCA) process and reductive glutamine process. We found that the inhibitory effect of TPL on metabolism occurs mainly on the step from citrate to α-ketoglutarate or vice versa. We also found that activity of isocitrate dehydrogenase IDH1 and IDH2, the key enzymes in TCA, were inhibited by TPL treatment. In xenograft mouse model, TPL treatment reduced tumor growth by inhibiting cellular proliferation of xenograft tumors. Thus, we provided a mechanism of TPL inhibiting cancer cell proliferation by interfering with glutamine utilization that is important for survival and proliferation of cancer cells. The study may help the development of a therapeutic strategy of TPL combined with other anticancer medicines.
Collapse
Affiliation(s)
- Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianli Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ruiyuan Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jingxian Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yihao Shao
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuo Zhong
- Guangzhou Hospital of integrated Traditional and West Medicine, Guangzhou, China
| | - Zibo Wei
- Center for medical transformation, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jiale Wang
- Center for medical transformation, Shunde Hospital, Southern Medical University, Foshan, China
| | - Bingtao Hao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Guangzhou, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Center for medical transformation, Shunde Hospital, Southern Medical University, Foshan, China.
| |
Collapse
|
8
|
Tao S, Zhou L, Zhang H, Zhou S, Amiralaei S, Shelton J, Ehteshami M, Jiang Y, Amblard F, Coats SJ, Schinazi RF. Intracellular metabolism and potential cardiotoxicity of a β-D-2'- C-methyl-2,6-diaminopurine ribonucleoside phosphoramidate that inhibits hepatitis C virus replication. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:204-224. [PMID: 31595843 DOI: 10.1080/15257770.2019.1671594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
β-D-2'-C-Methyl-2,6-diaminopurine ribonucleoside (2'-C-Me-DAPN) phosphoramidate prodrug (DAPN-PD) is a selective hepatitis C virus inhibitor that is metabolized intracellularly into two active metabolites: 2'-C-Methyl-DAPN triphosphate (2'-C-Me-DAPN-TP) and 2'-C-methyl-guanosine 5'-triphosphate (2'-C-Me-GTP). BMS-986094 and IDX-184 are also bioconverted to 2'-C-Me-GTP. A phase IIb clinical trial with BMS-986094 was abruptly halted due to adverse cardiac and renal effects. Herein, we developed an efficient large scale synthesis of DAPN-PD and determined intracellular pharmacology of DAPN-PD in comparison with BMS-986094 and IDX-184, versus Huh-7, HepG2 and interspecies primary hepatocytes and human cardiomyocytes. Imaging data of drug treated human cardiomyocytes was found to be most useful in determining toxicity potential as no obvious beating rate change was observed for IDX-184 up to 50 µM up at 48 h. However, with BMS-986094 and DAPN-PD at 10 µM changes to both beat rate and rhythm were noted.
Collapse
Affiliation(s)
- Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongwang Zhang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sheida Amiralaei
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Jiang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven J Coats
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Endoplasmic reticulum stress and autophagy contribute to cadmium-induced cytotoxicity in retinal pigment epithelial cells. Toxicol Lett 2019; 311:105-113. [DOI: 10.1016/j.toxlet.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 01/15/2023]
|
10
|
Nomura R, Sato T, Sato Y, Medin JA, Kushimoto S, Yanagisawa T. Azidothymidine-triphosphate impairs mitochondrial dynamics by disrupting the quality control system. Redox Biol 2017; 13:407-417. [PMID: 28683400 PMCID: PMC5498287 DOI: 10.1016/j.redox.2017.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/26/2017] [Indexed: 11/30/2022] Open
Abstract
Highly active anti-retrovirus therapy (HAART) has been used to block the progression and symptoms of human immunodeficiency virus infection. Although it decreases morbidity and mortality, clinical use of HAART has also been linked to various adverse effects such as severe cardiomyopathy resulting from compromised mitochondrial functioning. However, the mechanistic basis for these effects remains unclear. Here, we demonstrate that a key component of HAART, 3ꞌ-azido-3ꞌ-deoxythymidine (AZT), particularly, its active metabolite AZT-triphosphate (AZT-TP), caused mitochondrial dysfunction, leading to induction of cell death in H9c2 cells derived from rat embryonic myoblasts, which serve as a model for cardiomyopathy. Specifically, treatment with 100µM AZT for 48h disrupted the mitochondrial tubular network via accumulation of AZT-TP. The mRNA expression of dynamin-related protein (Drp)1 and the Drp1 receptor mitochondrial fission factor (Mff) was upregulated whereas that of optic atrophy 1 (Opa1) was downregulated following AZT treatment. Increased mitochondrial translocation of Drp1, Mff upregulation, and decreased functional Opa1 expression induced by AZT impaired the balance of mitochondrial fission vs. fusion. These data demonstrate that AZT-TP causes cell death by altering mitochondrial dynamics.
