1
|
Recoules C, Mirey G, Audebert M. Effect of cell treatment procedures on in vitro genotoxicity assessment. Arch Toxicol 2024; 98:1225-1236. [PMID: 38427119 DOI: 10.1007/s00204-024-03690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 biomarkers, in the human liver-derived HepaRP cell line. We used different treatment durations, with or without a three-day recovery stage (release period), before genotoxicity measurement. Data were analysed with the Benchmark Dose approach. We observed that the detection of clastogenic compounds (notably for DNA damaging agents) was more sensitive after three days of repeated treatment compared to one or three treatments over 24 h. In contrast, aneugenic chemicals were detected as genotoxic in a similar manner whether after a 24 h exposure or a three-day repeated treatment. Globally, the release period decreases the genotoxicity measurement substantially. For DNA damaging agents, after high concentration treatments, γH2AX induction was always observed after a three-day release period. In contrast, for DNA topoisomerase inhibitors, no effect could be observed after the release period. In conclusion, in the HepaRP cell line, there are some important differences between a one-day acute and a three-day repeated treatment protocol, indicating that different cell treatment procedures may differentiate chemical genotoxic mechanisms of action more efficiently.
Collapse
Affiliation(s)
- Cynthia Recoules
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France
| | - Gladys Mirey
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France
| | - Marc Audebert
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
2
|
Dormousoglou M, Boti V, Hela D, Vlastos D, Antonopoulou M, Chondrogiannis C, Petropoulou Y, Dailianis S. Beneficial properties of Drimia numidica leaf methanolic extract against the cytogenotoxic effects of mitomycin C on human lymphocytes. Food Chem Toxicol 2023; 173:113626. [PMID: 36682415 DOI: 10.1016/j.fct.2023.113626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
This study investigated the phytochemical profile of Drimia numidica leaf methanolic extract, as well as its cyto-genotoxic and cyto/genoprotective potential against mitomycin C (MMC) mediated effects on healthy human lymphocytes. Photosynthetic pigments, trace elements, and secondary metabolites were estimated and/or identified in methanolic extract of mature leaves, and the latter was further used for assessing its in vitro biological effects on MMC-free and/or MMC-treated human lymphocytes (at low, non-toxic concentrations of 0.001 and 0.01% v/v). The results showed that D. numidica leaf methanolic extract, being rich in carotenoids, phenolics, flavonoids, organic acids and bufadienolides, could be protective against MMC mediated cyto/genotoxic potential in healthy human lymphocytes. Biomolecules possessing antioxidant and antitumor potential, such as beta-carotene and lutein among others, chlorogenic acid, caffeic acid and their derivatives, minerals such as Si, as well as apigenin- and luteolin-derived glycosides, either individual or in a mixture, could be beneficial rather than harmful, at least at the extract concentrations tested. Although further in vitro and in vivo studies are still needed for elucidating the beneficial (individual and/or additive/synergistic) role of those compounds, the results of the present study are quite promising, thus encouraging new challenges for the appropriate utilization of D. numidica leaf extract.
Collapse
Affiliation(s)
- Margarita Dormousoglou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece; Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece; Unit of Environmental, Organic and Biochemical High-resolution Analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina, GR-45110, Greece
| | - Dimitra Hela
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Christos Chondrogiannis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Yiola Petropoulou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece.
