1
|
Kou Z, Tran F, Dai W. Heavy metals, oxidative stress, and the role of AhR signaling. Toxicol Appl Pharmacol 2024; 482:116769. [PMID: 38007072 PMCID: PMC10988536 DOI: 10.1016/j.taap.2023.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
The Aryl Hydrocarbon Receptor (AhR) is a ligand-activated transcriptional factor pivotal in responding to environmental stress and maintaining cellular homeostasis. Exposure to specific xenobiotics or industrial compounds in the environment activates AhR and its subsequent signaling, inducing oxidative stress and related toxicity. Past research has also identified and characterized several classes of endogenous ligands, particularly some tryptophan (Trp) metabolic/catabolic products, that act as AhR agonists, influencing a variety of physiological and pathological states, including the modulation of immune responses and cell death. Heavy metals, being non-essential elements in the human body, are generally perceived as toxic and hazardous, originating either naturally or from industrial activities. Emerging evidence indicates that heavy metals significantly influence AhR activation and its downstream signaling. This review consolidates current knowledge on the modulation of the AhR signaling pathway by heavy metals, explores the consequences of co-exposure to AhR ligands and heavy metals, and investigates the interplay between oxidative stress and AhR activation, focusing on the regulation of immune responses and ferroptosis.
Collapse
Affiliation(s)
- Ziyue Kou
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25(th) Street, New York, NY 10010, United States of America
| | - Franklin Tran
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25(th) Street, New York, NY 10010, United States of America
| | - Wei Dai
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25(th) Street, New York, NY 10010, United States of America.
| |
Collapse
|
2
|
Wise JTF, Salazar-González RA, Walls KM, Doll MA, Habil MR, Hein DW. Hexavalent chromium increases the metabolism and genotoxicity of aromatic amine carcinogens 4-aminobiphenyl and β-naphthylamine in immortalized human lung epithelial cells. Toxicol Appl Pharmacol 2022; 449:116095. [PMID: 35662664 PMCID: PMC9382885 DOI: 10.1016/j.taap.2022.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Humans are exposed to carcinogenic chemicals via occupational and environmental exposures. Common chemicals of concern that can occur in exposures together are aromatic amines (e.g., 4-aminobiphenyl [4-ABP] and β-naphthylamine [BNA]) and hexavalent chromium (Cr[VI]). Arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2) are key to the metabolism of aromatic amines and their genotoxicity. The effects of Cr(VI) on the metabolism of aromatic amines remains unknown as well as how it may affect their ensuing toxicity. The objective of the research presented here is to investigate the effects of Cr(VI) on the metabolism and genotoxicity of 4-ABP and BNA in immortalized human lung epithelial cells (BEP2D) expressing NAT1 and NAT2. Exposure to Cr(VI) for 48 h increased NAT1 activity (linear regression analysis: P < 0.0001) as measured by N-acetylation of para-aminobenzoic acid (PABA) in BEP2D cells but not NAT2 N-acetylation of sulfamethazine, which are prototypic NAT1 and NAT2 substrates respectively. Cr(VI) also increased the N-acetylation of 4-ABP and BNA. In BEP2D cells the N-acetylation of 4-ABP (1-3 μM) exhibited a dose-dependent increase (linear regression analysis: P < 0.05) following co-incubation with 0-3 μM Cr(VI). In BEP2D cells, incubation with Cr(VI) caused dose-dependent increases (linear regression analysis: P < 0.01) in expression of CYP1A1 protein and catalytic activity. For genotoxicity, BEP2D cells were exposed to 4-ABP or BNA with/without Cr(VI) for 48 h. We observed dose-dependent increases (linear regression analysis: P < 0.01) in phospho-γH2AX protein expression for combined treatment of 4-ABP or BNA with Cr(VI). Further using a CYP1A1 inhibitor (α-naphthoflavone) and NAT1 siRNA, we found that CYP1A1 inhibition did not reduce the increased N-acetylation or genotoxicity of BNA by Cr(VI), while NAT1 inhibition did reduce increases in BNA N-acetylation and genotoxicity by Cr(VI). We conclude that during co-exposure of aromatic amines and Cr(VI) in human lung cells, Cr(VI) increased NAT1 activity contributing to increased 4-ABP and BNA genotoxicity.