Collapse
Affiliation(s)
- Ryosuke Nomura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan; Department of Emergency and Critical Care, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8574, Japan.
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan.
| | - Yuka Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan.
| | - Jeffrey A Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, CRI: C4540, Milwaukee, WI 53226, USA.
| | - Shigeki Kushimoto
- Department of Emergency and Critical Care, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8574, Japan.
| | - Teruyuki Yanagisawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Clinically identified myopathies are frequently a consequence of medication toxicities. However, recognizing drug-induced myopathies is sometimes difficult. Developing a greater understanding of the underlying mechanisms of drug-induced muscle toxicity will promote enhanced awareness and recognition, and improved management of these syndromes. RECENT FINDINGS The adverse impact of certain drugs on muscle metabolism, muscle cell atrophy, and myocyte apoptosis is increasingly clear. Glucocorticoids impair glucose handling and directly promote protein catabolism. Statins impair mitochondrial function and alter intracellular signaling proteins, which can lead to myocyte apoptosis. Alternatively, statins can induce an autoimmune necrotizing myositis. Several medications impair autophagy, thus limiting access to the needed glycogen stores. SUMMARY This review provides an overview of the main underlying mechanisms of drug-induced myopathies. These myopathies will most often be related to a drug's ability to alter metabolism and protein balance, induce necrosis, or impair autophagy.
Collapse
|
12
|
Ferreira da Silva C, Severino P, Martins F, Santana MHA, Souto EB. Didanosine-loaded chitosan microspheres optimized by surface-response methodology: a modified "Maximum Likelihood Classification" approach formulation for reverse transcriptase inhibitors. Biomed Pharmacother 2015; 70:46-52. [PMID: 25776478 DOI: 10.1016/j.biopha.2014.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022] Open
Abstract
Didanosine-loaded chitosan microspheres were developed applying a surface-response methodology and using a modified Maximum Likelihood Classification. The operational conditions were optimized with the aim of maintaining the active form of didanosine (ddI), which is sensitive to acid pH, and to develop a modified and mucoadhesive formulation. The loading of the drug within the chitosan microspheres was carried out by ionotropic gelation technique with sodium tripolyphosphate (TPP) as cross-linking agent and magnesium hydroxide (Mg(OH)₂) to assure the stability of ddI. The optimization conditions were set using a surface-response methodology and applying the "Maximum Likelihood Classification", where the initial chitosan concentration, TPP and ddI concentration were set as the independent variables. The maximum ddI-loaded in microspheres (i.e. 1433 mg of ddI/g chitosan), was obtained with 2% (w/v) chitosan and 10% TPP. The microspheres depicted an average diameter of 11.42 μm and ddI was gradually released during 2 h in simulated enteric fluid.
Collapse
Affiliation(s)
- Classius Ferreira da Silva
- Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Arthur Riedel, 275, Diadema 09972-270, Brazil
| | - Patrícia Severino
- Department of Biotechnological Processes, School of Engineering Chemical, University of Campinas, Campinas 13083-970, Brazil; University of Tiradentes and Institute of Technology and Research, Av. Murilo Dantas 300, 49010-390 Aracaju, Brazil
| | - Fernanda Martins
- Department of Biotechnological Processes, School of Engineering Chemical, University of Campinas, Campinas 13083-970, Brazil
| | - Maria Helena A Santana
- Department of Biotechnological Processes, School of Engineering Chemical, University of Campinas, Campinas 13083-970, Brazil.
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
13
|
Liu Y, Shim E, Crespo-Mejias Y, Nguyen P, Gibbons A, Liu D, Shide E, Poirier MC. Cardiomyocytes are Protected from Antiretroviral Nucleoside Analog-Induced Mitochondrial Toxicity by Overexpression of PGC-1α. Cardiovasc Toxicol 2014; 15:224-31. [DOI: 10.1007/s12012-014-9288-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Sun R, Eriksson S, Wang L. Down-regulation of mitochondrial thymidine kinase 2 and deoxyguanosine kinase by didanosine: Implication for mitochondrial toxicities of anti-HIV nucleoside analogs. Biochem Biophys Res Commun 2014; 450:1021-6. [DOI: 10.1016/j.bbrc.2014.06.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 12/14/2022]
|