| |
Collapse
|
3
|
Wójcik-Pszczoła K, Szafarz M, Pociecha K, Słoczyńska K, Piska K, Koczurkiewicz-Adamczyk P, Kocot N, Chłoń-Rzepa G, Pękala E, Wyska E. In silico and in vitro ADME-Tox analysis and in vivo pharmacokinetic study of representative pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-7H-purine-2,6-dione. Toxicol Appl Pharmacol 2022; 457:116318. [PMID: 36414119 DOI: 10.1016/j.taap.2022.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Phosphodiesterase (PDE) inhibitors represent a wide class of chemically different compounds that have been extensively studied in recent years. Their anti-inflammatory and anti-fibrotic effects are particularly desirable in the treatment of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Due to diversified expression of individual PDEs within cells and/or tissues as well as PDE signaling compartmentalization, pan-PDE inhibitors (compounds capable of simultaneously blocking various PDE subtypes) are of particular interest. Recently, a large group of 7,8-disubstituted derivatives of 1,3-dimethyl-7H-purine-2,6-dione (theophylline) was designed and synthesized. These compounds were characterized as potent pan-PDE inhibitors and their prominent anti-inflammatory and anti-fibrotic activity in vitro has been proved. Herein, we investigated a general in vitro safety profile and pharmacokinetic characteristics of two leading compounds from this group: a representative compound with N'-benzylidenebutanehydrazide moiety (38) and a representative derivative containing N-phenylbutanamide fragment (145). Both tested pan-PDE inhibitors revealed no cytotoxic, mutagenic, and genotoxic activity in vitro, showed moderate metabolic stability in mouse and human liver microsomes, as well as fell into the low or medium permeation category. Additionally, 38 and 145 revealed a lack of interaction with adenosine receptors, including A1, A2A, and A2B. Pharmacokinetic analysis revealed that both tested 7,8-disubstituted derivatives of 1,3-dimethyl-7H-purine-2,6-dione were effectively absorbed from the peritoneal cavity. Simultaneously, they were extensively distributed to mouse lungs and after intraperitoneal (i.p.) administration were detected in bronchoalveolar lavage fluid. These findings provide evidence that investigated compounds represent a new drug candidates with a favorable in vitro safety profile and satisfactory pharmacokinetic properties after a single i.p. administration. As the next step, further pharmacokinetic studies after multiple i.p. and p.o. doses will be conducted to ensure effective 38 and 145 serum and lung concentrations for a longer period of time. In summary, 7,8-disubstituted derivatives of 1,3-dimethyl-7H-purine-2,6-dione represent a promising compounds worth testing in animal models of chronic respiratory diseases, the etiology of which involves various PDE subtypes.
Collapse
Affiliation(s)
- Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Natalia Kocot
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
4
|
In vitro genotoxic and antigenotoxic effects of an exopolysaccharide isolated from Lactobacillus salivarius KC27L. Toxicol In Vitro 2022; 86:105507. [DOI: 10.1016/j.tiv.2022.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
5
|
Vernon AR, Pemberton RM, Morse HR. A novel in vitro 3D model of the human bone marrow to bridge the gap between in vitro and in vivo genotoxicity testing. Mutagenesis 2022; 37:112-129. [PMID: 35394550 PMCID: PMC9071074 DOI: 10.1093/mutage/geac009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulatory 2D in vitro micronucleus (MN) assay is part of a battery of tests, used to test for genotoxicity of new and existing compounds before they are assessed in vivo (ICH S2). The 2D MN assay consists of a monolayer of cells, whereas the in vivo bone marrow (BM) setting comprises a multicellular environment within a three-dimensional extracellular matrix. Although the in vitro MN assay follows a robust protocol set out by the Organisation for Economic Co-operation and Development (OECD) to comply with regulatory bodies, some compounds have been identified as negative genotoxicants within the in vitro MN assay but marginally positive when assessed in vivo. The glucocorticoids, which are weakly positive in vivo, have generally been suggested to pose no long-term carcinogenic risk; however, for novel compounds of unknown activity, improved prediction of genotoxicity is imperative. To help address this observation, we describe a novel 3D in vitro assay which aims to replicate the results seen within the in vivo BM microenvironment. AlgiMatrix scaffolds were optimized for seeding with HS-5 human BM stromal cells as a BM microenvironment, to which the human lymphoblast cell line TK6 was added. An MN assay was performed aligning with the 2D regulatory assay protocol. Utilizing this novel 3D in vitro model of the BM, known genotoxicants (mitomycin C, etoposide, and paclitaxel), a negative control (caffeine), and in vivo positive glucocorticoids (dexamethasone and prednisolone) were investigated for the induction of MN. It was found, in agreement with historical in vivo data, that the model could accurately predict the in vivo outcome of the glucocorticoids, unlike the regulatory 2D in vitro MN assay. These preliminary results suggest our 3D MN assay may better predict the outcome of in vivo MN tests, compared with the standard 2D assay.
Collapse
Affiliation(s)
- Alexander R Vernon
- Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Roy M Pemberton
- Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - H Ruth Morse
- Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
6
|
Gynn LE, Anderson E, Robinson G, Wexler SA, Upstill-Goddard G, Cox C, May JE. Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, whilst leukaemic cells are protected. Mutagenesis 2021; 36:419-428. [PMID: 34505878 PMCID: PMC8633936 DOI: 10.1093/mutage/geab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure.