Collapse
Affiliation(s)
- James T F Wise
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kennedy M Walls
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Mariam R Habil
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Tavares AM, Viegas S, Louro H, Göen T, Santonen T, Luijten M, Kortenkamp A, Silva MJ. Occupational Exposure to Hexavalent Chromium, Nickel and PAHs: A Mixtures Risk Assessment Approach Based on Literature Exposure Data from European Countries. TOXICS 2022; 10:431. [PMID: 36006111 PMCID: PMC9414170 DOI: 10.3390/toxics10080431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium (Cr(VI)), nickel (Ni) and polycyclic aromatic hydrocarbons (PAHs) are genotoxic co-occurring lung carcinogens whose occupational health risk is still understudied. This study, conducted within the European Human Biomonitoring Initiative (HBM4EU), aimed at performing a mixtures risk assessment (MRA) based on published human biomonitoring (HBM) data from Cr(VI), Ni and/or PAHs occupational co-exposure in Europe. After data extraction, Risk Quotient (RQ) and Sum of Risk Quotients (SRQ) were calculated for binary and ternary mixtures to characterise the risk. Most selected articles measured urinary levels of Cr and Ni and a SRQ > 1 was obtained for co-exposure levels in welding activities, showing that there is concern regarding co-exposure to these substances. Similarly, co-exposure to mixtures of Cr(VI), Ni and PAHs in waste incineration settings resulted in SRQ > 1. In some studies, a low risk was estimated based on the single substances’ exposure level (RQ < 1), but the mixture was considered of concern (SRQ > 1), highlighting the relevance of considering exposure to the mixture rather than to its single components. Overall, this study points out the need of using a MRA based on HBM data as a more realistic approach to assess and manage the risk at the workplace, in order to protect workers’ health.
Collapse
Affiliation(s)
- Ana Maria Tavares
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (A.M.T.); (H.L.)
- ToxOmics–Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal;
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (A.M.T.); (H.L.)
- ToxOmics–Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Thomas Göen
- Institute of Occupational, Social and Environmental Medicine (IPASUM), University Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany;
| | - Tiina Santonen
- Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland;
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands;
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London UB8 3PH, UK;
| | - Maria João Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (A.M.T.); (H.L.)
- ToxOmics–Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
4
|
VonHandorf A, Zablon HA, Biesiada J, Zhang X, Medvedovic M, Puga A. Hexavalent chromium promotes differential binding of CTCF to its cognate sites in Euchromatin. Epigenetics 2021; 16:1361-1376. [PMID: 33319643 DOI: 10.1080/15592294.2020.1864168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hexavalent chromium compounds are well-established respiratory carcinogens to which humans are commonly exposed in industrial and occupational settings. In addition, natural and anthropogenic sources of these compounds contribute to the exposure of global populations through multiple routes, including dermal, ingestion and inhalation that elevate the risk of cancer by largely unresolved mechanisms. Cr(VI) has genotoxic properties that include ternary adduct formation with DNA, increases in DNA damage, mostly by double-strand break formation, and altered transcriptional responses. Our previous work using ATAC-seq showed that CTCF motifs were enriched in Cr(VI)-dependent differentially accessible chromatin, suggesting that CTCF, a key transcription factor responsible for the regulation of the transcriptome, might be a chromium target. To test this hypothesis, we investigated the effect of Cr(VI) treatment on the binding of CTCF to its cognate sites and ensuing changes in transcription-related histone modifications. Differentially bound CTCF sites were enriched by Cr(VI) treatment within transcription-related regions, specifically transcription start sites and upstream genic regions. Functional annotation of the affected genes highlighted biological processes previously associated with Cr(VI) exposure. Notably, we found that differentially bound CTCF sites proximal to the promoters of this subset of genes were frequently associated with the active histone marks H3K27ac, H3K4me3, and H3K36me3, in agreement with the concept that Cr(VI) targets CTCF in euchromatic regions of the genome. Our results support the conclusion that Cr(VI) treatment promotes the differential binding of CTCF to its cognate sites in genes near transcription-active boundaries, targeting these genes for dysregulation.