Collapse
Affiliation(s)
- Liana E Gynn
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Elizabeth Anderson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Gareth Robinson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sarah A Wexler
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Gillian Upstill-Goddard
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Christine Cox
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Jennifer E May
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
7
|
Chapman KE, Wilde EC, Chapman FM, Verma JR, Shah UK, Stannard LM, Seager AL, Tonkin JA, Brown MR, Doherty AT, Johnson GE, Doak SH, Jenkins GJS. Multiple-endpoint in vitro carcinogenicity test in human cell line TK6 distinguishes carcinogens from non-carcinogens and highlights mechanisms of action. Arch Toxicol 2021; 95:321-336. [PMID: 32910239 PMCID: PMC7811515 DOI: 10.1007/s00204-020-02902-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.
Collapse
Affiliation(s)
- Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK.
| | - Eleanor C Wilde
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Jatin R Verma
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Leanne M Stannard
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Anna L Seager
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - James A Tonkin
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - M Rowan Brown
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Ann T Doherty
- Discovery Safety, AstraZeneca, DSM, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - George E Johnson
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| |
Collapse
|
8
|
Dural E, Shah UK, Pritchard D, Chapman KE, Doak SH, Jenkins GJS. The effect of chronic dosing and p53 status on the genotoxicity of pro-oxidant chemicals in vitro. Mutagenesis 2020; 35:479-489. [PMID: 33259605 DOI: 10.1093/mutage/geaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 11/12/2022] Open
Abstract
In this study, we have studied the cytotoxicity and genotoxic potency of 3 pro-oxidants; H2O2, menadione and KBrO3 in different dosing scenarios, namely acute (1-day dosing) and chronic (5-days). For this purpose, relative population doubling (RPD%) and mononucleated micronucleus (MN) test were used. TK6 cells and NH32 were employed in in vitro experiments. In the study, the total acute dose was divided into 5 days for each prooxidant chemicals by dose fractionation (1/5th per day) method. Acute dosing was compared to chronic dosing. The oxidative stress caused by the exposure of cells with pro-oxidant chemicals to the cells was determined by an optimized 2',7'-dichlorofluorescein diacetate (DCFHDA) test method. The antioxidant levels of the cell lines were altered with buthionine sulfoxide (BSO) and N-acetyl cysteine (NAC), and the effect of antioxidant capacity on the MN formation in the cells was observed with this method. In the case of H2O2 and menadione, fractional dosing has been observed to result in lower toxicity and lower genotoxicity. But in the case of KBrO3, unlike the other 2 pro-oxidants, higher MN induction was observed with fractionated doses. DCFHDA test clearly demonstrated ROS induction with H2O2 and menadione but not with KBrO3. Unexpectedly, DCFHDA test demonstrated that KBrO3 did not cause an increase ROS levels in both acute and chronic dosing, suggesting an alternative ROS induction mechanism. It was also observed that, treatment with BSO and NAC, caused increasing and decreasing of MN fold change respectively, allowing further ROS specific mechanisms to be explored. Hence, dose fractionation expectedly caused less MN, cytotoxicity and ROS formation with H2O2 and menadione exposure, but not with KBrO3. This implies a unique mechanism of action for KBrO3 induced genotoxicity. Chronic dosing in vitro may be a valuable approach allowing better understanding of how chemicals damage DNA and pose human hazards.
Collapse
Affiliation(s)
- Emrah Dural
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
- Sivas Cumhuriyet University, Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Sivas, Turkey
| | - Ume-Kulsoom Shah
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Demi Pritchard
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Katherine Emma Chapman
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Shareen Heather Doak
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Gareth James Scott Jenkins
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| |
Collapse
|
9
|
Shah UK, Verma JR, Chapman KE, Wilde EC, Tonkin JA, Brown MR, Johnson GE, Doak SH, Jenkins GJ. Detection of urethane-induced genotoxicity in vitro using metabolically competent human 2D and 3D spheroid culture models. Mutagenesis 2020; 35:445-452. [PMID: 33219664 DOI: 10.1093/mutage/geaa029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/22/2020] [Indexed: 11/14/2022] Open
Abstract
In vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay. Our 2D studies with MCL-5 did not show any statistically significant genotoxicity [99% relative population doubling (RPD)] compared to controls for concentrations and time point tested in vitro. HepG2 cells grown as 2D indicated that exposure to urethane of up to 30 mM for 23 h did not cause any genotoxic effect (102% RPD) but, at higher concentrations, genotoxicity was produced with only 89-85% RPD. Furthermore, an exposure of 20-50 mM for 23 h using 3D hanging drop spheroid assays revealed a higher MN frequency, thus exhibiting in vitro genotoxicity of urethane in metabolically active cell models. In comparison with previous studies, this study indicated that urethane genotoxicity is dose, sensitivity of cell model (2D vs. 3D) and exposure dependent.
Collapse
Affiliation(s)
- Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Jatin R Verma
- Associate Scientist, Genetic & Molecular Toxicology, Covance Laboratories Limited, Otley Road, Harrogate, North Yorkshire, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Eleanor C Wilde
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - James A Tonkin
- College of Engineering, Bay Campus, Swansea University, Swansea, UK
| | - Martyn R Brown
- College of Engineering, Bay Campus, Swansea University, Swansea, UK
| | - George E Johnson
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
10
|
Li X, He X, Chen S, Guo X, Bryant MS, Guo L, Manjanatha MG, Zhou T, Witt KL, Mei N. Evaluation of pyrrolizidine alkaloid-induced genotoxicity using metabolically competent TK6 cell lines. Food Chem Toxicol 2020; 145:111662. [PMID: 32798647 PMCID: PMC9969979 DOI: 10.1016/j.fct.2020.111662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are among the most common poisonous plants affecting humans, livestock, and wildlife worldwide. A large number of PAs are known to induce genetic damage after metabolic activation. In the present study, using a battery of fourteen newly developed TK6 cell lines, each expressing a single human cytochrome P450 (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C18, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7), we identified specific CYPs responsible for bioactivating three PAs - lasiocarpine, riddelliine, and senkirkine. Among the fourteen cell lines, cells expressing CYP3A4 showed significant increases in PA-induced cytotoxicity, evidenced by decreased ATP production and cell viability, and increased caspase 3/7 activities. LC-MS/MS analysis revealed the formation of 1-hydroxymethyl-7-hydroxy-6,7-dihydropyrrolizine (DHP), the main reactive metabolite of PAs, in CYP3A4-expressing TK6 cells. DHP was also detected in CYP3A5- and 3A7-expressing cells after PA exposure, but to a much lesser extent. Subsequently, using a high-throughput micronucleus assay, we demonstrated that PAs induced concentration-dependent increases in micronuclei and G2/M phase cell cycle arrest in three CYP3A variant-expressing TK6 cell lines. Using Western blotting, we observed that PA-induced apoptosis, cell cycle changes, and DNA damage were primarily mediated by CYP3A4. Benchmark dose (BMD) modeling demonstrated that lasiocarpine, of the three PAs, was the most potent inducer of micronuclei, with a BMD100 of 0.036 μM. These results indicate that our TK6 cell system holds promise for genotoxicity screening of compounds requiring metabolic activation, identifying specific CYPs involved in bioactivation, and discriminating the genotoxic compounds that have different chemical structures.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Matthew S. Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Mugimane G. Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 20855, USA
| | - Kristine L. Witt
- Divison of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
11
|
Chapman FM, Sparham C, Hastie C, Sanders DJ, van Egmond R, Chapman KE, Doak SH, Scott AD, Jenkins GJS. Comparison of passive-dosed and solvent spiked exposures of pro-carcinogen, benzo[a]pyrene, to human lymphoblastoid cell line, MCL-5. Toxicol In Vitro 2020; 67:104905. [PMID: 32497684 DOI: 10.1016/j.tiv.2020.104905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.
Collapse
Affiliation(s)
- Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK.
| | - Chris Sparham
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Colin Hastie
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - David J Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Roger van Egmond
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Andrew D Scott
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| |
Collapse
|
12
|
Chang CY, Liang MZ, Wu CC, Huang PY, Chen HI, Yet SF, Tsai JW, Kao CF, Chen L. WNT3A Promotes Neuronal Regeneration upon Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21041463. [PMID: 32098078 PMCID: PMC7073099 DOI: 10.3390/ijms21041463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023] Open
Abstract
The treatment of traumatic brain injury (TBI) remains a challenge due to limited knowledge about the mechanisms underlying neuronal regeneration. This current study compared the expression of WNT genes during regeneration of injured cortical neurons. Recombinant WNT3A showed positive effect in promoting neuronal regeneration via in vitro, ex vivo, and in vivo TBI models. Intranasal administration of WNT3A protein to TBI mice increased the number of NeuN+ neurons without affecting GFAP+ glial cells, compared to control mice, as well as retained motor function based on functional behavior analysis. Our findings demonstrated that WNT3A, 8A, 9B, and 10A promote regeneration of injured cortical neurons. Among these WNTs, WNT3A showed the most promising regenerative potential in vivo, ex vivo, and in vitro.