Collapse
Affiliation(s)
- Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Zhang Z, Cao H, Song N, Zhang L, Cao Y, Tai J. Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition. Food Chem Toxicol 2020; 138:111237. [PMID: 32145354 DOI: 10.1016/j.fct.2020.111237] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide. Hexavalent chromium [Cr(VI)] is often present in groundwater. Chronic Cr(VI) exposure is suggested to be one of the main factors inducing cancer. However, the correlation between Cr(VI) and CRC remains unclear. In this study, we investigated the role of Cr(VI) in CRC by establishing a mouse CRC model induced by 1, 2-dimethylhydrazine (DMH). The results showed that Cr(VI) increased weight loss in DMH-induced mice and promoted the formation of tumors. Cr(VI) also increased DMH-induced proliferating cell nuclear antigen (PCNA) levels. Investigation of the underlying mechanisms found that Cr(VI) significantly decreased DMH-induced SOD, GSH and CAT levels, while, the MDA level increased. Metagenomic analyses found that the abundance of Firmicutes and Bacteroidetes in the DMH + Cr group was down-regulated. Interestingly, the combination of Cr(VI) and DMH significantly increased the abundance of Verrucomicrobia. At the family and genus levels, families Akkermansiaceae and Saccharimonadaceae and genus Akkermansia were more abundant in the DMH + Cr group, whereas the abundance of short-chain fatty acid (SCFA)-producing bacteria (family Muribaculaceae, family Lachnosipiraceae, genus Lachnospiraceae_NK4A136_group, and genus Roseburia) decreased. These results indicate that Cr(VI) might aggravate CRC by altering the composition of the gut microflora.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Hongyang Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Ning Song
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Lixiao Zhang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China.
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
6
|
VonHandorf A, Sánchez-Martín FJ, Biesiada J, Zhang H, Zhang X, Medvedovic M, Puga A. Chromium disrupts chromatin organization and CTCF access to its cognate sites in promoters of differentially expressed genes. Epigenetics 2018; 13:363-375. [PMID: 29561703 PMCID: PMC6140807 DOI: 10.1080/15592294.2018.1454243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023] Open
Abstract
Hexavalent chromium compounds are well-established respiratory carcinogens used in industrial processes. While inhalation exposure constitutes an occupational risk affecting mostly chromium workers, environmental exposure from drinking water is a widespread gastrointestinal cancer risk, affecting millions of people throughout the world. Cr(VI) is genotoxic, forming protein-Cr-DNA adducts and silencing tumor suppressor genes, but its mechanism of action at the molecular level is poorly understood. Our prior work using FAIRE showed that Cr(VI) disrupted the binding of transcription factors CTCF and AP-1 to their cognate chromatin sites. Here, we used two complementary approaches to test the hypothesis that chromium perturbs chromatin organization and dynamics. DANPOS2 analyses of MNase-seq data identified several chromatin alterations induced by Cr(VI) affecting nucleosome architecture, including occupancy changes at specific genome locations; position shifts of 10 nucleotides or more; and changes in position amplitude or fuzziness. ATAC-seq analysis revealed that Cr(VI) disrupted the accessibility of chromatin regions enriched for CTCF and AP-1 binding motifs, with a significant co-occurrence of binding sites for both factors in the same region. Cr(VI)-enriched CTCF sites were confirmed by ChIP-seq and found to correlate with evolutionarily conserved sites occupied by CTCF in vivo, as determined by comparison with ENCODE-validated CTCF datasets from mouse liver. In addition, more than 30% of the Cr(VI)-enriched CTCF sites were located in promoters of genes differentially expressed from chromium treatment. Our results support the conclusion that Cr(VI) exposure promotes broad changes in chromatin accessibility and suggest that the subsequent effects on transcription regulation may result from disruption of CTCF binding and nucleosome spacing, implicating transcription regulatory mechanisms as primary Cr(VI) targets.