Collapse
Affiliation(s)
- Chu-Yuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Ching-Chih Wu
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Pei-Yuan Huang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Hong-I Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan
- Correspondence: (C.-F.K.); (L.C.); Tel.: +886-3-574-2775 (L.C.); Fax: +886-3-571-5934 (L.C.)
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (C.-F.K.); (L.C.); Tel.: +886-3-574-2775 (L.C.); Fax: +886-3-571-5934 (L.C.)
| |
Collapse
|
13
|
Abstract
TP53 mutated acute myeloid leukemia (AML) responds poorly to chemotherapy and has a short overall survival rate with a median of 5-9 months. Poor outcomes in TP53 mutated AML following chemotherapy have been observed and treatment options remain limited, although the presence of TP53 mutations alone should not be a barrier to therapy. Decitabine is emerging as an alternative treatment option for patients with TP53 mutated AML, although the agent has not been associated with deep molecular remissions and requires additional consolidation. The clinical and genomic characteristics of TP53 mutated AML are reviewed in this paper.
Collapse
Affiliation(s)
- John S Welch
- Department of Internal Medicine, Washington University, 660 Euclid Ave, Box 8007, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Guo XH, Ni J, Xue JL, Wang X. Phyllanthus emblica Linn. fruit extract potentiates the anticancer efficacy of mitomycin C and cisplatin and reduces their genotoxicity to normal cells in vitro. J Zhejiang Univ Sci B 2018; 18:1031-1045. [PMID: 29204983 DOI: 10.1631/jzus.b1600542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Fruit of Phyllanthus emblica Linn. (PE) is widely consumed as a functional food and used as a folk medicine due to its remarkable nutritional and pharmacological effects. Mitomycin C (MMC) and cisplatin (cDDP) are the most widely used forms of chemotherapeutic drug, but their clinical use is limited by their genotoxicity to normal cells. We aimed to determine whether PE has potential to reduce the genotoxicity, while improving the anticancer effect, of MMC and cDDP. METHODS Cell proliferation was evaluated using the trypan blue exclusion assay and colony-forming assay. Genomic instability (GIN) was measured using the cytokinesis-block micronucleus assay. RESULTS Co-treatment (72 h) with PE at 20-320 μg/ml significantly enhanced the efficacy of MMC (0.05 μg/ml) and cDDP (1 μg/ml) against Colo205 colorectal cancer cells (P<0.05), and at 80-320 μg/ml significantly decreased MMC- and cDDP-induced GIN and multinucleation in normal colonic NCM460 cells (P<0.05). PE significantly decreased the mitotic index (P<0.01), blocked mitotic progression (P<0.05), and promoted apoptosis (P<0.01) in MMC- and cDDP-treated NCM460 cells, suggesting that PE-mediated inhibition of mitosis and induction of apoptosis may limit the division and survival of highly damaged cells. Also, PE was found to inhibit the clonal expansion of MMC- and cDDP-treated NCM460 cells (P<0.05) and decrease the heterogeneity of the surviving clones. CONCLUSIONS PE potentiates the anticancer efficacy of MMC and cDDP, while preventing their genotoxicity and inhibiting clonal expansions of unstable genomes in normal cells. These data suggest that PE has the potential to reduce the risk of secondary cancers induced by chemotherapeutics.
Collapse
Affiliation(s)
- Xi-Han Guo
- School of Life Sciences, the Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, China.,School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Juan Ni
- School of Life Sciences, the Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, China
| | - Jing-Lun Xue
- Institute of Genetics, Fudan University, Shanghai 200433, China
| | - Xu Wang
- School of Life Sciences, the Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, China.,School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
15
|
Kuykendall A, Duployez N, Boissel N, Lancet JE, Welch JS. Acute Myeloid Leukemia: The Good, the Bad, and the Ugly. Am Soc Clin Oncol Educ Book 2018; 38:555-573. [PMID: 30231330 DOI: 10.1200/edbk_199519] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acute myeloid leukemia (AML) was initially subdivided according to morphology (the French-American-British system), which proved helpful in pathologic categorization. Subsequently, clinical and genomic factors were found to correlate with response to chemotherapy and with overall survival. These included a history of antecedent hematologic disease, a history of chemotherapy or radiation therapy, the presence of various recurrent cytogenetic abnormalities, and, more recently, the presence of specific point mutations. This article reviews the biology and responses of one AML subgroup with consistent response and good outcomes following chemotherapy (core-binding factor leukemia), and two subgroups with persistently bad, and even ugly, outcomes (secondary AML and TP53-mutated AML).
Collapse
MESH Headings
- Alleles
- Biomarkers, Tumor
- Chromosome Aberrations
- Combined Modality Therapy
- Core Binding Factors/genetics
- Core Binding Factors/metabolism
- Gene Frequency
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/mortality
- Mutation
- Neoplasm, Residual/diagnosis
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/epidemiology
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/therapy
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Andrew Kuykendall
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - Nicolas Duployez
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - Nicolas Boissel
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - Jeffrey E Lancet
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - John S Welch
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Wilde EC, Chapman KE, Stannard LM, Seager AL, Brüsehafer K, Shah UK, Tonkin JA, Brown MR, Verma JR, Doherty AT, Johnson GE, Doak SH, Jenkins GJS. A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells. Arch Toxicol 2018; 92:935-951. [PMID: 29110037 PMCID: PMC5818597 DOI: 10.1007/s00204-017-2102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 02/03/2023]
Abstract
Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.
Collapse
Affiliation(s)
- Eleanor C Wilde
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| | - Leanne M Stannard
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Anna L Seager
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Katja Brüsehafer
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - James A Tonkin
- College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, UK
| | - M Rowan Brown
- College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, UK
| | - Jatin R Verma
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Ann T Doherty
- AstraZeneca, Discovery Safety, DSM, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - George E Johnson
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
17
|
Shah UK, Seager AL, Fowler P, Doak SH, Johnson GE, Scott SJ, Scott AD, Jenkins GJS. A comparison of the genotoxicity of benzo[a]pyrene in four cell lines with differing metabolic capacity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 808:8-19. [PMID: 27637481 DOI: 10.1016/j.mrgentox.2016.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a known genotoxin and carcinogen, yet its genotoxic response at low level exposure has not been determined. This study was conducted to examine the interplay of dose and metabolic capacity on genotoxicity of B[a]P. Investigating and better understanding the biological significance of low level chemical exposures will help improve human health risk assessments. The genotoxic and mutagenic effects of B[a]P were investigated using human cell lines (AHH-1, MCL-5, TK6 and HepG2) with differential expression of the CYP450 enzymes CYP1A1, 1B1 and1A2 involved in B[a]P metabolism. MCL-5 and HepG2 cells showed detectable basal expression and activity of CYP1A1, 1B1 and 1A2 than AHH-1 which only show CYP1A1 basal expression and activity. TK6 cells showed negligible expression levels of all three CYP450 enzymes. In vitro micronucleus and HPRT assays were conducted to determine the effect of B[a]P on chromosome damage and point mutation induction. After 24h exposure, linear increases in micronucleus (MN) frequency were observed in all cell lines except TK6. After 4h exposure, only the metabolically competent cell lines MCL-5 and HepG2 showed MN induction (with a threshold concentration at 25.5μM from MCL-5 cells) indicating the importance of exposure time for genotoxicity. The HPRT assay also displayed linear increases in mutant frequency in MCL-5 cells, after 4h and 24h treatments. Mutation spectra analysis of MCL-5 and AHH-1 HPRT mutants revealed frequent B[a]P induced G to T transversion mutations (72% and 44% of induced mutations in MCL-5 and AHH-1 respectively). This study therefore demonstrates a key link between metabolic capability, B[a]P exposure time and genotoxicity.
Collapse
Affiliation(s)
- Ume-Kulsoom Shah
- Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Anna L Seager
- Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Paul Fowler
- Safety & Environmental Assurance Centre (SEAC), Unilever, Bedford, MK44 1LQ, UK
| | - Shareen H Doak
- Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - George E Johnson
- Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Sharon J Scott
- Safety & Environmental Assurance Centre (SEAC), Unilever, Bedford, MK44 1LQ, UK
| | - Andrew D Scott
- Safety & Environmental Assurance Centre (SEAC), Unilever, Bedford, MK44 1LQ, UK
| | - Gareth J S Jenkins
- Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
18
|
Brüsehafer K, Manshian BB, Doherty AT, Zaïr ZM, Johnson GE, Doak SH, Jenkins GJS. The clastogenicity of 4NQO is cell-type dependent and linked to cytotoxicity, length of exposure and p53 proficiency. Mutagenesis 2016; 31:171-80. [PMID: 26362870 PMCID: PMC4748179 DOI: 10.1093/mutage/gev069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
4-Nitroquinoline 1-oxide (4NQO) is used as a positive control in various genotoxicity assays because of its known mutagenic and carcinogenic properties. The chemical is converted into 4-hydroxyaminoquinoline 1-oxide and gives rise to three main DNA adducts, N-(deoxyguanosin-8-yl)-4AQO, 3-(desoxyguanosin-N (2)-yl)-4AQO and 3-(deoxyadenosin-N (6)-yl)-4AQO. This study was designed to assess the shape of the dose-response curve at low concentrations of 4NQO in three human lymphoblastoid cell lines, MCL-5, AHH-1 and TK6 as well as the mouse lymphoma L5178Y cell line in vitro. Chromosomal damage was investigated using the in vitro micronucleus assay, while further gene mutation and DNA damage studies were carried out using the hypoxanthine-guanine phosphoribosyltransferase forward mutation and comet assays. 4NQO showed little to no significant increases in micronucleus induction in the human lymphoblastoid cell lines, even up to 55±5% toxicity. A dose-response relationship could only be observed in the mouse lymphoma cell line L5178Y after 4NQO treatment, even at concentrations with no reduction in cell viability. Further significant increases in gene mutation and DNA damage induction were observed. Hence, 4NQO is a more effective point mutagen than clastogen, and its suitability as a positive control for genotoxicity testing has to be evaluated for every individual assay.