Collapse
Affiliation(s)
- Andrew VonHandorf
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Francisco Javier Sánchez-Martín
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Jacek Biesiada
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Hongxia Zhang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Xiang Zhang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Mario Medvedovic
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United State
| |
Collapse
|
7
|
Thompson CM, Suh M, Proctor DM, Haws LC, Harris MA. Ten factors for considering the mode of action of Cr(VI)-induced gastrointestinal tumors in rodents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 823:45-57. [DOI: 10.1016/j.mrgentox.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
|
8
|
Zhang Y, Xiao F, Liu X, Liu K, Zhou X, Zhong C. Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction via the PI3K/Akt signaling pathway. Toxicol In Vitro 2017; 41:232-244. [PMID: 28323103 DOI: 10.1016/j.tiv.2017.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/27/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
Abstract
The occupational and environmental toxicant hexavalent chromium [Cr(VI)] can cause severe damage to the liver; however, the exact mechanisms associated with its toxicity have not been thoroughly demonstrated. In the present study, the underlying mechanisms of Cr(VI)-induced hepatotoxicity were investigated. Our results showed that Cr(VI) inhibited the growth and proliferation of L-02 hepatocytes. Further study revealed that Cr(VI) significantly induced S-phase cell cycle arrest and apoptosis accompanying with the overproduction of reactive oxygen species (ROS). Cr(VI)-induced apoptosis could be prevented by inhibiting ROS with N-acetyl-l-cysteine (NAC). Additionally, our data showed that Cr(VI)-induced endoplasmic reticulum (ER) stress and mitochondrial dysfunction were concentration- and time-dependent. Moreover, inhibition of C/EBA homologous protein (CHOP) expression by siRNA partially prevented Cr(VI)-induced cell apoptosis, mitochondrial dysfunction and ROS generation. We also found that Cr(VI) treatment inhibited the PI3K/Akt pathway in a concentration- and time-dependent manner. After using IGF-1 (50ng/mL), the specific agonist of the PI3K/AKT signaling pathway, the facilitating effects of Cr(VI) were depressed. This finding demonstrated the relationship between the PI3K/Akt pathway, ER stress and mitochondrial dysfunction. Collectively, these findings indicated that Cr(VI) increased ROS production. Increased ROS production may account for inhibition of the PI3K/Akt pathway and lead to ER stress and mitochondrial dysfunction, which consequently induces apoptosis in L-02 hepatocytes. This study provides novel insights into the molecular mechanisms of Cr(VI)-induced cytotoxicity.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Department of Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Xinmin Liu
- Department of Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Kaihua Liu
- Department of Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Xiaoxin Zhou
- Department of Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Caigao Zhong
- Department of Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
9
|
Thompson CM, Bichteler A, Rager JE, Suh M, Proctor DM, Haws LC, Harris MA. Comparison of in vivo genotoxic and carcinogenic potency to augment mode of action analysis: Case study with hexavalent chromium. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 800-801:28-34. [DOI: 10.1016/j.mrgentox.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/13/2023]
|
10
|
Wang T, Lin Z, Yin C, An Q, Zhang X, Wang D, Liu Y. A new parameter for the stimulation effect and its application in the prediction of the hormetic effect in chemical mixtures. RSC Adv 2016. [DOI: 10.1039/c6ra18239a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To study the prediction methods is important for chronic mixture toxicity at low concentration, particularly mixtures containing chemicals with hormetic effects because pollutants in the real environment exist at low-doses in the form of mixtures.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Chunsheng Yin
- College of Marine Science
- Shanghai Ocean University
- Shanghai 201306
- China
| | - Qingqing An
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Xiaoxian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Dali Wang
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Ying Liu
- Collaborative Innovation Center for Regional Environmental Quality
- Beijing
- China
| |
Collapse
|