Collapse
Affiliation(s)
- Katja Brüsehafer
- *To whom correspondence should be addressed. ILS1, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK. Tel: +44 179 260 2512; Fax: +44 179 260 2147;
| | | | - Ann T. Doherty
- Drug Safety and Metabolism, AstraZeneca, Unit 310, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB40WG, UK
| | | | | | | | | |
Collapse
|
19
|
Musa M, Mohd Ali K, Kannan TP, Azlina A, Omar NS, Chatterji A, Mokhtar KI. Effects of Perivitelline Fluid Obtained from Horseshoe Crab on The Proliferation and Genotoxicity of Dental Pulp Stem Cells. CELL JOURNAL 2015. [PMID: 26199904 PMCID: PMC4503839 DOI: 10.22074/cellj.2016.3726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective Perivitelline fluid (PVF) of the horseshoe crab embryo has been reported to
possess an important role during embryogenesis by promoting cell proliferation. This
study aims to evaluate the effect of PVF on the proliferation, chromosome aberration (CA)
and mutagenicity of the dental pulp stem cells (DPSCs).
Materials and Methods This is an in vitro experimental study. PVF samples were
collected from horseshoe crabs from beaches in Malaysia and the crude extract was
prepared. DPSCs were treated with different concentrations of PVF crude extract in
an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay (cytotoxicity test). We choose two inhibitory concentrations (IC50 and IC25) and two PVF
concentrations which produced more cell viability compared to a negative control
(100%) for further tests. Quantitative analysis of the proliferation activity of PVF was
studied using the AlamarBlue®assay for 10 days. Population doubling times (PDTs)
of the treatment groups were calculated from this assay. Genotoxicity was evaluated
based on the CA and Ames tests. Statistical analysis was carried out using independent t test to calculate significant differences in the PDT and mitotic indices in the CA
test between the treatment and negative control groups. Significant differences in the
data were P<0.05.
Results A total of four PVF concentrations retrieved from the MTT assay were
26.887 mg/ml (IC50), 14.093 mg/ml (IC25), 0.278 mg/ml (102% cell viability) and 0.019
mg/ml (102.5% cell viability). According to the AlamarBlue®assay, these PVF groups
produced comparable proliferation activities compared to the negative (untreated)
control. PDTs between PVF groups and the negative control were insignificantly different (P>0.05). No significant aberrations in chromosomes were observed in the
PVF groups and the Ames test on the PVF showed the absence of significant positive
results.
Conclusion PVF from horseshoe crabs produced insignificant proliferative activity on
treated DPSCs. The PVF was non-genotoxic based on the CA and Ames tests.
Collapse
Affiliation(s)
- Marahaini Musa
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Khadijah Mohd Ali
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Thirumulu Ponnuraj Kannan
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia ; Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ahmad Azlina
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nor Shamsuria Omar
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia ; Institute of Tropical Aquaculture (AQUATROP), University Malaysia Terengganu, Terengganu, Malaysia
| | - Anil Chatterji
- National Institute of Oceanography (NIO), Dona Paula, India
| | - Khairani Idah Mokhtar
- Kulliyah of Dentistry, International Islamic University of Malaysia, Jalan Sultan Ahmad Shah, Pahang, Malaysia
| |
Collapse
|
20
|
Chapman KE, Doak SH, Jenkins GJS. Acute dosing and p53-deficiency promote cellular sensitivity to DNA methylating agents. Toxicol Sci 2015; 144:357-65. [PMID: 25595616 DOI: 10.1093/toxsci/kfv004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Risk assessment of human exposure to chemicals is crucial for understanding whether such agents can cause cancer. The current emphasis on avoidance of animal testing has placed greater importance on in vitro tests for the identification of genotoxicants. Selection of an appropriate in vitro dosing regime is imperative in determining the genotoxic effects of test chemicals. Here, the issue of dosing approaches was addressed by comparing acute and chronic dosing, uniquely using low-dose experiments. Acute 24 h exposures were compared with equivalent dosing every 24 h over 5-day, fractionated treatment periods. The in vitro micronucleus assay was used to measure clastogenicity induced by methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (MNU) in human lymphoblastoid cell line, TK6. Quantitative real-time (qRT) PCR was used to measure mRNA level induction of DNA repair enzymes. Lowest observed genotoxic effect levels (LOGELs) for MMS were obtained at 0.7 µg/ml for the acute study and 1.0 µg/ml for the chronic study. For acute MNU dosing, a LOGEL was observed at 0.46 µg/ml, yet genotoxicity was completely removed following the chronic study. Interestingly, acute MNU dosing demonstrated a statistically significant decrease at 0.009 µg/ml. Levels of selected DNA repair enzymes did not change significantly following doses tested. However, p53 deficiency (using the TK6-isogenic cell line, NH32) increased sensitivity to MMS during chronic dosing, causing this LOGEL to equate to the acute treatment LOGEL. In the context of the present data for 2 alkylating agents, chronic dosing could be a valuable in vitro supplement to acute dosing and could contribute to reduction of unnecessary in vivo follow-up tests.
Collapse
Affiliation(s)
- Katherine E Chapman
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, West Glamorgan SA2 8PP, UK
| | - Shareen H Doak
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, West Glamorgan SA2 8PP, UK
| | - Gareth J S Jenkins
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, West Glamorgan SA2 8PP, UK
| |
Collapse
|
21
|
Gonçalves AMMN, de Lima AB, Barbosa MCDS, de Camargos LF, de Oliveira JT, Barbosa CDS, Villar JAFP, Costa AC, da Silva IVG, Silva LM, Varotti FDP, dos Santos FV, Viana GHR. Synthesis and biological evaluation of novel 3-alkylpyridine marine alkaloid analogs with promising anticancer activity. Mar Drugs 2014; 12:4361-78. [PMID: 25089949 PMCID: PMC4145321 DOI: 10.3390/md12084361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/24/2014] [Accepted: 07/09/2014] [Indexed: 01/27/2023] Open
Abstract
Cancer continues to be one of the most important health problems worldwide, and the identification of novel drugs and treatments to address this disease is urgent. During recent years, marine organisms have proven to be a promising source of new compounds with action against tumoral cell lines. Here, we describe the synthesis and anticancer activity of eight new 3-alkylpyridine alkaloid (3-APA) analogs in four steps and with good yields. The key step for the synthesis of these compounds is a Williamson etherification under phase-transfer conditions. We investigated the influence of the length of the alkyl chain attached to position 3 of the pyridine ring on the cytotoxicity of these compounds. Biological assays demonstrated that compounds with an alkyl chain of ten carbon atoms (4c and 5c) were the most active against two tumoral cell lines: RKO-AS-45-1 and HeLa. Micronucleus and TUNEL assays showed that both compounds are mutagenic and induce apoptosis. In addition, Compound 5c altered the cellular actin cytoskeleton in RKO-AS-45-1 cells. The results suggest that Compounds 4c and 5c may be novel prototype anticancer agents.
Collapse
Affiliation(s)
- Alessandra Mirtes Marques Neves Gonçalves
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Aline Brito de Lima
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Maria Cristina da Silva Barbosa
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Luiz Fernando de Camargos
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Júlia Teixeira de Oliveira
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Camila de Souza Barbosa
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - José Augusto Ferreira Perez Villar
- Laboratório de Síntese Orgânica, Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mail:
| | - André Carvalho Costa
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Isabella Viana Gomes da Silva
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Luciana Maria Silva
- Serviço de Biologia Celular (SBC), Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, MG 30.510-010, Brazil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Fabio Vieira dos Santos
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| | - Gustavo Henrique Ribeiro Viana
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei, Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35.501-296, Brazil; E-Mails: (A.M.M.N.G.); (A.B.L.); (M.C.S.B.); (L.F.C.); (J.T.O.); (C.S.B.); (A.C.C.); (I.V.G.S.)
| |
Collapse
|